SUPPLEMENTARY INFORMATION

A combination of C α –H hydrogen bonds and van der Waals packing

modulates the stability of GxxxG-mediated dimers in membranes

Samantha M. Anderson[‡], Benjamin K. Mueller[‡], Evan J. Lange, Alessandro Senes^{*}

Department of Biochemistry University of Wisconsin-Madison 433 Babcock Dr. Madison WI 53706

[‡]These authors contributed equally

*Corresponding author: phone +1-608-890-2584 senes@wisc.edu

Figure S1. Structural models of the 26 final experimental constructs. The constructs are sorted left to right by CATM energy score. For each construct, a space filling representation is shown on the left to illustrate the packing, and a cartoon representation is shown on the right to illustrate the C α -H hydrogen bond network.

Figure S2. Quantification of expression of the TOXCAT construct using immunoblotting. Normalized expression. The individual construct expression range is 0.52-1.54 fold of the average expression (dashed line) with a standard deviation of the relative expression of the 26 samples of 0.22. The error bars represent the standard deviation of four biological replicates of each construct.

Figure S3. Group averages containing the TNR12 outlier. Same data as in Fig. 4a, with the inclusion the outlier point included in the >100% group. Each point corresponds to the group averaged of five bins based on CAT activity from weak (>25%, magenta) to very strong (>125%, blue), in 25% intervals. The error bars represent the standard error of the average. The dashed line is the linear regression of the data ($R^2 = 0.883$, p < 0.05).

Figure S4. Composition of the interfacial positions of the 604 predicted GAS_{right} dimers. a) For reference, overall composition of all single pass human TM domains. b) Composition of the interfacial position of the final 604 predicted GAS_{right} sequences. These sequences exclude any sequence that contained polar amino acids or proline residues at the eight interfacial positons. The observed biases are consistent with those expected for GAS_{right} motifs, with Gly almost invariably present at position C1, and small amino acids frequently present at positions N1 and C5.

