
IndeCut evaluates performance of network motif discovery

algorithms

Mitra Ansariola 1,2, Molly Megraw 1,2,3,∗ and David Koslicki 1,4,∗

December 2, 2017

1 Center for Genome Research and Biocomputing, 2 Department of Botany and Plant Pathology,
3 Department of Computer Science, 4 Department of Mathematics, Oregon State University, Corvallis,
OR 97331.

∗To whom correspondence should be addressed. Email: megrawm@science.oregonstate.edu. Please address
correspondence regarding sampling algorithms and their assessment in this work to Molly Megraw. Email:
david.koslicki@math.oregonstate.edu : Please address correspondence regarding mathematics contained in this work to
David Koslicki.

1

Method S1: Mathematical Details

In this section, we give the mathematical details necessary to support the claim that the cut norm and
maximum entry matrix can be used to test for non-uniformity of a bipartite graph sampling algorithm.
We begin by recalling the results of [1] that we use and then derive bounds necessary to estimate the
cut norm.

Results from Barvinok [1]

Let Σ(R,C) be the set of all binary matrices with row-sums R = (r1, . . . , rm) ∈ Nm and column-sums
C = (c1, . . . , cn) ∈ Nn. Let P(R,C) be the polytope of matrices with entries bounded between 0 and
1 and with row and column sums R and C respectively. Throughout, we only consider R and C such
that for every choice of 1 ≤ i ≤ m and 1 ≤ j ≤ n, there exist at least two matrices L,M ∈ Σ(R,C) such
that Li,j = 0 and Mi,j = 1. This condition requires the space Σ(R,C) to be reasonably large (i.e. the
polytope P(R,C) is non-empty).

We now recount pertinent theorems from [1]. The first gives an estimate of the number of bipartite
graphs with degree sequences R and C: |Σ(R,C)|.

Theorem 1 ([1, Theorem 1]). Let

F (x,y) =

(
m∏
i=1

x−rii

) n∏
j=1

y
−cj
j

∏
i,j

(1 + xiyj)


for x = (x1, . . . , xm) and y = (y1, . . . , yn). Let

α(R,C) = minimum
x,y>0

F (x,y).

Then

α(R,C) ≥ |Σ(R,C)| ≥ (mn)!

(mn)mn

(
m∏
i=1

(n− ri)n−ri
(n− ri)!

) n∏
j=1

c
cj
j

cj !

α(R,C).

Taking the logarithm of F (x,y) gives a convex function on Rm×n, so α(R,C) may be efficiently
computed. This allows us to define the maximum entropy matrix :

Definition 1 ([1, Lemma 2]). Let x∗ and y∗ be the vectors that obtain optimality in the definition of
α(R,C). Define Z ∈ Rm×n as

Zi,j =
x∗iy

∗
j

1 + x∗iy
∗
j

. (1)

The cut norm is needed to state the next theorem.

Definition 2. Let A ∈ Rm×n and let

||A||C = maximize
I⊆{1,...,n}
J⊆{1,...,m}

∣∣∣∣∣∣
∑

i∈I,j∈J
Ai,j

∣∣∣∣∣∣ . (Cut Norm)

Let S ⊂ {(i, j) : i = 1, . . . ,m, j = 1, . . . , n} be a set of indicies. For a m× n matrix A, let

σS(A) =
∑

(i,j)∈S

Aij .

Note that ||A||C = maxS |σS(A)|.
We can now state the main result that serves as the justification of IndeCut. Recall our assumption

that |Σ(R,C)| ≥ 2 and so P(R,C) is non-empty.

2

Theorem 2 ([1, Theorem 3]). Fix numbers κ > 0 and 0 < δ < 1 then there exists a number q = q(κ, δ)
such that the following holds. Let R and C be such that n ≥ m > q and let Z ∈ P(R,C) be the maximum
entry matrix. Let S ⊂ {(i, j) : i = 1, . . . ,m, j = 1, . . . , n} be such that σS(Z) ≥ δmn and let ε = δ lnn√

M
.

If ε ≤ 1, then

P {D ∈ Σ(R,C) : (1− ε)σS(Z) ≤ σS(D) ≤ (1 + ε)σS(Z)} ≥ 1− 2n−κn.

This theorem states that a uniformly sampled binary matrix is close to the maximum entry matrix
in terms of the cut norm.

We now re-state this result in terms of the cut norm.

