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A1 Densities on directed acyclic graphs

We will show that if G = (S, NS) is acyclic then p̃(wS) defined in (3) corresponds to a true

density over S. For any directed acyclic graph, there exists a node with zero in-degree i.e.

no directed edge pointing towards it. We denote this node by sπ(1) This means sπ(1) does not

belong to the neighbor set of any other location in S. The only term where it appears on

the right hand side of (2) is p(w(sπ(1) |wN(sπ(1))) which integrates out to one with respect to

dw(sπ(1)). We now have a new acyclic directed graph G1 obtained by removing vertex sπ(1)

and its directed edges from G. Now we can find a new vertex sπ(2) with zero out-degree in

G1 and continue as before to get a permutation π(1), π(2), . . . , π(k) of 1, 2, . . . , k such that

∫ k∏
i=1

p(w(si) |wN(si))dw(sπ(1))dw(sπ(2)) . . . dw(sπ(k)) = 1

An easy application of Fubini’s theorem now ensures that this is a proper joint density.
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A2 Properties of C̃
−1

S

If p(wS) = N(wS |0,CS), then w(si) |wN(si) ∼ N(BsiwN(si),Fsi), where Bsi and Fsi are

defined in (3). So, the likelihood in (2) is proportional to

1∏k
i=1

√
det(Fsi)

exp

(
−1

2

k∑
i=1

(w(si)−BsiwN(si))
′F−1si

(w(si)−BsiwN(si))

)

For any matrix A, let A[, j : j′] denote the submatrix formed using columns j to j′ where

j < j′. For j = 1, 2, . . . , k, we define q × q blocks Bsi,j as

Bsi,j =


Iq if j = i;

−Bsi [, (l − 1)q + 1 : lq] if sj = N(si)(l) for some l;

O otherwise,

where, for any location s, N(s)(l) is the l-th neighbor of s. So, wsi − BsiwN(si) = B∗siwS ,

where B∗si = [Bsi,1,Bsi,2, . . . ,Bsi,k] is q× kq and sparse with at most m+ 1 non-zero blocks.

Then,

k∑
i=1

(w(si)−BsiwN(si))
′F−1si

(w(si)−BsiwN(si)) =
k∑
i=1

w′S(B∗si)
′F−1si

B∗siwS = w′SB
′
SF
−1
S BSwS ,

where F = diag(Fs1 ,Fs2 , . . . ,Fsk) and BS = ((B∗s1)
′, (B∗s2)

′, . . . , (B∗sk)
′)′. So, we have:

(C̃S)−1 = B′SF
−1
S BS (A1)

From the form of Bsi,j, it is clear that BS is sparse and lower triangular with ones on

the diagonals. So, det(BS) = 1, det((B′SF
−1
S BS)−1) =

∏
det(Fsi) and (2) simplifies to

N(wS |0, C̃S).

Let C̃
ij

S denote the (i, j)th block of C̃
−1
S . Then from equation (A1) we see that for i < j,
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C̃
ij

S =
∑k

l=j(B
∗
sl,i

)′F−1sl
B∗sl,j. So, C̃

ij

S is non-zero only if there exists at least one location sl

such that si ∈ N(sl) and sj is either equal to sl or is in N(sl). Since every neighbor set has

at most m elements, there are at most km(m+ 1)/2 such pairs (i, j). This demonstrates the

sparsity of C̃
−1
S for m� k.

A3 Kolmogorov Consistency for NNGP

Let {w(s) | s ∈ D} be a random process over some domain D with density p and let p̃(wS) be

a probability density for observations over a fixed finite set S ⊂ D. The conditional density

p̃(wU |wS) for any finite set U ⊂ D outside of S is defined in (4).

We will first show that for every finite set V = {v1,v2, . . . ,vn} in D, n ∈ {1, 2, . . .} and

for every permutation π(1), π(2), . . . , π(n) of 1, 2, . . . , n we have,

p̃ (w(v1),w(v2), . . . ,w(vn)) = p̃
(
w(vπ(1)),w(vπ(2)), . . . ,w(vπ(n))

)
.

