Myeloperoxidase-catalyzed oxidation of cyanide to cyanate: A potential carbamylation route involved in the formation of atherosclerotic plaques?

Cédric Delporte^{1,2a}, Karim Zouaoui Boudjeltia^{3a}, Paul G. Furtmüller⁴, Richard A. Maki^{5,6}, Marc Dieu⁷, Caroline Noyon¹, Monika Soudi⁴, Damien Dufour^{1,2}, Catherine Coremans^{1,2}, Vincent Nuyens³, Florence Reye¹, Alexandre Rousseau³, Martine Raes⁷, Nicole Moguilevsky⁸, Michel Vanhaeverbeek³, Jean Ducobu³, Jean Nève¹, Bernard Robaye⁹, Luc Vanhamme¹⁰, Wanda F. Reynolds⁶, Christian Obinger^{4a} and Pierre Van Antwerpen^{1,2a*}

¹Laboratory of Pharmaceutical Chemistry and ²Analytical Platform, Faculty of Pharmacy, Université Libre de Bruxelles, Brussels, Belgium;

³Laboratory of Experimental Medicine, CHU de Charleroi, A. Vésale Hospital, Université Libre de Bruxelles, Montigny-le-Tilleul, Belgium;

⁴Department of Chemistry, Division of Biochemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria;

⁵Torrey Pines Pharmaceuticals, Del Mar, California, United States of America;

⁶Sanford-Burnham-Prebys Medical Discovery Institute, La Jolla, California, United States of America

⁷Laboratory of Cellular Biology, University of Namur, Namur, Belgium;

⁸Technology Transfer Office, University of Namur, Namur, Belgium;

⁹Institute of Interdisciplinary Research, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Faculty of Sciences, Université Libre de Bruxelles, Gosselies, Belgium;

¹⁰Laboratory of Molecular Parasitology, Institut de Recherche Interdisciplinaire en Biologie Humaine et Moléculaire, Faculty of Sciences, Université Libre de Bruxelles, Gosselies, Belgium;

^aContributed equally.

*Corresponding author: Phone: +3226505263, fax : +32265052489, Email: pvantwer@ulb.ac.be

Quantification of cyanate formation from cyanide

Cyanate production was carried out at 37 °C in a final volume of 1.0 mL. The reaction mixture contained the following reagents at the final concentrations indicated between brackets: ammonium acetate buffer, pH 7.4 (10 mM), H₂O₂ (1 mM), cyanide (1 mM). The reaction was started by addition of MPO (300 nM). Alternatively, cyanate was obtained by mixing isotopomers of cyanide (1 mM) and HOCl (1 mM) in the same buffer. After incubation for 1 h, the solution was analyzed by infusion of the samples at 2mL/hour during 3 min into an Agilent 6520 Electrospray ionization (ESI) source Quadrupole Time of flight (QTOF) mass spectrometer (Palo Alto, CA, USA) in negative mode with a source temperature at 325 °C, a VCap at 4500 V, a drying gas at 5 L/min, a nebulizer gas at 10 psig, a fragmentor at 150 V and a skimmer at 80 V. Spectra were accumulated during 2 min.Cyanate concentration was calculated thanks to a calibration curve from 50 to 1000 µM of KOCN.

The results are as follows:

KOCN conc. (μM)	Average Abundance (n=3) (counts)	SD (counts)
50	15	7
100	46	10
500	402	11
1000	904	36

Conditions	Average Abundance (n=3) (counts)	Calculated concentration in ⁻ OCN (µM)	SD (μM)
CN- + MPO + H ₂ O ₂	77	131	5
CN ⁻ + HOCl	145	202	5

Legends of supporting materials

Suppl. Figure 1. Decay of lactoperoxidase compound I in the presence of cyanide.

(A) Spectral changes upon addition of 1 mM cyanide to 2 μ M compound I in the sequential-mixing stopped-flow mode (see Methods). Compound I was formed by mixing 8 μ M ferric LPO with 8 μ M H₂O₂ and waiting for 100 ms. First spectrum was recorded at 1.3 ms, subsequent spectra at 6 ms, 16 ms, 40 ms, 73 ms 157 ms and 9.9 s. Reaction conditions: 100 mM phosphate buffer, pH 7.0, and 25°C. Inset to Figure 1A shows a plot of k_{obs} versus cyanide concentration. (B) Spectral changes of HRP compound I (2 μ M) upon addition of 10 mM cyanide. Inset to Suppl Figure 1B shows absorbance change at 403 nm.

Suppl. Figure 2. MS spectra illustrating the carbamyllysine production. The

production of carbamyllysine was demonstrated with peaks (positive mode) at respectively 190.1177 and 192.1197 *m/z* corresponding to ¹²C- and ¹³C¹⁵N- carbamyllysine. Peak at 191.077 did not allow isolation of the ¹³C-isotope. Performed in negative mode, peaks at 188.1079, 189.1120 and 190.1078 *m/z* were observed corresponding to the isotopomers of carbamyllysine.

Suppl. Figure 3. HOCl mediates cyanate and carbamyltaurine production. Addition

of hypochlorous acid (HOCl) promotes oxidation of cyanide into cyanate such as indicated by the peaks at 43.0028 and 43.9999 m/z corresponding to ¹³C- and ¹³C¹⁵N- cyanate. In the presence of taurine, addition of HOCl has also allowed the production of carbamyltaurine (right panel).

Suppl. Figure 4. Reaction of recombinant myeloperoxidase compound I with

cyanide. Typical time traces with single exponential fit showing the transition of 1.6 μ M compound I to the ferric MPO cyanide complex. Reactions were followed at 456 nm, the maximum absorbance of MPO cyanide complex. Pseudo-first-order rate constants for compound I reduction by cyanide. The second-order rate constants were calculated from the slope ($k_{app} = 2.5 \times 10^5 \text{ M}^{-1} \text{ s}^{-1}$).

Suppl. Figure 5. Absorbance spectra of myeloperoxidase compound II and

myeloperoxidase-cyanide complex. Absorbance spectra were acquired between 290 and 740 nm for the myeloperoxidase compound II (MPO-Compound II) and myeloperoxidase cyanide complex (MPO-CN⁻). For both spectrum, a Soret maximum at 456 nm is observed.

Suppl. Figure 1, Delporte, C., et al

Suppl. Figure 2, Delporte, C., et al.

Suppl. Figure 3, Delporte, C., et al.

 $k_{\rm app} = 2.5 \text{ x } 10^5 \text{ M}^{-1} \text{ s}^{-1}$

Suppl Figure 4, Delporte, C., et al.

Delporte, C., et al. Suppl. Figure 5