Theorem 3. Let Z ∈ P(R,C) be the maximum entry matrix. Let (Ai)
N
i=1 be a sequence of in-

dependent and uniformly distributed random variables on Σ(R,C) and let A(N) = 1
N

∑N
i=1Ai. Let

S ⊂ {(i, j) : i = 1, . . . ,m, j = 1, . . . , n} be such that |σS(Z − A(N))| = ||Z − A(N)||C. Let 0 < δ < 1 be

such that for this S, σS(Z) ≥ δmn and let ε = δ lnn√
M
. Fix κ > 0, then there exists a number q = q(κ, δ)

such that if R and C are such that n ≥ m > q, the following holds: If ε ≤ 1, then

P


∣∣∣∣∣∣ 1N ∑N

i=1Ai − Z
∣∣∣∣∣∣
C

||Z||C
≤ ε

 ≥ 1− 2n−κn. (2)

Proof. Assuming that
(1− ε)σS(Z) ≤ σS

(
A(N)

)
≤ (1 + ε)σS(Z),

since ||Z||C = maxS′ |σS′(Z)|, this implies that

(1− ε)||Z||C ≤ σS
(
A(N)

)
≤ (1 + ε)||Z||C . (3)

By hypothesis, |σS(Z −A(N))| = ||Z −A(N)||C and so along with linearity of σS(·), equation (3) implies
that

||A(N) − Z||C ≤ ε||Z||C .

Monotonicity of probability and the conclusion of Theorem 2 then imply that

P


∣∣∣∣∣∣ 1N ∑N

i=1Ai − Z
∣∣∣∣∣∣
C

||Z||C
≤ ε

 ≥ 1− 2n−κn.

Given appropriate R, C, κ, δ, and ε, the contrapositive of this result implies that if
||A(N)−Z||C
||Z||C is

large, then there is an exponentially small chance that the sequence of random variables is independent
and uniformly distributed. This is the justification to use the quantity∣∣∣∣A(N) − Z

∣∣∣∣
C

||Z||C

as a measure of non-uniformity/independence and forms the mathematical justification of IndeCut. We
turn now to looking at how to calculate this quantity in practice.

Computing norms

The cut norm || · ||C is difficult to compute (in fact, it is MAX SNP hard [2]) for general matrices, but
we will be able to relate it to another norm (|| · ||∞7→1) that can be approximated with a semidefinite
relaxation. We then round the solution of the semidefinite relaxation to get an estimate of || · ||∞7→1 and
hence of || · ||C . We begin with definitions of the norms of interest.

3

Definition 3. Let A ∈ Rm×n. Define the following norms by

||A||∞7→1 = maximize
xi∈{−1,+1}
yj∈{−1,+1}

∑
i,j

Ai,jxiyj (∞ 7→ 1 Norm)

We denote the semidefinite relaxation of ||A||∞7→1 by ||A||SDR:

||A||SDR = maximize
||ui||2=||vj ||2=1

∑
i,j

Ai,j(ui · vj) (SDR Norm)

Note that ||A||SDR can be converted to the following optimization problem:

||A||SDR =
1

2
maximize

X
tr(CX)

subject to tr(FkX) = ak, k = 1, . . . ,m+ n

X � 0,

(4)

for

C =

[
0 A
A 0

]
, Fk =

{
1 if i = j = k

0 o.w.
, and ak = 1 for k = 1, . . . ,m+ n.

This form allows us to use popular computational packages to compute || · ||SDR. We utilize the compu-
tational package CSDP version 6.1.0 [3].

It turns out that for the matrices of interest, the norms || · ||C and || · ||∞7→1 are equal up to a factor
of 4. Indeed, note the maximum entropy matrix Z defined in equation (1) and A(N) defined in the
previous section both have row/column sums equal to R and C: A(N), Z ∈ Σ(R,C). Hence the matrix
Z − A(N) has zero row and column sum. This allows us to obtain the well-known [2, 4] relationship
between the norms || · ||∞7→1 and || · ||C .

Proposition 4. If the matrix A has zero row and column sums (i.e.
∑
iAi,j =

∑
j Ai,j = 0), then

||A||∞7→1 = 4||A||C.

Proof. For I ⊆ {1, . . . , n} and J ⊆ {1, . . . ,m} the sets achieving the maximum in the definition of ||A||C ,
define xi = 1 for i ∈ I, xi = −1 for i /∈ I and yj = 1 for j ∈ J , yj = −1 for j /∈ J . Then

||A||C =
∑
i,j

Ai,j
1 + xi

2

1 + yj
2

=
1

4

∑
i,j

Ai,j +
∑
i,j

Ai,jxi +
∑
i,j

Ai,jyj +
∑
i,j

Ai,jxiyj


=

1

4

∑
i,j

Ai,jxiyj

=
1

4
||A||∞7→1.

Cut norm estimates

In [2, Section 5.1], an algorithm was presented that computes bounds on || · ||∞7→1. We use a slight
modification of this algorithm that gives tighter bounds in practice as follows:

Given a matrix A, let ui, vj ∈ Rm+n, for i = 1, . . . ,m, j = 1, . . . , n be the optimal vectors obtained
from the computation of ||A||SDR. Let gi ∼ N(0, 1), i = 1, . . . ,m+ n, be independent standard normal
random variables and let G = (g1, . . . , gm+n). Let xi = sign(ui ·G) and yj = sign(vj ·G).