. We begin by showing that for any finite set V , the expression given in (5) is a proper

density. Let U = V \ S. Since V ∪ (S \ V) = S ∪ U , we obtain

∫
p̃(wV)

∏
vi∈V

d(w(vi)) =

∫
p̃(wU |wS)p̃(wS)

∏
vi∈U

d(w(vi))
∏
si∈S

d(w(si))

=

∫
p̃(wS)

(∫
p̃(wU |wS)

∏
vi∈U

d(w(vi))

)∏
si∈S

d(w(si)) =

∫
p̃(wS)

∏
si∈S

d(w(si)) = 1

Note that S is fixed. Therefore, the expression for the joint density of wV depends only on

the the neighbor sets N(vi) for vi ∈ U . So the NNGP density for V is invariant under any

permutation of locations inside V .

We now prove that for every location v0 ∈ D, we have, p̃(wV) =
∫
p̃(wV∪{v0})d(w(v0)).

let V1 = V ∪ {v0}. We split the proof into two cases. If v0 ∈ S, then using the fact
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V1 \ S = V \ S = U , we obtain

∫
p̃(wV1)d(w(v0)) =

∫
p̃(wS)p̃(wV1\S |wS)

∏
si∈S\V1

d(w(si))d(w(v0)

=

∫
p̃(wS)p̃(wV\S |wS)

∏
si∈S\V

d(w(si)) = p̃(wU) .

If v0 /∈ S, then w(v0) does not appear in the neighborhood set of any other term. So,

p(w(v0) |wS) integrates to one with respect to d(w(v0)). The result now follows from∫
p(wV1 |wS)d(w(v0)) = p(wV |wS).

A4 Properties of NNGP

Standard Gaussian conditional distribution facts reveal that the conditional distribution

w(ui) |wS ∼ N(BuiwN(ui),Fui) where Bui and Fui be defined analogous to (3) based on

the neighbor sets N(ui). From (4), we see that

p̃(wU |wS) =
1∏r

i=1

√
det(Fui)

exp

(
−1

2

r∑
i=1

(w(ui)−BuiwN(ui))
′F−1ui

(w(ui)−BuiwN(ui))

)

It then follows that p̃(wU |wS) ∼ N(BUwS ,FU) where BU = (B′u1
,B′u2

, . . . ,B′ur)
′ and FU =

diag(Fu1 ,Fu2 , . . . ,Fur). Since each row of BU has at most m non-zero entries, BU is sparse

for m� k.

As the nearest neighbor densities of wS and wU |wS for every finite U outside S are

Gaussian, all finite dimensional realizations of an NNGP process will be Gaussian. Let v1

and v2 be any two locations in D and let Ẽ and C̃ov denote, respectively, the expectation

and covariance operator for a NNGP. Then, if v1 = si and v2 = sj are both in S then we
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obviously have C̃ov(w(v1),w(v2) |θ) = C̃si,sj . If v1 is outside S and v2 = sj, then

C̃ov(w(v1),w(v2) |θ) = Ẽ(C̃ov(w(v1),w(v2) |wS ,θ)) + C̃ov(Ẽ(w(v1)), Ẽ(w(v2)) |wS ,θ))

∴ C̃(v1,v2 |θ) = 0 + C̃ov(Bv1wN(v1),w(sj) |θ) = Bv1C̃N(v1),sj

If both v1 and v2 are outside S, then C̃(v1,v2 |θ) = δ(v1 = v2)Fv1 + Bv1C̃N(v1),N(v2)B
′
v2

,

which yields (7).

