The Hcp-like protein HilE inhibits homodimerization and DNA binding of the virulence-associated transcriptional regulator HilD in *Salmonella*

Claudia C. Paredes-Amaya¹, Gilberto Valdés-García², Víctor R. Juárez-González², Enrique Rudiño-Piñera² and Víctor H. Bustamante¹*

From the ¹Departamento de Microbiología Molecular, ²Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, 62210, México.

Running title: HilE controls dimerization and DNA binding of HilD

*To whom correspondence should be addressed: Víctor H. Bustamante, Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México. Telephone: (52) 777-329-1627. Fax: (52) 777-313-8673. E-mail address: <u>victor@ibt.unam.mx</u>

Supporting information

Table S1. Bacterial strains and plasmids used in this study

Table S2. Primers used in this study

Figure S1. Gel filtration chromatography of MBP-HilD

Figure S2. The *hilE* gene is located in a genomic island of *S*. Typhimurium and *S*. *bongori* that is absent in *E*. *coli* K-12

Supplementary references

Strain or plasmid	Genotype or description	Reference or source	
Strains			
S. Typhimurium strains			
SL1344	Wild type; <i>xyl hisG rpsL;</i> Sm ^R	(1)	
14028s	Wild type	ATCC	
JPTM5	$\Delta hilD::kan$	(2)	
<i>E. coli</i> K-12 strains			
DH5a	Laboratory strain	Invitrogen	
SU101	Reporter strain of the LexA-		
	based genetic system for		
	homodimerization assays; Kan ^R	(3)	
SU202	Reporter strain of the LexA-		
	based genetic system for		
	heterodimerization assays; Kan ^R	(3)	
BL21/DE3	Strain for expression of		
	recombinant protein	Invitrogen	
MC4100	Cloning strain	(4)	
Plasmids			
pSR658	Vector expressing LexA _{DBDwt} for		
	homodimerization assays; Tc ^R	(5)	
pSR658-HilD1	pSR658 derivative expressing		
	LexA _{DBDwt} -HilD ₁₋₃₀₉ ; Tc ^K	This study	
pSR658-HilD2	pSR658 derivative expressing		
	LexA _{DBDwt} -HilD ₁₋₁₃₀ ; Tc ^R	This study	
pSR658-HilD3	pSR658 derivative expressing		
	LexA _{DBDwt} -HilD ₁₃₀₋₃₀₉ ; Tc ^K	This study	
pSR658-HilD4	pSR658 derivative expressing		
	the LexA _{DBDwt} -HilD ₁₋₂₂₀ ; Tc^{κ}	This study	
pSR658-HilD5	pSR658 derivative expressing		
	the LexA _{DBDwt} -HilD ₂₂₁₋₃₀₉ ; Tc ^K	This study	
pSR658-HilD6	pSR658 derivative expressing		
	the LexA _{DBDwt} -LZ-HilD ₂₂₁₋₃₀₉ ;		
		This study	
pSR658-HNS	pSR658 derivative expressing		
GD (50	LexA _{DBDwt} -H-NS; 1c ⁻	(6)	
pSR659	Vector expressing LexA _{DBDmut} for		
CD (50 H'ID)	heterodimerization assays; Ap	(5)	
pSR659-HILEI	pSR659 derivative expressing		
	the LexA _{DBDmut} -HilE fusion; Ap	This study	
pMAL-c2x	Expressing vector for		
	constructing Manose binding		
	protection (MBP) fusions, <i>lac</i>	New England Pieleba	
PMAL HilD1	promoter, Ap		
	MRP HilD fusion protein: An ^R	(2)	
pMPM A60	Cloping vector p15A derivative	(2)	
	low-copy-number ara promotor:		
	An^{R}	(7)	

Table S1. Bacterial strains and plasmids used in this study

pA6-HilE1	pMPM-A6Ω derivative	
-	expressing HilE; Ap ^R	This study
рМРМ-К6Ω	Cloning vector p15A derivative	
	low-copy-number, ara promoter;	
	Kan ^R	(7)
pK6-HilE1	pMPM-K6Ω derivative	
	expressing HilE; Kan ^R	This study
pUT18C-zip	Vector expressing 35 amino	
	acids of the leucine zipper motif	
	from GCN4 fused in frame with	
	the T18 fragment of CyA; Ap ^R	Euromedex
pET32b(+)	Expressing vector for	
	constructing Thioredoxin (Trx)	
	fusions, T7 promoter; Ap ^R	Novagen
pET32-HilE	pET32b(+) derivative expressing	
	Trx-HilE; Ap ^R	This study
pBAD-HilD1	pBADMycHis derivative	
	expressing HilD-MycHis; Ap ^R	(6)
philA-cat1	pKK232-8 derivative expressing	
	a hilA-cat transcriptional	
	fusion from nucleotides - 410 to	
	+ 446	(2)

 Ap^{R} , ampicillin resistance; Sm^{R} streptomycin resistance; Kan^{R} , kanamycin resistance; Tc^{R} , tetracycline resistance.