4

Now
∑
i,j Ai,jxiyj ≤ ||A||∞7→1 since ||A||∞7→1 is the maximum value. However, there is a positive

probability that
∑
i,j Ai,jxiyj = ||A||∞7→1. To observe this fact, let x∗i , y

∗
j ∈ {−1,+1} be such that

||A||∞7→1 =
∑
i,j Ai,jx

∗
i y
∗
j . We can find at least one vector G∗ such that x∗i = sign(ui · G∗) and

y∗j = sign(vj ·G∗) since this reduces to solving a solvable system of linear inequalities due to the ui, vj
being obtained from eigenvectors of the spectral factorization of X in the optimization procedure (4).
Given such a G∗, note that for any a ∈ R, a > 0, x∗i = sign(ui ·aG∗) and y∗j = sign(vj ·aG∗). Hence, with
probability at least 2−m−n, a randomly chosen G will result in obtaining the optimal x∗i and y∗j . We do
not attempt to make a more nuanced estimation of this probability since only bounds are necessary for
our purposes.

Repeating the above rounding procedure a number of times and taking the maximum result, we
obtain Algorithm 1 which we use to compute the bounds on the cut norm of a matrix A. In practice,
we take the number of iterates of Algorithm 1 to be 1, 000. Denote the output of this algorithm with
||A||est∞7→1. As a result, ||A||est∞7→1 ≤ ||A||∞7→1 ≤ ||A||SDR, so combining these with proposition 4, we have
the following estimation of the cut norm:

1

4
||A||est∞7→1 ≤ ||A||C ≤

1

4
||A||SDR. (5)

We apply this estimation to obtain bounds on the quantity of interest:∣∣∣∣A(N) − Z
∣∣∣∣
C

4||Z||C
. (6)

We can compare motif finding algorithms in the following fashion: Let (Ai)
N
i=1 and (Bi)

N
i=1 be N random

binary matrices generated by two algorithms A and B. If the upper bound for one algorithm (say, A)
falls below the lower bound of the other algorithm (say, B), then we can be sure that the cut norm
quantity of interest for A is smaller than for B. As a consequence of the previous section, this implies
that we can be more confident that B samples the space in a less uniform and independent fashion. If
the bounds do not overlap, then no conclusion can be made since we cannot guarantee that one cut
norm is larger than the other. More rigorously, let A(N) = 1

N

∑N
i=1Ai and B(N) = 1

N

∑N
i=1Bi. If for

sufficiently large N , we have that

||AN − Z||SDR < ||B(N) − Z||est∞7→1

then equation 5 implies that ∣∣∣∣A(N) − Z
∣∣∣∣
C

4||Z||C
<

∣∣∣∣B(N) − Z
∣∣∣∣
C

4||Z||C
.

As a consequence of Theorem 3 and the discussion that followed, we can be confident that B samples
the space Σ(R,C) in a less uniform and independent fashion than A. The symmetric case of overlapping
bounds ||BN −Z||SDR < ||A(N) −Z||est∞7→1 would imply the reverse conclusion being made about A and
B. If, however, the bounds overlap:(||Z −A(N)||est∞7→1

4||Z||C
,
||Z −A(N)||SDR

4||Z||C

)
∩
(||Z −B(N)||est∞7→1

4||Z||C
,
||Z −B(N)||SDR

4||Z||C

)
6= ∅,

then no conclusion can be drawn as no information is provided about the relative sizes of the cut norms.
Hence, we use the quantity:

IndeCut(Z,A, N) =

(||Z −A(N)||est∞7→1

4||Z||C
,
||Z −A(N)||SDR

4||Z||C

)
to compare uniformity/independence of motif finding algorithms.

5

Algorithm 1 : Cut norm lower bound

Input:

A ∈ Rm×n
c ∈ N
ui, vj ∈ Rm+n (from computation of ||A||SDR)

Initialization:

its = 0
bound = 0

Iterations:

while its < c do
G = (g1, . . . , gm+n) (random variates of N(0, 1))
for i = 1, . . . ,m do
xi = sign(ui ·G)

end for
for j = 1, . . . , n do
yj = sign(yj ·G)

end for
temp =

∑
i,j Ai,jxi, yj

if temp > bound then
bound = temp

end if
its = its+ 1

end while

Output:

||A||est∞7→1 = bound (Lower bound)

6

Method S2: Description of examined network motif discovery algorithms

In order to compare the performance of existing network motif discovery algorithms using IndeCut, four
different network motif finding algorithms were selected: FANMOD (Fast Network Motif Detection) [5],
DIA-MCIS (Diaconis Monte Carlo Importance Sampling) [6], WaRSwap (Weighted and Reverse Swap
sampling) [7], and CoMoFinder [8].

FANMOD is a well-known implementation of the edge switching randomization algorithm. The edge-
switching method randomly chooses two directed edges (x, y), (u, v) from input graph G and switches
their endpoints only if G doesn’t already contain either of these new edges (x, v), (u, y). It repeats
this procedure for defined number of attempts and reports a random graph G′. An implementation
of FANMOD was downloaded from [5] and we added a print statement in the source code “main.cpp”
which prints the edges of the randomized graph produced by the method named “randomized graph”
so we can read them as input for IndeCut.

