
“main” — 2017/11/29 — page 1 — #1

Bioinformatics
doi.10.1093/bioinformatics/xxxxxx

Advance Access Publication Date: Day Month Year
Genome analysis

Supplementary Material

Genome Context Viewer: visual exploration of
multiple annotated genomes using microsynteny
Alan Cleary 1, 2, �,∗ and Andrew Farmer 2, �

1Gianforte School of Computing, Montana State University, Bozeman, MT, 59717, United States and
2National Center for Genome Resources, Santa Fe, NM, 87505, United States.

∗To whom correspondence should be addressed.
�The authors wish it to be known that they should be regarded as joint First Authors.

Abstract

Summary: The Genome Context Viewer (GCV) allows users to search, align, and visualize multiple
regions of genomes considered primarily with respect to the ordering and orientation of their annotated
gene content. Here we discuss the GCV architecture, technology stack, and the services that it consumes,
as well as some of the algorithms used in service implementations and in the client.
Availability and implementation: GCV is provided under the GNU General Public License version 3
(GPL-3.0). Source code is available at https://github.com/legumeinfo/lis_context_viewer.
Contact: alan.cleary@msu.montana.edu

GCV is currently in use at the websites of the Legume
Information System (LIS, http://legumeinfo.org/lis_context_viewer)
(Dash et al., 2016) and the Legume Federation (LegFed,
http://legumefederation.org/lis_context_viewer). Non-plant examples can
be found at https://github.com/legumeinfo/lis_context_viewer/wiki/Examples.
In the following section we describe how GCV is integrated into these
sites, and in the sections thereafter we describe the GCV architecture
and algorithms, using LIS and LegFed as examples. We conclude with a
discussion of related work.

1 LIS and LegFed Integration
The Legume Information System is an online platform for legume breeders
and researchers that houses a variety of genetic and genomic data of model
legume species relevant to industrial agriculture. The Legume Federation
is a consortium of legume researchers and groups, including LIS, with
the objective of fostering the adoption of data standards, distributed
development, and enabling comparative analyses. GCV was born from
the needs of these projects and is integrated into the sites as follows.

LIS acquires annotated genomes from a variety of independently
managed projects and primary data repositories. In accordance with the
mission of the Legume Federation, homology relationships among the
genes annotated in these genomes are established by initial HMM-based
assignment to the Phytozome Angiosperm-level gene families (Goodstein
et al., 2012); this in itself is sufficient for the purposes of making genomes
available for use in GCV. Further steps of multiple sequence alignment and

phylogenetic gene tree construction are used to produce interactive tree
visualizations which interoperate with GCV in several ways. For example,
a collection of genes can be specified from an arbitrary subtree and loaded
into the basic view of GCV as the set of focus genes from which context
tracks are derived. Alternatively, a leaf node of a phylogeny can be used
as the focus gene of a query track in the search view of GCV. This linking
can also be reversed, that is, in GCV the user may select a gene family and
view the phylogenetic tree for that family with the members present in the
linking GCV context highlighted.

Given the vast amount and different types of data housed by LIS, a
heterogeneous collection of software is used to facilitate user exploration
and knowledge discovery. As illustrated by the interoperability of the
phylogenies and GCV, interlinking between these software is crucial to
the utility of LIS. As such, GCV is configured to link to various LIS
tools including Tripal gene pages (Cho et al., 2012) and InterMine reports
(Smith et al., 2012). Additionally, a service is used to link to external tools
specific to the sources from which the various genomes were acquired.
This external linking service is further described in Section 2.2.

2 Architecture
GCV is a client-side single page Web application and so can be run
locally or served as part of a website. It consumes data from one or
more providers that implement the interface defined in a RESTful API; see
https://github.com/legumeinfo/lis_context_viewer for the full API. Once it
has aggregated data from the providers, GCV creates visualization-specific
data representations (micro-synteny alignments, dot plots, and macro-
synteny tracks), filters these data according to user-defined criteria, and

© The Author 2016. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com 1



“main” — 2017/11/29 — page 2 — #2

2 Cleary and Farmer.

visualizes the results. The software architecture and data flow is depicted
in Figure 1.