For any two set of locations A and B, let ||A,B|| denote the pairwise Euclidean distance

matrix. Let Z1 denote set of all points v such that v is equidistant from any two points in

S. Since S is finite, the set Z2 = (Z1 ×Z1) ∪ {(v,v) |v ∈ D} has Lebesgue measure zero in

the Euclidean domain <d × <d. We will show that C̃(v1,v2 |θ) is continuous for any pair

(v1,v2) in D×D \Z2. Observe that for any pair of points (v1,v2) in D×D \Z2, it is easy

to verify that lim
hi→0
||(vi +hi, N(vi +hi)|| → ||vi, N(vi)||, for i = 1, 2, and lim

h1→0,h2→0
||N(v1 +

h1), N(v2 + h2)|| → ||N(v1), N(v2)||. We prove the continuity of C̃(v1,v2 |θ) for the case

when v1 is outside S and v2 = sj. The other cases are proved similarly. We assume that the

covariance function for the original GP is isotropic and continuous. The two distance results

yield Bv1+h1 = Cv1+h1,N(v1+h1)C
−1
N(v1+h1)

→ Cv1,N(v1)C
−1
N(v1)

= Bv1 . Also, as v2 + h2 →

v2 = sj, then sj ∈ N(v2 + h2) for small enough h2. Let sj = N(v2 + h2)(1) and, hence,

Cv2+h2,N(v2+h2)C
−1
N(v2+h2)

→ e1 where e1 = (1, 0, . . . , 0)m×1. Therefore,

lim
h1→0,h2→0

C̃(v1 + h1,v2 + h2 |θ) = Bv1 limh1→0,h2→0 C̃ov(wN(v1+h1),wN(v2+h2) |θ)e1

= Bv1 limh1→0 C̃ov(wN(v1+h1),w(sj) |θ) = Bv1C̃N(v1),sj = C̃(v1,v2 |θ) .
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A5 Simulation Experiment: Robustness of NNGP to

ordering of locations

We conduct a simulation experiment demonstrating the robustness of NNGP to the ordering

of the locations. We generate the data for n = 2500 locations using the model in Section

5.1. However instead of a square domain we choose a long skinny domain (see Figure 1(a))

which can bring out possible sensitivity to ordering due to scale disparity between the x and

y axes. We use three different orderings for the locations: ordering by x-coordinates, by

y-coordinates and by the function f(x, y) = x+ y.

Table A1 demonstrates that the point estimates and the 95% credible intervals for the

process parameters from all three NNGP models are extremely consistent with the estimates

from the full Gaussian process model.

Posterior estimates of the spatial residual surface from the different models are shown

in Figure A1. Again, the impact of the different ordering is negligible. We also plotted the

difference between the posterior estimates of the random effects of the true GP and NNGP

for all 3 orderings in Figure A2. It was seen that this difference was negligible compared to

the difference between the true spatial random effects and full GP estimates. This shows the

inference obtained from the NNGP (using any ordering) closely emulates the corresponding

full GP inference.

Table A1: Univariate synthetic data analysis parameter estimates and computing time in
minutes for NNGP m=10 and full GP models. Parameter posterior summary 50 (2.5, 97.5)
percentiles.

NNGP (S = T )
Full Order by Order by Order by

True Gaussian Process y-coordinates x-coordinates x+ y-coordinates
σ2 1 0.640 (0.414, 1.297) 0.712 (0.449, 1.530) 0.757 (0.479, 1.501) 0.718 (0.464, 1.436)
τ 2 0.1 0.107 (0.098, 0.117) 0.106 (0.097, 0.114) 0.107 (0.099, 0.117) 0.107 (0.098, 0.115)
φ 6 8.257 (4.056, 13.408) 8.294 (3.564, 12.884) 7.130 (3.405, 11.273) 7.497 (3.600, 11.911)
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(c) NNGP order by y-coordiantes
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(d) NNGP order by x-coordiantes
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(e) NNGP order by x+ y-coordiantes