CoMoFinder implements a restricted version of the edge-switching method to detect only K-node
motifs containing all node types such as TF, miRNA, and Gene, on given TF-miRNA-Gene regulatory
networks. It breaks down the original network into seven different layers (miRNA → TF, TF → gene,
miRNA TF, TF TF, TF → miRNA, TF → TF, TF → gene). Within each layer it chooses two edges
(x, y), (u, v) and switches the endpoints if two conditions satisfied: 1) Neither of the new edge-pairs
(x, v), (u, y) exist in the input graph G, and 2) An edge-switch between (x, y), (u, v) is allowed to
happen only once, as revisiting a previously performed switch is not allowed (i.e. switching back from
a graph containing (x, v) and (u, y) to a graph containing (x, y) and (u, v) is not allowed). CoMoFinder
repeats the above-described procedure until either it reaches a stage such that no edge-pair is available
to switch, or it has completed a pre-defined maximum number of edge-switching attempts. The original
CoMoFinder program [8] was downloaded and modified to print randomized graphs into files for our
analysis.

DIA-MCIS is an efficient implementation of an importance sampling algorithm [9] to generate random
graphs (self-loops included) from fixed in/out-degree sequences. DIA-MCIS converts an input graph G
into a zero-one adjacency matrix Mm∗n with m rows and n columns where mij is 1 if node j has a
directed link to node i. It then sequentially fills the columns by a weighted-sampling scheme. It starts
with first column which represents the first source node with out-degree of deg0, and assigns deg0 1s
randomly to m cells (each cell represents a target node). In this process, nodes with higher in-degrees
have more chance of selection by source nodes with higher out-degrees. The algorithm updates the
row/column sums as proceeds to the next column.

WaRSwap produces randomized background graphs from an input graph by breaking it into lay-
ers representing five possible interaction types: TF→TF, TF→miRNA, TF→gene, miRNA→TF, and
miRNA→gene. WaRSwap treats each layer as a bipartite graph G and operates as follows to gen-
erate a randomized graph G′. It first sorts the source nodes in descending order of out-degree, and
for each source node Si it computes the sampling weights for each target node Tj using a weight-
ing formula [7]. The weighting formula corrects the tendency of source nodes with large out-degrees
to target nodes with larger in-degrees. WaRSwap places an edge between Si and Tj if possible,
otherwise it enters a specific back-swapping procedure to identify a new target node. We down-
loaded a Java implementation of WaRSwap from http://megraw.cgrb.oregonstate.edu/software/

WaRSwapSoftwareApplication/ and R implementation from http://megraw.cgrb.oregonstate.edu/

software/WaRSwap. The WaRSwapApp makes an automated selection of the WaRSwap weighting pa-
rameter for the user based on the in/out-degree sequences of the input graph. We modified the R
implementation of WaRSwap to include this automated weighting parameter selection.

Method S3: Compute Relationship Between Number of Samples and Cut
norm Estimates

Given the space of all sampled graphs produced by an algorithm {G1, . . . , Gn}, we generated m sets
of samples {S1, . . . , Sm} in which the set S1 contained the first 100 sample graphs {G1, . . . , G100},

7

http://megraw.cgrb.oregonstate.edu/software/WaRSwapSoftwareApplication/
http://megraw.cgrb.oregonstate.edu/software/WaRSwapSoftwareApplication/
http://megraw.cgrb.oregonstate.edu/software/WaRSwap
http://megraw.cgrb.oregonstate.edu/software/WaRSwap

set S2 contained all of the samples from S1 plus the next 100 samples {G101, . . . , G200}, and so on,
until Sm contained all of the sample graphs {G1, . . . , Gn}. We then used IndeCut to compute cut
norm estimates for each set of subsamples Si, in order to identify an approximate sample size at which
the cut norm estimate for Si became very close to the cut norm estimate for the entire sample space
Sm = {G1, . . . , Gn}. Fig. S13 shows a visualization of the relationship between the number of samples
and the cut norm estimates for a large biological network (TF → Gene network extracted from the
Human regulatory network).

In order to help user to estimate a sensible cutoff range for required number of samples for each
algorithm and network we provide a visualization plugin to the IndeCut software package. This plu-
gin creates plots that help the user to visualize the relationship between the number of samples and
cutnorm estimates (see IndeCut’s User Manual for details: https://github.com/megrawlab/IndeCut/
blob/master/README.md) and allows the user to choose a number of samples corresponding to a point
where the cut-norm is decreasing slowly enough for her/his application. For the programs and graphs
considered in the manuscript, we have observed that 2500 samples would typically be a conservative
estimate on an effective number of iterations. In general, an estimate of the number of samples required
to achieve ‘optimal’ sampling performance varies with respect to network motif discovery programs and
input graphs. When computing power is an issue and the user wishes to determine a ‘minimum’ number
of iterations necessary for their network and method of interest, IndeCut’s visualization plugin provides
direct access to such plots for making this judgment call.