2.1 Technology Stack

GCV was implemented using modern web standards technologies,
specifically, Angular 2 (https://angular.io/), ngrx/store
(https://github.com/ngrx/store), and D3 (https://d3js.org/). Angular 2
is used to retrieve data from service providers, manage UI components,
and mediate communication between the visualizations and the rest of
the application. ngrx/store is used to manage application state and give
GCV explicit data flow, and D3 is used to draw the various visualizations.
Furthermore, the visualizations and their inter-visualization interaction
mechanisms have been encapsulated in their own JavaScript library and
so can be used independently of GCV.

GCV is service implementation agnostic, only requiring that the
services it uses adhere to the RESTful API. Even so, the service
implementation used by LIS and LegFed is freely available so that users
with similar infrastructures need not re-implement GCV services. It is
implemented as a Django application (https://www.djangoproject.com/)
on top of a Chado database (Mungall et al., 2007).

2.2 Services

The providers that GCV uses must implement one or more of the the
RESTful API services. Here we will briefly describe each of the services.

basic micro-synteny tracks: Takes a set of focus genes and the number of
neighbors that should flank each gene. It returns the set of tracks centered
about the given focus genes.

search micro-synteny tracks: Takes a query track, that is, an ordered list
of gene families and search parameters: minimum number of matched
families and maximum number of non-matched families between any two
matched families. It returns all micro-synteny contexts in the database
that meet the given parameter constraints.

gene to query: Takes a focus gene and the number of neighbors as input
and passes them to the basic micro-synteny tracks service. It then returns
the resulting basic track.

macro-synteny tracks: Takes a reference chromosome and a set of aligned
chromosomes as input and returns the synteny blocks of the aligned
chromosomes with positions relative to the reference chromosome.

nearest gene: Takes a chromosome and a position on the chromosome
and returns the gene nearest to that position on the chromosome.

global plot: Takes a set of gene families and a chromosome as input and
returns all the genes on the given chromosome that are members of the
given gene families.

An important caveat to consider is that the data provided by a service
provider may actually be aggregated from multiple curators or data-stores,
as is the case with LIS and LegFed. To enable better interoperability with
other sites, such as the primary repository of a particular genome, GCV
can use services to load links to relevant external sites. For example:

gene links: Takes a gene as input and returns a list of external links that
the gene can be passed to for further inquiry.

GCV

Services / Store

Chromosome Synteny

Local / Global PlotsAligned Tracks

User Interface

FiltersEvents

Service Providers

LegFedLocal LIS

Micro Tracks

Fig. 1. The software architecture and data flow of GCV. GCV (an Angular 2 application)
consumes data from one or more service providers, one of which may be the user’s own
computer (local). Angular 2 services are responsible for requesting data from service
providers, aggregating the results, and storing the results in ngrx/store. In the search view,
whenever new micro track data (blue) is acquired, visualization specific representations
are made (green). These representations are then filtered by user controlled criteria
and consumed by Angular 2 components (the UI) which draw the data with D3. User
interaction with the UI can trigger certain events that will notify the services to update
the representations or acquire new data, such as changing alignment parameters or search
parameters, respectively.

3 Algorithms
A variety of existing and novel algorithms are used both in GCV and
the LIS/LegFed services implementation. Here we present four such
algorithms that are integral to the Search view and illustrate the data flow
depicted in Figure 1.

3.1 Track Search

Although the implementation of GCV services is left to the service
providers, due to the search view’s central role in GCV and the non-trivial
nature of the corresponding service, we will discuss how the open-source
example server used by LIS and LegFed implements the micro-synteny
search service.

The problem of finding micro-synteny tracks with similar gene
family content and ordering to the query track is an instance of the



“main” — 2017/11/29 — page 3 — #3

Genome Context Viewer 3

Fixed-Radius Near Neighbors problem (Bentley, 1975). In the example
implementation, the radius is defined by the query parameters - minimum
number of matched gene families and maximum number of non-matched,
or intermediate, families between any two matched families - and so the
search space is 2-dimensional.

The example implementation uses a heuristic algorithm that works
as follows: Given a micro-synteny search query, that is, the list of gene
families present in the query track, the algorithm iterates the ordered list
of gene families of each chromosome in the database. When a gene family
that matches one of the query families is found a new candidate track is
created. The candidate is grown by iteratively adding the next family in
the list to the track until the number of families added since the last match
is greater than intermediate. The candidate track is then trimmed back to
the last matched family and returned if the number of matched families it
contains is greater than or equal to matched. The algorithm then continues
iterating the ordered list of gene families at the family after the last family
iterated by the previous candidate growth.