Figure A1: Robustness of NNGP to ordering: Figures (a) and (b) show interpolated surfaces
of the true spatial random effects and posterior median estimates for full geostatistical model
respectively. Figures (c), (d), and (e) show interpolated surfaces of the posterior median
estimates for NNGP model with S = T , m = 10, and alternative coordinate ordering.
Corresponding true and estimated process parameters are given in Table A1.
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(b) Full GP ŵ− NNGP (order by x) ŵ
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(c) Full GP ŵ− NNGP (order by y) ŵ
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(d) Full GP ŵ− NNGP (order by x+ y) ŵ

Figure A2: Difference between Full GP and NNGP estimates of spatial effects: Figure (a)
shows the difference between the true spatial random effects and the full GP posterior median
estimates. Figures (b), (c) and (d) plots the difference between posterior median estimates
of full GP and NNGP ordered by x, y and x + y co-ordinates respectively. All the figures
are in the same color scale. A8



A6 Simulation experiment: NNGP credible intervals

as function of m

From a classical viewpoint, NNGP can be regarded as a computationally convenient approx-

imation to the full GP model. The accuracy of the approximation is expected to improve

with increase in m as NNGP model becomes identical to the full model when m equals the

sample size. However, we construct the NNGP as an independent model and found that

inference from this model closely emulates that from the full GP model. Figure 1 demon-

strates how root mean square predictive error and parameter CI width vary with choice of

m. We conduct another simulation experiment to investigate how the parameter estimation

of the hierarchical NNGP model depends on m.

We generated a dataset of size 1000 using the model described in Section 5.1 for 4

combination of values of φ and σ2. Other parameters and prior choices were similar to those

in section A8. Figure A3 gives true values of σ2 and effective range (3/φ) alongwith the

posterior medians and credible intervals for the full GP, NNGP with m = 10 and m = 100.

We see that the CI’s for NNGP m = 10 and m = 100 are almost identical and are very close

to the CI for full GP. This suggests that even for small values of m NNGP, parameter CI’s

closely resemble full GP parameter CI’s.
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Figure A3: NNGP credible intervals for small and large values of m
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A7 Simulation experiment: Data with gaps

One possible area of concern for NNGP is that if the data have large gaps and the NNGP is

constructed using the data locations as the reference set S, then NNGP covariance function

may be a poor approximation of the full GP covariance function. This arises from the fact

that if the reference set has large gaps then two very close locations outside S can have very

different neighbor sets. Since, in a NNGP, locations outside S are correlated through their

neighbors sets this may lead to little correlation among very close points in certain regions

of the domain.

Figure A4: Full GP and NNGP (m = 10) covariance function for data with gaps
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Figure A4 demonstrates this issue. We generate a set T of 100 locations (topleft) on

the domain [0, 3] × [0, 1] with half the locations in [0, 1] × [0, 1] and the remaining half in

[2, 3] × [0, 1]. This creates a large gap in the middle where there are no datapoints. The

topright panel shows the heatmap of the full GP covariance function with σ2=1 and φ = 2

(so that the effective range is 1.5). The NNGP is a non-stationary process and the covariance

function depends on the locations. We evaluate this covariance at two points (red dots in the

topleft figure) — (0.5, 0.5) (which is surrounded by many points in S) and (1.5, 0.5) (which

is at the middle of the gap and equidistant from the two sets of locations in S).

The NNGP field at (0.5, 0.5) (bottomleft) closely resembles the GP field. This is because

the neighbors of (0.5, 0.5) are close to the point and provides strong information about the

true GP at that point. The NNGP field at (1.5, 0.5) (bottomright) is almost non-existent

with near zero correlations even at very small distances. This is an expected consequence of

the way NNGP is constructed. Any two points outside S are correlated via their neigbhor sets

only. The neighbors for (1.5, 0.5) are far away from the point it provides weak information

about the point as it is in the middle of the gap.

This suggests that a NNGP constructed using a reference set with large gaps is a poor

approximation to the full GP as a process in certain regions of the domain. If the data

locations do have large gaps, perhaps a NNGP with S as a grid over the domain provides a

much better approximation to the full GP. To observe this we used a 14 × 7 grid over the

domain [0, 3] × [0, 1] as S. So the size of this new S was similar to the original sample size

of 100. Figure A5 demonstrates the NNGP covariance function at the two points using this

new S. We see that using the grid S, the NNGP covariance function at the two points are

very similar and closely resemble the true GP covariance function. This suggests that in

order for the NNGP to resemble full GP, the reference set needs to have points uniformly

distributed over the domain.