Method S4: Networks and graphs

Two sets of graphs were created or selected for this study: 1) Manually constructed “toy” bipar-
tite graphs with sizes ranging from tens of nodes to hundreds of nodes, representing different graph
structures, including “even” or “near-even” graphs, “uneven” graphs, and “hybrid” combinations of
in/out-degrees, and 2) Real biological networks.

Real networks - Two biological networks were obtained from literature and public databases. An
Ecoli network representing a medium-size yeast transcriptional network was downloaded from [10]. This
network contains two types of nodes: transcription factor (TF), and gene. Two layers of interactions
(TFgene, TFTF) were extracted into separate bipartite graphs for application of IndeCut. A Human
regulatory network was downloaded from http://encodenets.gersteinlab.org/, representing a net-
work with thousands of nodes and edges. This network is used as a case study in the publication of
CoMoFinder [8]. This network contains three types of nodes: TF, miRNA, and protein-coding gene.
This network comprises five interaction layers: TFTF, TFmiRNA, miRNATF, TFgene, and miRNA-
gene. Each of these layers forms a separate input bipartite graph for IndeCut.

Method S5: Description of edge switch graphs

We detail here how the edge switch graphs (ESG’s) were created. Given in and out-degrees R and
C, we generate all possible bipartite graphs {G1, . . . , GN} with in/out-degrees R and C. The edge
switch graph GESG is an undirected graph with vertex set V = {G1, . . . , GN} and edge set E defined
as follows: for Gi, Gj ∈ V , the undirected edge (Gi, Gj) is an element of E if and only if the graph Gj
can be obtained as a result of performing one edge switch on Gi. In more detail, this means that the
graphs Gi and Gj have the same vertex set, and identical edge sets, except for one pair of edges (x, y)
and (u, v) present in the edge set of Gi but absent in the edge set of Gj , and one pair of edges (x, v)
and (u, y) present in the edge set of Gj but absent in the edge set of Gi.

A graph clustering algorithm known as modularity clustering [11] was then applied to the edge switch
graph GESG to identify clusters that maximize the number of within-cluster edges while minimizing the
number of between-cluster edges. Let L be the number of clusters found.

Given a graph sampling algorithm A, the output of A can be viewed as sampling vertices of the
ESG. Define a count vector countA ∈ NL as a vector indexed by the clusters found above, with countAi
being equal to the number of times the algorithm A returned a graph found in cluster i.

8

https://github.com/megrawlab/IndeCut/blob/master/README.md
https://github.com/megrawlab/IndeCut/blob/master/README.md
http://encodenets.gersteinlab.org/

A “cluster-time” graph is then created with vertices corresponding to the clusters found above, and
edges between two pairs of vertices/clusters if there exists edges in GESG connecting vertices belonging
to these two clusters respectively. The size of the vertex i corresponds to the entry of the count vector
countAi . The entropy of the vector countA is also calculated to quantify how equally (or unequally)

the algorithm A samples graphs belonging to each cluster: −
∑L
i=1

countAi∑
j count

A
j

log
(

countAi∑
j count

A
j

)
. Larger

entropy values indicate that the algorithm A samples each cluster more equally.

9

Figure S1: Sample space of an example degree sequence.The sample space of this degree sequence
contains 12 different graphs.

10

Figure S2: Constructing multiFan graphs starting from uniFanG1. A biFan graph is created by attaching
two uniFanG1 graphs.

Figure S3: Graph sampling performance evaluation on small uneven graphs using IndeCut. This figure
shows the cut norm estimates for all four examined algorithms: WaRSwap, CoMoFinder, DIA-MCIS,
and FANMOD. For each graph and algorithm, 5000 graphs were generated. The cut norm estimates
for each algorithm were computed using IndeCut. The vertical lines represent lower and upper bounds
returned by the cut norm estimation with the true (NP-hard) value lying in this interval. A cut norm
interval that is far from zero represents less uniform and independent sampling.

11

Figure S4: Graph sampling performance evaluation on small even graphs using IndeCut. This figure
shows the cut norm estimates for all four examined algorithms: WaRSwap, CoMoFinder, DIA-MCIS,
and FANMOD. For each graph and algorithm, 5000 graphs were generated. The cut norm estimates
for each algorithm were computed using IndeCut. The vertical lines represent lower and upper bounds
returned by the cut norm estimation with the true (NP-hard) value lying in this interval. A cut norm
interval that is far from zero represents less uniform and independent sampling.

12

Figure S5: Zoomed view of uniform/independent graph sampling performance evaluation on small even
graphs. For each small even graph and algorithm, 5000 graphs were generated. The cut norm estimates
for each algorithm were computed using IndeCut. The vertical lines represent lower and upper bounds
returned by the cut norm estimation with the true (NP-hard) value lying in this interval. A cut norm
interval that is far from zero represents less uniform and independent sampling. The cut norm estimates
for CoMoFinder were much larger than 0.06, therefore we removed CoMoFinder’s results from this figure
for ease of comparison (see Table S1 and Figure S4 for detailed results).