Since each chromosome in the database may have several thousand
genes, the example implementation is optimized as follows: First, the
algorithm leverages the indexing mechanisms of the underlying database
to efficiently find all instances of the query gene families in the ordered
list of gene families for each chromosome and memoizes each matched
family’s position in its corresponding list. Then the iterative algorithm is
applied to each chromosome’s ordered list of matched gene families if
the list contains at least matched number of families. Candidate tracks
are grown as before, but the memoized position data is used to compute
how many non-matched families lie between the last and next matched
families, rather than iterating the non-matched families. A batch query is
then performed to fetch all the non-matched families for the candidates
that satisfy the matched parameter.

Though gene family ordering is important to consider when mining
tracks that are syntenic to the query, we leave the consideration of ordering
beyond computing the number of genes between matches as a task for
the front-end. This is because track similarity in this sense is dictated by
the choice of alignment algorithm and corresponding parameter values.
Thus the tracks returned by the micro-synteny search service as we have
defined it are invariant with respect to choices of alignment algorithm and
parameters, and so changing these in the client does not require a new set
of server requests.

3.2 Merging Alignments

The Repeat algorithm (Durbin et al., 1998) is an extension of the
Smith-Waterman local alignment algorithm (Smith and Waterman, 1981).
Specifically, rather than finding the highest scoring local alignment, it finds
all local alignments whose score is above a certain threshold. In this work
we extended the Repeat algorithm to identify inversions whose reversal in
the containing sequence improves the sequence’s alignment score.

In essence, the extension works by first aligning both the forward
and reverse orientations of a sequence to the reference with the Repeat
algorithm. All resulting forward alignments are then compared with all
reverse alignments for shared gene content. When a reverse alignment is
found to have shared gene content with a forward alignment, memoized
suffix scores from the alignments’ traceback matrices are used to determine
if replacing the inverted sequence in the forward alignment with the reverse
alignment will improve the forward alignment’s score, or vice versa. If so,
the forward and reverse alignments are merged by replacing the inverted
sequence and updating the memoized suffix scores and alignment score.

3.3 Alignment Coordinates

An extension that we have applied to both the Repeat and Smith-
Waterman alignment algorithms is the assignment of coordinates to the

gene sequences based on their alignments. It works by positioning all
resulting alignments relative to the reference sequence. Specifically, a
matched character is given the position of the character it matched
in the reference sequence and inserted characters are given a position
between that of the reference characters they were inserted between. For
example, given gene family reference τακγγ and sequence αγκκκγ 1,
the following hypothetical forward alignment would be positioned as:

position in reference: 0 1 2 3 4

alignment
{ reference: τ α κ γ - - - γ

sequence: α - γ κ κ κ γ

position in reference: 1 3 3.25 3.5 3.75 4

The sequence’s forward alignment positioning indicates that it spans the
character interval 1-4 in the reference.

By positioning all alignments relative to the reference sequence they are
normalized to the same coordinate space. These normalized coordinates
are what is used to position the tracks in the micro-synteny search
visualization.

3.4 Track Packing

GCV uses the extended Repeat algorithm to detect inversions in micro-
synteny search results so that they may explicitly be drawn. In cases where
more than one inversion has been found in a single alignment all inversions
are to be drawn as compactly as possible, that is, we want to pack as many
inversions into as few visualization rows as possible without overlapping
any of the inversions. Similarly, in the macro-synteny visualization we
want to draw the synteny blocks from the same chromsome as compactly
as possible.

This “Track Packing” problem is equivalent to the Interval
Partitioning/Coloring problem for which there exists an optimal
polynomial-time solution (Kleinberg and Tardos, 2006). The solution
works by iteratively applying the greedy polynomial-time solution for
the Interval Scheduling problem (Kleinberg and Tardos, 2006) to a set
of intervals until all the intervals have been scheduled. In the case of the
micro-synteny alignments, the intervals are the position intervals described
in Section 3.3. In the case of the macro-synteny blocks, the intervals are
the blocks’ genomic positions on the reference chromosome.

4 Related Work
The motivation for using gene-families as a unit of search and alignment
was two-fold: 1) to emphasize functional content and the genomic contexts
in which it occurs and 2) to make these analyses sufficiently performant to
be done on-demand across large taxonomic groups in a federated manner.
The merit of the first has been sufficiently discussed elsewhere (Lopez and
Samuelsson, 2011; Louis et al., 2015) and so we will focus on the second.