However, from a kriging perspective, if the data have large gaps, inference from a NNGP
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Figure A5: NNGP covariance function using a grid S

with S = T may not differ a lot from the full GP inference. Even when one uses the full

GP, kriging is usually done one point at a time and thereby ignores the covariances between

points outside the data locations and assumes conditional independence. Figure A6 plots

Figure A6: Kriging means and variances for full GP and NNGP (S = data locations)

the kriging mean and variances over the entire domain for the full GP and the NNGP. They
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True Full GP NNGP m=10 NNGP m=20
β 1 0.72 (0.00, 1.32) 0.65 (-0.14, 1.30) 0.69 (0.02, 1.16)
τ 0.01 0.03 (0.01, 0.05) 0.03 (0.01, 0.06) 0.03 (0.01, 0.06)
σ2 1 0.63 (0.38, 1.31) 0.65 (0.39, 1.29) 0.62 (0.38, 1.27)
φ 2 2.94 (1.27, 5.19) 2.76 (1.27, 5.25) 2.91 (1.34, 5.20)

RMSPE – 0.58 (ind) 0.57 0.57
– 0.58 (joint) – –

95% CI cover – 94.00 (ind) 95.66 95.33
– 95.33 (joint) – –

Mean 95% CI width – 2.12 (ind) 2.12 2.13
– 2.11 (joint) – –

Table A2: Data analysis for locations with gaps

are very close. This suggests even for data with gaps the kriging performance of NNGP and

GP are similar.

We also generated a dataset over T and fitted the full GP and NNGP (S = T ) model

to compare parameter estimation and kriging performance. In addition to the conventional

independent kriging, we also used the computationally expensive joint kriging for the full GP

to see if it improves kriging quality at locations in the gap. Table A2 provide the parameter

estimates and model fitting metrics. Figures A7 and A8 gives the posterior median and the

variance surface over the domain. We see that the the NNGP and full GP produce very

similar parameter estimates and kriging. Hence, for data with large gaps both the full GP

and NNGP (S = T ) doesn’t provide enough information for locations inside the gaps. So

even if NNGP (S = T ) poorly approximates the full GP as a process, in terms of model

fitting, their performances are very similar.
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(b) Full GP (joint)
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(c) NNGP m = 10
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(d) NNGP m = 20

Figure A7: Posterior median surface for data with gaps
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(a) Full GP (independent)
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(b) Full GP (joint)
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(c) NNGP m = 10
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(d) NNGP m = 20

Figure A8: Posterior variance surface for data with gaps
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A8 Simulation experiment: Slow decaying covariance

functions

We note in Section 2.1 that several valid choices of neighbor sets can be used to construct

a NNGP. However, our choice of using m-nearest neighbors to construct neighbor sets per-

formed extremely well for all the data analysis in Section 5. Since, our design of NNGP just

includes m-nearest neighbors it is natural to be skeptical of the performance of NNGP when

the data arises from a Gaussian process with very flat tailed covariance function. Such a

covariance function implies that even distant observations are significantly correlated with

the given observation and m-nearest neighbors may fail to capture all the information about

the covariance parameters.

We generate datasets of size 2500 in a unit domain using the model described in Section

5.1 for a wide range of values for the parameters σ2 and φ. The marginal variance σ2

was varied over (0.05, 0.1, 0.2, 0.5) and the ‘true effective range’ 3/φ phi was varied over

(0.1, 0.2, . . . , 1). Larger values of the ‘true effective range’ indicate higher correlation between

points at large distances. The nugget variance τ 2 was held constant at 0.1. The prior on φ was

U(3,300) or 0.01 to 1 distance units. Also both τ 2 and σ2 were given Inverse Gamma(2, 0.1)

priors in all cases.

