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Participants
Participants were 16 healthy young adults (13 females; 2 males;
1 transgender) with mean age of 21.2 (SD = 1.2). They were
recruited from a summer program in which 20 undergraduate stu-
dents and recent graduates (from 10 US colleges) agreed to spend
9 wk together to organize workers and collect oral histories. There
were initially 20 volunteers enrolled in this summer program
(19 completed it), of which 18 were willing and able to participate
in the T1 fMRI scan session. We were unable to collect T1 liking
ratings from two of these individuals and consequently could not
compute social relations modeling (SRM) relationship effects for
any T1 liking relations involving either of them (26). Thus, the
present study analyzes data collected from the remaining 16 group
members—those who were scanned at T1 and provided liking ratings
both at T1 and at T2—and the 120 dyadic relationships (i.e.,
240 interpersonal sentiments) between them. Participants were, for
the most part, unacquainted before this summer program; in the
vast majority (82%) of dyads, both individuals reported not knowing
each other at T1 (see Robustness Checks below for analyses con-
ducted to verify that such variables did not confound our results).
All participants provided informed consent, were English-

speaking, and had normal or corrected-to-normal vision. They were
screened for a history of serious neuropsychiatric disorders, head
injury, and other conditions that prevented scanning (e.g., a pace-
maker) before taking part in the fMRI scanning session.

Preprocessing/General Linear Model Parameters
Functional data were preprocessed with SPM8 software (Well-
come Department of Cognitive Neurology, University College
London), including slice time correction, motion correction, re-
alignment, coregistration of functional and anatomical data, nor-
malization to a standard template (Montreal Neurological Institute)
using segmentation parameters, 3-mm3 isometric voxels, and spatial
smoothing with a 6-mm Gaussian kernel. fMRI data were subjected
to a first level of regression, separately for each subject, using an
ordinary–least-squares general linear model (GLM) implemented
with Neuroelf, version 1.0, software (neuroelf.net). The GLM in-
cluded one regressor per face stimulus (i.e., representing the 10
repetitions of each), created by convolving the canonical hemody-
namic response function with a series of boxcars representing the
1,000-ms intervals during which a particular face was presented.
In addition, the GLM included six motion parameters as esti-
mated during realignment as well as a discrete cosine transform-
based basis set covering low frequency up to 1/80 Hz to account
for signal variability introduced by head motion and temporal
drifts. The output of these first-level regressions was a series of
parameter estimate (beta) maps for subsequent analysis.

Isolating Relational Components of Liking and Neural
Valuation Using SRM Analysis
Our round-robin design—which structured both the liking as-
sessments and fMRI face-viewing paradigm—allowed us to
partition sources of variance underlying group members’ liking rat-
ings and neural valuations, specifically, to disambiguate relationship-
specific effects from generalized individual-level effects. Con-
sider the variability in group members’ liking ratings: some of
this variance is attributable to individual differences, that is, group
members varying in how much they (i) generally like others, and
(ii) are generally liked by the rest of the group; however, the
predominant source of liking variance is relationship specific or
relational, that is, attributable to group members having unique
attractions toward one another (1). SRM isolates this relational

component of interpersonal attraction from person-level con-
founds, that is, distilling how much Anita uniquely likes Buddy by
taking into account Anita’s general tendency to like others as well
as Buddy’s general tendency to be liked by others.
Capturing the relationship-specific component of liking is par-

ticularly important for understanding affective reciprocity as a truly
dyadic phenomenon of relationships: in the context of raw liking
measures, reciprocity could be driven by generalized person-level
effects (i.e., correlation between Anita’s popularity—generally
being liked by group members—and her overall tendency to like
other group members); by contrast, in the context of relational
liking measures, the SRM construct of dyadic reciprocity reflects
correlation between Anita’s particular attraction to Buddy and
Buddy’s particular attraction to Anita (1, 24, 26).
We used the R package TripleR (26) to compute SRM rela-

tionship effects (1) for neural reward value, T1 liking, and T2 liking.
The relationship effects for the neural variable were computed using
our aggregate measure of reward system ROI activity, that is, the
simple average of the two ROIs’ activations. Model results for ROI-
specific analyses (i.e., using relationship effects computed using
only the vmPFC ROI or only the VS ROI, respectively) are
reported in Table S1.
This allowed us to model T2 liking outcomes as a function of

T1 neural reward responses and initial liking using these variables’
uniquely relational components. We conducted this analysis us-
ing the actor–partner interdependence model (APIM), an
established method for dyadic analysis of SRM relationship ef-
fects (24). Note that we also conducted a version of the APIM
analysis using the raw measures of liking and neural valuation
rather than their relational components; as described in Results,
these analyses replicated our neural findings that T1 reward
activity predicted both liking and being liked at T2.