The "basic" display of GCV, which is not concerned with similarity
of gene content between tracks or with producing track alignments is
similar to visualizations provided by other sites such as those seen in
the Eukaryotic Gene Order Browser (Lopez and Samuelsson, 2011) or the
gene family pages of Phytozome (Goodstein et al., 2012).

It is the GCV’s "search" view that makes use of algorithms to determine
segmental similarity and collinearity by use of the pre-estabished gene
family assignments, and which makes it in some sense comparable to tools
that are concerned with problems of whole genome synteny comparison.
We note however that the alignments that GCV computes dynamically are
not whole genome comparisons, but are limited to the determination of
segments within whole genomes that are syntenic to the given query track,

1 Greek characters are used only for example purposes. In practice the
gene families are matched on their unique identifiers.



“main” — 2017/11/29 — page 4 — #4

4 Cleary and Farmer.

whose extent determines the computational cost of the subsequent search
and alignment problem.

There exist a variety of web-based tools for pairwise and multiple
genome synteny search and comparison. The three that are perhaps most
related to the GCV are the Plant Genome Duplication Database (PGDD)
(Lee et al., 2017), CoGe’s GEvo (Lyons et al., 2008), and Genomicus’
PhyloView (Louis et al., 2015).

PGDD is a database characterizing whole genome duplication
events in plant genomes, providing both intra- and inter-genome
syntenic relationships. Similar to the GCV, users can perform
synteny searches by providing a query gene or can generate a
dot plot by selecting two genomes to compare. A locus search
(http://chibba.agtec.uga.edu/duplication/index/locus) will yield a set of
precomputed matches between anchor genes for a genomic window of
specified size centered on the query gene, rather than an explicitly aligned
representation of the query to the resulting tracks (Figure 3).

PGDD uses the MCScanX algorithm (Wang et al., 2012) to precompute
collinear blocks, where candidate anchors are based on either pairwise
BLAST of the gene models or clustering of genes into homologous groups.
Although, as explained above, our algorithmic approach is not geared to
producing whole genome alignments, we nevertheless validated the use of
our gene family assignments as a surrogate for direct pairwise comparison.
Specifically, we compared the results of MCScanX_h algorithm on our
gene family assignment derived homologous groups to the results of basic
MCScanX on pairwise BLASTs of the CDS for the same genome. For a
self-comparison of the Glycine max genome, the latter puts %66 of all gene
models into 1110 blocks ranging from 5 to 1074 genes in extent. Using
an unfiltered set of gene families, the comparable procedure yields %73
of genes in 2825 blocks ranging in size from 5 to 1102 genes. Inspection
of the blocks produced with this approach suggested that many of the
excess blocks were the results of genes from massively expanded families
residing in large clusters. Since our algorithms for finding similar regions
require that the families matched be distinct, we repeated the comparison
by filtering our families to exclude from consideration any that contained
more than 20 members from Glycine max. The results of this procedure
were more similar to the BLAST-based approach with %61 of genes
placed into 1319 blocks ranging in size from 6 to 983 genes. Most of
these blocks are coequal in extent to the corresponding blocks from the
BLAST-based procedure, but are missing some internal anchor genes due
to the pre-filtering procedure employed in this context; in GCV’s micro-
synteny search implementation, these high copy gene families would still
be scored as matches during the alignment procedure used on the resulting
blocks. Furthermore, the macro-syntenic blocks produced by MCScanX
on the gene family assignments are quite similar to those precomputed by
a pipeline based on DAGChainer (Haas et al., 2004) and used in the LIS
implementation of the GCV (see Figure 2).