13

Figure S6: Graph sampling performance evaluation on small hybrid graphs using IndeCut. This figure
shows the cut norm estimates for all four examined algorithms: WaRSwap, CoMoFinder, DIA-MCIS,
and FANMOD. For each graph and algorithm, 5000 graphs were generated. The cut norm estimates
for each algorithm were computed using IndeCut. The vertical lines represent lower and upper bounds
returned by the cut norm estimation with the true (NP-hard) value lying in this interval. A cut norm
interval that is far from zero represents less uniform and independent sampling.

14

Figure S7: Zoomed view of uniform/independent graph sampling performance evaluation on small
hybrid graphs. For each small even graph and algorithm, 5000 graphs were generated. The cut norm
estimates for each algorithm were computed using IndeCut. The vertical lines represent lower and upper
bounds returned by the cut norm estimation with the true (NP-hard) value lying in this interval. A cut
norm interval that is far from zero represents less uniform and independent sampling. The cut norm
estimates for CoMoFinder were much larger than 0.04, therefore we removed CoMoFinder’s results from
this figure for ease of comparison (see Table S1 and Figure S6 for detailed results).

15

Figure S8: Graph sampling performance evaluation on Ecoli network using IndeCut. This figure shows
the cut norm estimates for all four examined algorithms: WaRSwap, CoMoFinder, DIA-MCIS, and
FANMOD. For each graph and algorithm, 5000 graphs were generated. The cut norm estimates for
each algorithm were computed using IndeCut. The vertical lines represent lower and upper bounds
returned by the cut norm estimation with the true (NP-hard) value lying in this interval. A cut norm
interval that is far from zero represents less uniform and independent sampling.

Figure S9: Zoomed view of uniform/independent graph sampling performance evaluation on the Ecoli
regulatory network. For each small even graph and algorithm, 5000 graphs were generated. The cut
norm estimates for each algorithm were computed using IndeCut. The vertical lines represent lower
and upper bounds returned by the cut norm estimation with the true (NP-hard) value lying in this
interval. A cut norm interval that is far from zero represents less uniform and independent sampling.
(A) Cut norm bounds resulting from running IndeCut on the Ecoli TF→TF network. (B) Cut norm
bounds resulting from running IndeCut on the Ecoli TF→Gene network. The cut norm estimates for
CoMoFinder were much larger than 0.04, therefore we removed CoMoFinder’s results from this figure
for ease of comparison (see Table S1 and Figure S8 for detailed results).

16

Figure S10: Graph sampling performance evaluation on Human regulatory network using IndeCut. The
vertical lines represent lower and upper bounds returned by the cut norm estimation with the true
(NP-hard) value lying in this interval. A cut norm interval that is far from zero represents less uniform
and independent sampling. This figure shows the cut norm estimates for all four examined algorithms:
WaRSwap, CoMoFinder, DIA-MCIS, and FANMOD. The cut norm estimates for DIA-MCIS are absent
from C and D because this algorithm is not able to perform on large graphs with more that 2,035 nodes.

17

Figure S11: The ESG graph and cluster-time diagrams for an example even graph. A) The zero-one
matrix representation of an even graph with degree sequence of R=C={2,2,2,2,2}. B) The ESG graph
corresponding to the graph in part A. Running the graph clustering algorithm on the ESG graph detects
seven different clusters. C-F) The cluster-time diagrams for each examined algorithm were computed
and visualized.

18

Figure S12: The ESG graph and cluster-time diagrams for an example hybrid graph. A) The zero-one
matrix representation of an uneven graph with degree sequence of R={3,2,2,1}, C={2,2,2,1,1}. B) The
ESG graph corresponding to the graph in part A. Running the graph clustering algorithm on the ESG
graph detects five different clusters. C-F) The cluster-time diagrams for each examined algorithm were
computed and visualized.

19

Figure S13: Relationship between the number of samples vs. sampling performance for Human TFGene
network. All 5000 samples previously generated by each algorithm for the Human TFGene network
were collected and subsampled into five sets (1000, 2000 . . . , 5000 samples in each set, respectively).
IndeCut was used to compute the cut norm estimates (lower and upper bounds) for each set of samples
and algorithms. Cut norm values closer to zero represent a more uniform/independent sampling. This
network has 9,055 nodes and 25,748 edges. *The cut norm estimates for DIA-MCIS are absent because
this algorithm is not able to operate on networks with more than 2,035 nodes.

20

Figure S14: Sampling performance vs. the number of samples for graph hexaFanG1. All 5000 samples
previously generated by each algorithm for hexaFanG1 were collected and subsampled into 25 sets (200,
400, 600, . . . , 5000 samples in each set, respectively). IndeCut was used to compute the cut norm
estimates (lower and upper bounds) for each set of samples and algorithms. Cut norm values closer
to zero represent a more uniform/independent sampling. A) The relationship between the sampling
performance and number of samples for all four examined algorithms is shown. B) The relationship
between the sampling performance and number of samples for three algorithms WaRSwap, FANMOD,
and DIA-MCIS is shown. The cut norm estimates for CoMoFinder were removed from this figure
for ease of comparison (CoMoFinder has much larger cut norm estimates as compared to other three
algorithms).