Implementation of APIM Analysis Using SEM
Our analyses aimed to test whether group members’ T2 liking
outcomes were predicted by their T1 neural valuations, even con-
trolling for their baseline attractions at T1. The fact that these
T2 liking observations evidence reciprocation—statistical association
between dyad members’ outcomes—violates standard regression
models’ assumption of independence. This violation would lead us
to underestimate SEs and perform overly lenient significance
testing. Therefore, we adopted the APIM analytic framework to
assess—rather than ignore—such dyadic interdependence of
T2 liking outcomes and quantify how much of this reciprocation is
explained by the model.
We implemented these analyses using the Stata 14 (StataCorp,

1985–2015) sem function for structural equation models and the
mlmv estimation method for maximum likelihood with missing
values. This approach allowed for missing data and offered
several other advantages. First, by estimating the entire model at
once, we could simultaneously estimate path coefficients for
actor and partner effects (while controlling for each other and
any other covariates) as well as correlations between predictor
variables (24, 25). In addition, these structural equation analyses
allowed us to impose specific restrictions on model parameters
such that dyad members would share common (i.e., exhibit
equal) actor effects, partner effects, predictor means, predictor
variances, outcome intercepts, and residual variances (Fig. S1).
These equality constraints were necessary since dyad members in
this study were fundamentally interchangeable, meaning that
they could both equivalently fulfill either the actor or partner
roles (in contrast to distinguishable dyads such as husband–wife
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or child–parent role pairings). Finally, this analytic approach
enabled us to incorporate clustered SEs, that is, to specify the SE
calculation using dyad as a cluster variable. This method allows
error terms to be correlated within dyad clusters and accordingly
adjusts for this dyadic nonindependence of T2 liking outcomes in
computing SEs and significance tests (25).
More formally, the APIM with interchangeable dyad members

can be depicted schematically as in Fig. S1 or expressed as a
multivariate regression:
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where a is actor effect, p is partner effect, i is outcome intercept,
x1 is person 1’s predictor, x2 is person 2’s predictor, y1 is person
1’s outcome, y2 is person 2’s outcome, «1 is person 1’s outcome
disturbance, and «2 is person 2’s outcome disturbance.
For further details on the APIM and its estimation using SEM,

see refs. 24 and 25, respectively.

Missing Data
For the T2 liking outcome measure, our data included 235 ob-
servations or 98% of the 240 possible directed relations between
16 participants. The five missing values were due to one partic-
ipant not fully completing the T2 sociometric assessment ad-
ministered via an online survey. Turning to our T1 predictor
variables, we acquired neural measures of reward value for all
240 directed relations and initial liking ratings for 197 (82%) of
them. These missing values were due to a programming error in
the T1 sociometric assessment instrument that resulted in 43
randomly drawn omissions from the full roster of 240 possible
liking relations.
Our analytic approach was designed to handle these missing

data, both in the computation of relationship-specific effects and
the APIM implementation using SEM. TripleR temporarily
imputes missing values (by averaging row and column means) to
calculate SRM effects; subsequently, imputed relationship effects
are turned back to missing values. Simulation studies have
demonstrated that, for groups with 10 or more members, rela-
tively little deviation from true values can be expected even with
20% or more missing values (26). In terms of the structural
equation analyses, we used the sem function in Stata 14 and
specified the mlmv estimation method for maximum likelihood
with missing values.