CoGe’s GEvo (Genome Evolution Analysis) is one of a large
suite of tools for genome synteny analysis available through
http://genomeevolution.org. GEvo is the tool within CoGe that is probably
most comparable to GCV, as users can perform a search by specifying
some genomic feature and flanking region as a search query and selecting
what alignment algorithm(s) and corresponding parameters to use. Results
are then displayed as pairwise mappings of matched blocks between
sequences. The query and search sequences can be loaded from CoGe’s
database, NCBI, or provided by the user; similarly, CoGe allows any user
to upload any number of genomes to use as the target to their analyses,
which allows it to be used regardless of the specific taxonomic focus
of any given user. A GEvo search can also be initiated from a pair of
genes previously determined to reside in a syntenic region by one of
the other tools in the CoGe suite, e.g. from a dot in the whole genome
comparison dotplots produced by SynMap, which makes it convenient as
a mechanism for generating sequence-level similarity in restricted regions

Fig. 2. Comparison of results from MCScanX using gene family assignments (blue blocks)
to those produced using DAGChainer on CDS pairwise matches (gray blocks). As can be
seen, the results are generally similar, with the gene-family based use of MCScanX tending
to coalesce into larger blocks some regions called as fragmentary by DAGChainer. It is
also clear that the GCV algorithm for determining microsynteny to the region of soybean
chromosome 2 used as the query is producing results of comparable sensitivity to those
produced by MCScanX, as evidenced by the small blocks from chromosomes 4 and 6 found
in both the MCScanX macro-synteny blocks and the GCV microsynteny representation, but
missing from the DAGChainer-based results. On the other hand, MCScanX tends to ignore
inverted segments that disrupt larger collinear blocks, as displayed in the focus region for
the example and present in the corresponding DAGChainer blocks- see Figure 3 for the
effects of this behavior in the context of the PGDD implementation of block search and
display.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Gm Chr02

Gm Chr01

Soybean

Soybean

9.75-10.75Mb

5.06-6.06Mb

05
60

0

45
10

0

05
70

0

45
30

0

05
80

0

45
40

0

05
90

0

45
50

0

06
00

0

45
70

0

06
10

0

45
80

0

06
20

0

45
90

0

06
30

0

46
00

0

06
60

0

46
40

0

06
70

0

46
50

0

06
80

0

46
60

0

06
90

0

46
70

0

07
00

0

46
80

0

07
10

0

47
00

0

07
40

0

47
80

0

07
90

0

48
20

0

08
10

0

48
50

0

08
20

0

48
60

0

08
30

0

48
70

0

08
40

0

48
80

0

08
50

0

49
10

0

08
60

0

49
40

0

08
70

0

49
50

0

08
80

0

49
60

0

08
90

0

49
90

0

09
00

0

50
00

0

09
10

0

50
10

0

09
20

0

50
40

0

09
40

0

50
50

0

09
60

0

50
70

0

09
70

0

51
20

0

Fig. 3. The soybean chromosomes 1 and 2 comparison from region showing the same
inverted segment in Figure 2, produced using the PGDD locus search. Noteworthy is that
the inverted block displayed in GCV using its repeat and track merging algorithm shows
up as an unmatched set of anchors (with the exception of the central gene in the inverted
segment). This has the result that the choice of any of the genes within the interval as the locus
to be searched fails to find the two block in which they are embedded as being syntenic.
GCV’s approach finds the blocks as candidates due simply to their similar gene content
and initially ignores the ordering which has been disrupted by the structural variation, then
applies the client-side modified alignment to detect the presence of the inversion and display
accordingly.

that are predetermined to contain syntenic content. The Gobe viewer
for GEvo output is implemented in Flash, and unlike the gene family
strategy taken by GCV, emphasizes comparisons of HSP between pairs
of sequences and their relationship to gene structural elements (e.g. exon
structure), making the view more detailed than GCV and hence a little more
complex to interpret when large numbers of comparisons are in play, which
could obscure the identification of structural events such as copy number
variation and presence/absence variation among gene clusters, although
it makes it possible to see sequence-level events below the level of those
that impact annotation, which would be invisible to GCV. The ability
to perform on-demand sequence comparisons for genomic segments of
interest provides a naturally complementary functionality to the approach
taken by GCV and we are developing approaches for utilizing CoGe web
services as optional plugins and linkouts through the service framework
used by GCV.

Genomicus’ PhyloView is similar to GCV in that it compares
sequences of genes based on their gene family content. In fact, the
alignment view is built from a tree representing the phylogenetic
relationships among the returned tracks, where each track is displayed
alongside the node it represents in the tree. This is an excellent feature and



“main” — 2017/11/29 — page 5 — #5

Genome Context Viewer 5

well suited to the ancestral reconstruction of genomic segments - a key
strength of the system. However, for the purposes of federating data across
providers, a tight coupling of tracks even with a predetermined tree makes
integration with multiple data sources non-trivial. Additionally, rather
than compressing, misaligning, or inverting inexact matches, Genomicus
simply omits content from other tracks not matching a gene family in the
query. This could prevent the user from identifying interesting structure
present in many tracks other than the query.