Figure A9 gives the results for NNGP and full GP CIs. We see that for all choices of

parameters, the posterior samples from the NNGP and full GP look identical. This strongly

suggests that the NNGP model deliver inference similar to that of a full GP even for slow

decaying covariance functions and justifies the choice of the neighbor sets.
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Figure A9: Univariate synthetic data analysis: true versus posterior 50% (2.5%, 97.5%)
percentiles for the effective spatial range simulated for various values of σ2 and τ 2 = 0.1.
NNGP model fit with S = T and m = 10.
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A9 Simulation experiment: Wave covariance function

We have restricted most of our simulation experiments to Matérn (or in particular exponen-

tial) covariance functions. Matérn covariance functions like many other covariance functions

decrease monotonically with distance and hence nearest neighbors of a location have high-

est correlation with that location. We wanted to investigate the performance of NNGP

for covariance functions which do not monotonically decrease with distance. We use the

two-dimensional damped cosine covariance function given by:

C(d) = exp(−d/a) cos(φd) , a ≤ 1/φ (A2)

First, we generated the Kullback-Leibler (KL) divergence numbers for the NNGP model

with respect to the full GP model using damped cosine covariance. In addition to the default

neighbor selection scheme, we also used an alternate scheme described by Stein et al. (2004).

This scheme includes m′ = d0.75me nearest neighbors and m−m′ neighbors whose ranked

distances from the ith location equal m + bl(i−m− 1)/(m−m′)c for l = 1, 2, . . . ,m−m′.

Stein et al. (2004) suggested that this scheme choice often improves parameter estimation.

The two schemes are referred to as NNGP and NNGP (alt) respectively. We used φ = 10,

a = .099, sample sizes of 100, 200 and 500 and varied m from 5 to 50 in increments of 5.

Figure A10 plots the KL divergence numbers (in log-scale) for varying m, n and neighbor

selection schemes. We see that larger sample size implies higher KL divergence numbers

which is expected as with increasing sample size the size of the neighbor set m becomes

smaller in proportion. Also, we see that KL numbers for the alternate neighbor selection

scheme are always higher indicating that nearest neighbors perform better even for such

wave covariance functions. In general we observed that the KL numbers are quite small for

m ≥ 25 for all n and neighbor selection schemes indicating that the NNGP models closely

approximate the true damped cosine GP.
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Figure A10: NNGP KL divergence numbers (log scale) for damped cosine covariance

Next, we conducted a data analysis using the wave covariance function. We choose n =

500, m = 10, 20. The two values ofm yielded around 3.4% and 18.7% nearest neighbors which

were negatively correlated with the corresponding locations. Table A3 gives the parameter

estimates for the NNGP model. Figure A11 demonstrates how the NNGP approximates the

wave covariance function while figure A12 plots the true and fitted random effect surface.

We observe that NNGP provides an excellent approximation of the the true wave GP in

terms of model parameter estimation and kriging.

We could not fit the full GP model due to computation instability of the large wave

covariance matrix. NNGP does not involve inverting large matrices and hence we could use

it for model fitting.

True m=10 m=20
β0 1 1.03 (0.65, 1.34) 1.06 (0.70, 1.32)
β1 5 5.00 (4.95, 5.06) 5.00 (4.95, 5.06)
τ 2 0.1 0.06 (0.02, 0.12) 0.05 (0.03, 0.11)
σ2 1 1.13 (0.90, 1.57) 1.14 (0.90, 1.57)
φ 10 7.41 (1.63, 11.59) 6.31 (1.61, 10.50)
a 0.099 0.093 (0.067, 0.135) 0.09 (0.07, 0.14)

Table A3: Damped cosine GP data analysis using NNGP
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Figure A11: Wave covariance function estimates using NNGP
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(c) NNGP m = 20

Figure A12: True and estimated (posterior median) random effect surface of the damped
cosine GP
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