21

Figure S15: The cut norm estimates vs. the number of samples for graph evenGraph3. All 5000
samples previously generated by each algorithm for evenGraph3 network were collected and subsampled
into 25 sets (200, 400, 600, . . . , 5000 samples in each set, respectively). IndeCut was used to compute
the cut norm estimates (lower and upper bounds) for each set of samples and algorithms. Cut norm
values closer to zero represent a more uniform/independent sampling. A) The relationship between
the sampling performance and number of samples for all four examined algorithms is shown. B) The
relationship between the sampling performance and number of samples for three algorithms WaRSwap,
FANMOD, and DIA-MCIS is shown. The cut norm estimates for CoMoFinder were removed from this
figure for ease of comparison (CoMoFinder has much larger cut norm estimates as compared to other
three algorithms).

22

Figure S16: The cut norm estimates vs. the number of samples for Human miRNA→TF network. All
5000 samples previously generated by each algorithm for Human miRNA→TF network were collected
and subsampled into 25 sets (200, 400, 600,. . . , 5000 samples in each set, respectively). IndeCut was used
to compute the cut norm estimates (lower and upper bounds) for each set of samples and algorithms. Cut
norm values closer to zero represent a more uniform/independent sampling. A) The relationship between
the sampling performance and number of samples for all four examined algorithms is shown. B) The
relationship between the sampling performance and number of samples for three algorithms WaRSwap,
FANMOD, and DIA-MCIS is shown. The cut norm estimates for CoMoFinder were removed from this
figure for ease of comparison (CoMoFinder has much larger cut norm estimates as compared to other
three algorithms).

23

Table S1: Table of cut norm estimates for all examined graphs. The cut norm estimates closer to zero
represents more uniform and independent sampling.

graphName no samples
Z low
cutnorm

Z up
cutnorm

WR low
cutnorm

WR up
cutnorm

FN low
cutnorm

FN up
cutnorm

comoF low
cutnorm

comoF up
cutnorm

diamcis low
cutnorm

diamcis up
cutnorm

uniFanG1 5000 5.000004 5.000004 0.0065 0.0066 0.0343 0.0343 0.015 0.0164 0.0057 0.0064
biFanG1 5000 10.000006 10.000006 0.0111 0.0122 0.0372 0.0373 0.8042 0.8068 0.1549 0.1549
triFanG1 5000 14.999994 14.999994 0.0198 0.0201 0.0527 0.0528 0.367 0.4123 0.1525 0.1525
tetraFanG1 5000 20.000003 20.000003 0.0241 0.0248 0.0582 0.0583 0.2778 0.2842 0.1358 0.1358
pentaFanG1 5000 24.99999 24.99999 0.0259 0.0264 0.0552 0.0552 0.2185 0.2315 0.1182 0.1182
F-hexaFanG1 5000 29.99998 29.99998 0.0261 0.0266 0.0498 0.0499 0.1814 0.1962 0.1011 0.1011
evenGraph1 5000 200.000013 200.000013 0.0034 0.0038 0.0032 0.0037 0.0677 0.0802 0.0033 0.0038
evenGraph2 5000 264.499966 264.5 0.0029 0.0036 0.0029 0.0035 0.2276 0.2276 0.003 0.0036
evenGraph3 5000 242.000044 242.000044 0.0029 0.0034 0.0031 0.0037 0.2323 0.2323 0.0031 0.0037
evenGraph4 5000 5.5 5.5 0.0132 0.0146 0.0127 0.0139 0.2123 0.2177 0.0119 0.0134
evenGraph5 5000 21.499986 21.499987 0.012 0.0138 0.0117 0.0136 0.1123 0.1137 0.011 0.0129
evenGraph6 5000 7.999996 7.999996 0.0211 0.0213 0.0283 0.0286 0.2373 0.2421 0.0259 0.0266
hybridGraph1 5000 9.499999 9.499999 0.0147 0.0161 0.0218 0.0221 0.3892 0.3892 0.0126 0.0139
hybridGraph2 5000 96.750016 96.750016 0.0199 0.0205 0.0399 0.0399 0.4097 0.4163 0.0277 0.0278
hybridGraph3 5000 111.000018 111.000018 0.0155 0.016 0.0272 0.0272 0.3184 0.3197 0.0232 0.0237
hybridGraph4 5000 42.499996 42.499996 0.0145 0.0157 0.0276 0.0276 0.3555 0.378 0.0204 0.0222
hybridGraph5 5000 20.000008 20.000008 0.0301 0.0306 0.0463 0.0464 0.36 0.3757 0.0198 0.0209
ecoli TF-GENE 5000 97.499958 97.498955 0.0145 0.0169 0.0384 0.0388 0.344 0.3441 0.0142 0.0164
ecoli TF-TF 5000 32.249996 32.250064 0.0144 0.0166 0.0244 0.025 0.26 0.26 0.0143 0.0163
Human TF→TF 5000 161.000002 161.000002 0.0301 0.0301 0.0385 0.0385 0.5313 0.5318 0.0123 0.0129
Human TF→miRNA 5000 309.250145 309.250145 0.0297 0.0312 0.0312 0.0312 0.1236 0.125 0.0248 0.0258
Human TF→GENE 5000 6437.000388 6437.000388 0.0181 0.0183 0.029 0.029 0.274 0.275
Human miRNA→GENE 5000 28855.25551 28855.25551 0.0087 0.0088 0.0202 0.0202 0.2852 0.2853
Human miRNA→TF 5000 648.50001 648.50001 0.0136 0.014 0.031 0.031 0.4057 0.4062 0.0141 0.0143