The feature that most fundamentally distinguishes the GCV from
these tools is that the only requirement is that each genome’s annotations
have their gene family assignments pre-computed, which can be done
independently on each genome assuming that the family definitions are
sufficiently broad to capture most gene content of interest within the
taxonomic group. This allows GCV to easily support data federation, only
requiring that all service providers have come to agreement on a common
set of gene family definitions. This model enables the user to recognize
events like copy-number variation and presence/absence variation across
large sets of genomic segments from taxonomic groups that span multiple
genome data providers.

References
Bentley, J. L. (1975). Survey of techniques for fixed radius near neighbor searching.

Technical report, Stanford Linear Accelerator Center, Calif.(USA).
Cho, I.-H., Staton, M., Lee, T., Main, D., Sanderson, L.-A., Bett, K. E., Jung, S.,

Cheng, C.-H., and Ficklin, S. P. (2012). Tripal: a construction toolkit for online
genome databases.

Dash, S., Campbell, J. D., Cannon, E. K., Cleary, A. M., Huang, W., Kalberer,
S. R., Karingula, V., Rice, A. G., Singh, J., Umale, P. E., et al. (2016). Legume
information system (legumeinfo. org): a key component of a set of federated data
resources for the legume family. Nucleic acids research, 44(D1), D1181–D1188.

Durbin, R., Eddy, S. R., Krogh, A., and Mitchison, G. (1998). Biological sequence
analysis: probabilistic models of proteins and nucleic acids. Cambridge university
press.

Goodstein, D. M., Shu, S., Howson, R., Neupane, R., Hayes, R. D., Fazo, J., Mitros,
T., Dirks, W., Hellsten, U., Putnam, N., et al. (2012). Phytozome: a comparative
platform for green plant genomics. Nucleic acids research, 40(D1), D1178–D1186.

Haas, B. J., Delcher, A. L., Wortman, J. R., and Salzberg, S. L. (2004). Dagchainer:
a tool for mining segmental genome duplications and synteny. Bioinformatics,
20(18), 3643–3646.

Kleinberg, J. and Tardos, E. (2006). Algorithm design. Pearson Education India.
Lee, T.-H., Kim, J., Robertson, J. S., and Paterson, A. H. (2017). Plant genome

duplication database. Plant Genomics Databases: Methods and Protocols, pages
267–277.

Lopez, M. D. and Samuelsson, T. (2011). egob: eukaryotic gene order browser.
Bioinformatics, 27(8), 1150–1151.

Louis, A., Nguyen, N. T. T., Muffato, M., and Crollius, H. R. (2015). Genomicus
update 2015: Karyoview and matrixview provide a genome-wide perspective to
multispecies comparative genomics. Nucleic acids research, 43(D1), D682–D689.

Lyons, E., Pedersen, B., Kane, J., Alam, M., Ming, R., Tang, H., Wang, X., Bowers,
J., Paterson, A., Lisch, D., et al. (2008). Finding and comparing syntenic regions
among arabidopsis and the outgroups papaya, poplar, and grape: Coge with rosids.
Plant physiology, 148(4), 1772–1781.

Mungall, C. J., Emmert, D. B., Consortium, F., et al. (2007). A chado case study:
an ontology-based modular schema for representing genome-associated biological
information. Bioinformatics, 23(13), i337–i346.

Smith, R. N., Aleksic, J., Butano, D., Carr, A., Contrino, S., Hu, F., Lyne, M.,
Lyne, R., Kalderimis, A., Rutherford, K., et al. (2012). Intermine: a flexible data
warehouse system for the integration and analysis of heterogeneous biological data.
Bioinformatics, 28(23), 3163–3165.

Smith, T. F. and Waterman, M. S. (1981). Identification of common molecular
subsequences. Journal of molecular biology, 147(1), 195–197.

Wang, Y., Tang, H., DeBarry, J. D., Tan, X., Li, J., Wang, X., Lee, T.-h., Jin, H.,
Marler, B., Guo, H., Kissinger, J. C., and Paterson, A. H. (2012). Mcscanx: a
toolkit for detection and evolutionary analysis of gene synteny and collinearity.
Nucleic Acids Research, 40(7), e49.