Robustness Checks
We conducted a series of robustness checks to verify that our
neural findings were not driven by other mechanisms, in par-
ticular, structural antecedents of liking and affiliation ties iden-
tified by sociologists. Considering the mechanism of homophily
(i.e., similarity breeds interpersonal attraction), our robustness

checks included measures of similarity for each of the following
variables: gender, race, ethnicity, household income, college af-
filiation, having already graduated from (versus still being en-
rolled in) college, dispositional narcissism, each of the Big Five
personality dimensions (extraversion, agreeableness, neuroticism,
conscientiousness, and openness to experience), and belonging to
the same “team” of participants (i.e., the summer program or-
ganized its volunteers into five teams of four individuals each).
We also tested an additional variable that designated whether (at
least one of) the dyad members reported knowing each other
before the summer program (22 dyads = 18%). Each iteration of
the APIM analysis included one of these potential confounds as
a covariate along with the same four predictor variables described
before (i.e., actor’s and partner’s T1 liking ratings and neural re-
sponses). As none of these sociological variables demonstrated
statistically significant results in our models (all values of P > 0.2),
they were not included in other analyses.
The variables incorporated in these robustness checks con-

cerned potential confounds at the dyadic level. There was no need
for the robustness checks to include individual-level covariates
because our analysis solely modeled relationship-specific effects
(i.e., measures from which person-level effects of actors and of
partners had already been removed).

Analyses by Individual ROIs
As explained in Methods, we used a functional localizer task in a
separate participant sample to independently define neural re-
ward system ROIs in vmPFC and VS. We averaged together both
ROIs’ activations during the face-viewing task for a composite
neural measure of reward value. The rationale for aggregating
vmPFC and VS ROIs is that these brain regions are anatomically
interconnected (13) and functionally coactivated in processes
underlying valuation and reward (9–15); furthermore, these ROIs
were identified together from the same localizer task.
Table S1 reports model results of three separate APIM analyses

that incorporated (i) the aggregate neural measure of reward
value averaged across ROIs, (ii) only the vmPFC ROI, or (iii)
only the VS ROI. As with the aggregate reward system measure,
the vmPFC ROI demonstrated both the actor effect (β = 0.151;
P < 0.05) and the partner effect (β = 0.155; P < 0.05). Although
the VS ROI similarly exhibited the partner effect (β = 0.134; P <
0.05), we did not find evidence for the corresponding actor effect
there (β = 0.041; P > 0.4). As we had no specific predictions
about these prognostic effects manifesting more strongly or ex-
clusively in either one of the reward-related ROIs, we hesitate to
offer post hoc interpretation of any such differences. The ob-
served pattern of results suggests that the neural actor effect may
be primarily driven by vmPFC, but further research will be
needed to clarify the relative predictive strengths of vmPFC and
VS activity as a neural basis for forecasting different kinds of
interpersonal sentiments and social relations.

Fig. S1. Schematic representation of actor–partner interdependence model (APIM) for indistinguishable dyads with the following parameters: actor and
partner effects (a and p), predictor mean and variance (m and v), outcome intercept (i), and residual variance (e). See refs. 24 and 25 for additional details on
the APIM and its estimation using SEM.
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Table S1. Results of three actor–partner interdependence models (APIMs) of T2 liking

Reward system ROIs
(mean of vmPFC and VS) vmPFC ROI only VS ROI only

T1 predictors of
T2 liking β Robust SE P β Robust SE P β Robust SE P

Actor effects
Neural activation 0.119 0.059 0.044 0.151 0.063 0.016 0.041 0.053 0.437
Initial liking 0.199 0.066 0.003 0.208 0.065 0.001 0.206 0.068 0.003

Partner effects
Neural activation 0.167 0.059 0.005 0.155 0.061 0.012 0.134 0.058 0.020
Initial liking 0.159 0.059 0.007 0.162 0.057 0.004 0.172 0.061 0.005

(Intercept) 0.004 0.073 0.959 0.004 0.073 0.957 0.003 0.075 0.963

Results of three APIMs regressing T2 liking outcomes against T1 predictors—neural reward responses during
the face-viewing task and a control variable for initial liking baselines—collected from oneself (actor) and the
relevant other group member (partner). In other words, for baseline liking this means Anita’s initial liking of
Buddy and Buddy’s initial liking of Anita. For the neural measure of reward value, this means Anita’s neural
valuation of Buddy and Buddy’s neural valuation of Anita. Specifically, this predictor reflects neural activation
parameter estimates extracted from a priori brain regions of interest (ROIs) underlying reward and valuation
processes: the first model uses an aggregate measure of reward system activity (simple average of both ROIs’
activations); the second model uses only the vmPFC ROI; and the third model uses only the VS ROI. All param-
eters are reported as standardized values. Bolded values denote P < 0.05, two-tailed.
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