24

Table S2: Runtime of IndeCut on all examined graphs. IndeCut evaluates graphs on the order of several
thousand nodes and tens of thousands of edges within a few minutes to a few days using standard hard-
ware. This table provides IndeCut’s observed run time on each graph and algorithm. The miRNA→Gene
layer in the human network allows us to provide run time given an extreme example with approximately
100,000 edges. To put these run times into perspective, network motif tools typically take several days
simply to provide an output for graphs of this size, using a small number of iterations that does not
guarantee meaningfully accurate performance (we discuss the number of iterations necessary for op-
timal performance for each sampling method in the next section). Using a commercial optimization
package such as Guorbi or Mosek (in contrast to the open-source package CSDP that we use here) will
result in speed improvements to IndeCut. Thus, considering time costs of running network motif finding
algorithms themselves as well as the enormous potential laboratory costs of attempting to validate inac-
curate results, IndeCut presents a very practical method for making an informed network motif discovery
algorithm choice on biological networks of study.

Graph Number of nodes Number of edges IndeCut run-time
uniFanG1 11 20 10 s
biFanG1 22 40 10 s
triFanG1 33 60 15 s
tetraFanG1 44 80 20 s
pentaFanG1 55 100 35 s
hexaFanG1 66 120 48 s
regularSmallG1 23 22 9 s
regularSmallG2 62 86 21 s
regularSmallG3 31 32 10 s
regularG1 80 800 27 s
regularG2 92 1058 30 s
regularG3 88 968 28 s
Human TF→TF 174 644 52 s
Human TF→miR 332 1237 2 min
Human miR→TF 606 2594 5 min
Human TF→GENE 9055 25748 4 days
Human miR→GENE 12185 115421 14 days
Ecoli TF→TF 140 129 2 min
Ecoli TF→GENE 365 390 4 min

25

References

[1] Barvinok, A. (2010) On the number of matrices and a random matrix with prescribed row and
column sums and 0–1 entries. Advances in Mathematics, 224(1), 316–339.

[2] Alon, N. and Naor, A. (2006) Approximating the cut-norm via Grothendieck’s inequality. SIAM
Journal on Computing, 35(4), 787–803.

[3] Borchers, B. (1999) CSDP, AC library for semidefinite programming. Optimization methods and
Software, 11(1-4), 613–623.

[4] Janson, S., Graphons, cut norm and distance, couplings and rearrangements. Technical report,
Department of Mathematics, Uppsala University (2010).

[5] Wernicke, S. and Rasche, F. (2006) FANMOD: a tool for fast network motif detection. Bioinfor-
matics, 22(9), 1152–1153.

[6] Fusco, D., Bassetti, B., Jona, P., and Lagomarsino, M. C. (2007) DIA-MCIS: an importance sam-
pling network randomizer for network motif discovery and other topological observables in tran-
scription networks. Bioinformatics, 23(24), 3388–3390.

[7] Megraw, M., Mukherjee, S., and Ohler, U. (2013) Sustained-input switches for transcription factors
and microRNAs are central building blocks of eukaryotic gene circuits. Genome biology, 14(8), 1.

[8] Liang, C., Li, Y., Luo, J., and Zhang, Z. (2015) A novel motif-discovery algorithm to identify
co-regulatory motifs in large transcription factor and microRNA co-regulatory networks in human.
Bioinformatics, 31(14), 2348–2355.

[9] Chen, Y., Diaconis, P., Holmes, S. P., and Liu, J. S. (2005) Sequential Monte Carlo methods for
statistical analysis of tables. Journal of the American Statistical Association, 100(469), 109–120.

[10] Shen-Orr, S. S., Milo, R., Mangan, S., and Alon, U. (2002) Network motifs in the transcriptional
regulation network of Escherichia coli. Nature genetics, 31(1), 64–68.

[11] Brandes, U., Delling, D., Gaertler, M., Gorke, R., Hoefer, M., Nikoloski, Z., and Wagner, D. (2008)
On modularity clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2), 172–188.

26