Table S2. Primers used in this study

Primer	Sequence (5'-3')	Target gene	RE
HilD-SacI	GAT GAG CTC GAA AAT GTA ACC TTT GTA		
	AGT AAT AG	hilD	SacI
HilDexR-PstI	TCC CTG CAG AAC AAT GAT ATT GAA TAG C	hilD	PstI
HilD130-5'	CCC ACA GAG CTC GCG CAG AAG ATC TTC		
	TAT ACG	hilD	SacI
HilD-130	ATA GAA <u>CTG CAG</u> TTA CGC TTT CTC TGT		
	GGG TAC CG	hilD	PstI
HilD-220	AAG CTT <u>CTG CAG</u> TTA ACT GGG TGA CGA		
	AGA TAT AAT G	hilD	PstI
HilD-221	TCG TCA <u>GAG CTC</u> AGA CAG TGG AAG CTT		
	ACG GAT G	hilD	SacI
LZ-F	GTA <u>CTC GAG</u> CAG CGT ATG AAA CAG		
	CTG GAA G	gcn4*	XhoI
LZ-HilD221F	GAA AAA ACT GGT GGG TGA ACG TAG ACA		
	GTG GAA GCT TAC GGA TG	gcn4*	
HilD221LZR	CAT CCG TAA GCT TCC ACT GTC TAC GTT CAC		
	CCA CCA GTT TTT TC	hilD	
HilE-SacI	GGG <u>GAG CTC</u> GAC GCC ATC TAT TTA AAA		
	CTG G	hilE	SacI
HilE- HindIII-3'	TCC <u>GCA AGC TT</u> G TTT TGT CC	hilE	HindIII
HilE-NcoI-2	GAG GGG <u>CCA TGG</u> ACG CCA TCT ATT TAA		
	AAC TGG	hilE	NcoI
HilE-His6	CCC <u>AAG CTT</u> TCC TCA ATG ATG ATG ATG		
	ATG ATG TCG CCA CAG CGC CTG TCG G	hilE	HindIII
HilE-PUT-BamHI	ATA AC <u>G GAT CC</u> G AGG GCC ACG CGT TAT		
	CGC	hilE	BamHI
HilCRR-F	GGA ATG TAA TTA TTG GCT ATA ATA ATA		
	AAA AAA TCG GAT TTA AAT CAT CT	hilC	
HilCRR-R	GAG ATG ATT TAA ATC CGA TTT TTT TAT TAT		
	TAT AGC CAA TAA TTA CAT TC	hilC	

RE, restriction enzyme for which a site was generated in the primer. Underlined letters indicate the respective restriction-enzyme site in the primer. * *gcn4* carried by pUT18C-zip (Table 1).

Figure S1. Gel filtration chromatography of MBP-HilD. Chromatogram showing the elution profile of MBP-HilD, fractionated on a Superdex 200 column (HiLoadTM 16/60), in a buffer containing 200 mM Tris–HCl pH 8.0 and 150 mM NaCl. On the right, a five-point calibration curve was performed using the Gel Filtration Molecular Weight Markers Kit (Sigma-Aldrich). The arrow indicates the relative molecular mass of MBP-HilD calculated by comparison with the five-point calibration curve.

E. coli MG1655

Figure S2. The *hilE* gene is located in a genomic island of *S*. Typhimurium and *S*. *bongori* that is absent in *E*. *coli* K-12. Schematic view of the DNA region between the *uxuR* and *hypT* ancestral genes in *E*. *coli* K-12 MG1655, *S*. Typhimurium SL1344 and *S*. *bongori* NCTC 12419. The *hilE* gene is present in *S*. Typhimurium and *S*. bongori, but not in *E*. *coli* K-12. The *trpS2*, *SL1344_4438* and *SL1344_4431* genes encode for a tryptophanyl-tRNA systethase, a hypothetical protein and a putative aspartate-racemase, respectively. The G + C content for each of the *S*. Typhimurium SL1344 genes is shown.

Supplementary references

- 1. Hoiseth, S. K., and Stocker, B. A. (1981) Aromatic-dependent *Salmonella* Typhimurium are nonvirulent and effective as live vaccines. *Nature* **291**, 238-239
- 2. Bustamante, V. H., Martinez, L. C., Santana, F. J., Knodler, L. A., Steele-Mortimer, O., and Puente, J. L. (2008) HilD-mediated transcriptional cross-talk between SPI-1 and SPI-2. *Proc. Natl. Acad. Sci. U S A.* **105**, 14591-14596
- 3. Dmitrova, M., Younes-Cauet, G., Oertel-Buchheit, P., Porte, D., Schnarr, M., and Granger-Schnarr, M. (1998) A new LexA-based genetic system for monitoring and analyzing protein heterodimerization in *Escherichia coli*. *Mol. Gen. Genet.* **257**, 205-212
- 4. Casadaban, M. J. (1976) Transposition and fusion of the *lac* genes to selected promoters in *Escherichia coli* using bacteriophage lambda and Mu. *J Mol Biol* **104**, 541-555
- Daines, D. A., and Silver, R. P. (2000) Evidence for multimerization of neu proteins involved in polysialic acid synthesis in *Escherichia coli* K1 using improved LexA-based vectors. *J. Bacteriol.* 182, 5267-5270
- 6. Martinez, L. C., Yakhnin, H., Camacho, M. I., Georgellis, D., Babitzke, P., Puente, J. L., and Bustamante, V. H. (2011) Integration of a complex regulatory cascade involving the SirA/BarA and Csr global regulatory systems that controls expression of the *Salmonella* SPI-1 and SPI-2 virulence regulons through HilD. *Mol. Microbiol.* **80**, 1637-1656
- 7. Mayer, M. P. (1995) A new set of useful cloning and expression vectors derived from pBlueScript. *Gene* 163, 41-46