Uniprot					САТМ
	Name	Wild-type Sequence	Poly-Leu Construct	TOXCAT ²	(kcal/mol) ³
P60602	ROMO1 ⁴	VKMGFVMGCAVGMAAGALFGTFSCLRIGM	RASLLL GF LL GC LL GM LL GA LILI	155%±28%	-56.3±0.1
P60602	ROMO1-G12I		RASLLL GF LL GC LL IM LL GA LILI	80%±42%	-24.3±0.1
A8MWY0	K132L	WLKVGAGVGAFTAVLLVALTCYFWKKN	RASLLLWLLLGALLGALLAVLILI	139%±19%	-31.8±0.3
A8MWY0	K132L_G12I		RASLLLWLLLGALLIALLAVLILI	22%±10%	N.M.
P55289	CAD12	FLAVGLSTGALIAILLCIVILLAIVVLYVALRRQ	RASLLL FL LL GL LL GA LL AI LILI	130%±12%	-36.9±0.5
P55289	CAD12_G12I		RASLLL FL LL GL LL IA LL AI LILI	34%±9%	N.M.
P02724	GLPA⁴	EAEIT LI IF GV MA GV IG TI LLISYGIRRL	RASLLL LI LL GV LL GV LL TI LILI	124%±46%	-31.3±0.3
P02724	GLPA_G12I		RASLLL LI LL GV LL IV LL TI LILI	32%±4%	N.M.
Q9H3T3	SEM6B	TSSVAAFVVG AV VS GF SV GW FV GL RER	RASLLLAVLLGFLLGWLLGLLILI	122%±10%	-44.5±0.3
Q9H3T3	SEM6B_G12I		RASLLL AV LL GF LL IW LL GL LILI	27%±5%	N.M.
Q9NY15	STAB1	VAAGVGA VL AA GA LL GL VA GA LYLRAR	RASLLL VL LL GA LL GL LL GA LILI	119%±18%	-40.6±0.0
Q9NY15	STAB1_G12I		RASLLL VL LL GA LL IL LL GA LILI	22%±4%	N.M.
Q9NP84	TNR12	LWAILGG AL SL TF VL GL LS GF LVWRRC	RASLLL AL LL TF LL GL LL GF LILI	119%±14%	-6.3±1.4
Q9NP84	TNR12_G12I		RASLLL AL LL TF LL IL LL GF LILI	29%±5%	N.M.
A6NKW6	F159B⁴	SLSIGALIGLGIAALVLLAFVISVCVL	RASLLL SL LL GA LL GL LL AA LILI	112%±20%	-39.9±0.0
A6NKW6	F159B_G12I		RASLLL SL LL GA LL IL LL AA LILI	32%±7%	-5.2±0.9
Q9UNU6	CP8B1	MVLWGAVLGALLVVIAGYLCLAGM	RASLLL MV LL GA LL GA LL VV LILI	95%±15%	-28.7±0.3
Q9UNU6	CP8B1_G12I		RASLLL MV LL GA LL IA LL VV LILI	27%±6%	N.M.
P10314	1A32	IAIVGIIAGL VL FG AM FA GA VV AA VRWRRK	RASLLL VL LL AM LL GA LL AA LILI	94%±16%	-25.1±0.2
P10314	1A32_G12I		RASLLL VL LL AM LL IA LL AA LILI	20%±5%	N.M.
O60313	OPA1	ATRLLKLR YL IL GS AV GG GY TA K	RASLLL YL LL GS LL GG LL TA LILI	85%±20%	-34.0±0.1
O60313	OPA1_G12I		RASLLL YL LL GS LL IG LL TA LILI	21%±3%	-15.0±0.6
P17301	ITA2	VATGVIIGSIIAGILLLLALVAILWKLG	RASLLL LV LL GV LL GS LL AG LILI	78%±8%	-32.3±0.1
P17301	ITA2_G12I		RASLLL LV LL GV LL IS LL AG LILI	22%±4%	N.M.
A6NL88	SHSA7	STAYVVCGVI SF AL AV GV GA KV AF SKA	RASLLL SF LL AV LL GA LL AF LILI	68%±13%	-23.2±0.4
A6NL88	SHSA7 G12I		RASLLL SF LL AV LL IA LL AF LILI	17%±4%	N.M.
Q9UNN8	EPCR	YTSLVLGVLVGS FI IA GV AV GI FL CT G	RASLLL FI LL GV LL GI LL CT LILI	61%±11%	-36.7±0.2
Q9UNN8	EPCR G12I		RASLLL FI LL GV LL II LL CT LILI	12%±8%	N.M.
Q96PJ5	FCRL4	DG LV AA GA TG GL LS AL LLAVALLFHCW	RASLLL LV LL GA LL GL LL AL LILI	61%±12%	-33.0±0.1
Q96PJ5	FCRL4 G12I		RASLLL LV LL GA LL IL LL AL LILI	25%±5%	N.M.
Q3V5L5	MGT5B	FRLFVLGIGFFT LC FL MT SL GG OF SA R	RASLLL LC LL MT LL GG LL SA LILI	58%±12%	-19.9±0.4
Q3V5L5	MGT5B G12I		RASILL LC LL MT LL IG LL SA LTLT	29%±6%	-10.8±0.1
P16189	1A31	IAIVGIIAGL VL FG AV FA GA VV AA VRWRRK	RASLLL VL LL AV LL GA LL AA LILI	52%±12%	-19.5±0.1
P16189	1A31 G12I		RASILLIVILLIAVILLIALLAALTILT	25%±6%	N.M.
P20333	TNR1B	TGDFALAVGLIVGVTALGLITIGVVNCVIMTOVKKK	RASLLUTGULALULGULLGVLTUT	51%+5%	-28 4+0 2
P20333	TNR1B G12I		RASILL TG LL AL LL IL LL GV LTLT	18%±8%	N.M.
O95210	STBD1	VWSALLVG GG LA GA LF VW LLRGG	RASILL LL LLGGLLGALLWLTLT	51%±9%	-28.9±0.0
095210	STBD1 G12I		RASILLILLIGGILLIALLVWILLI	21%±4%	N.M.
Q02505	MUC3A	WRALVGGLTAGAALLVILLIALGVRAV	RASLILI, T. T. LI. AL. LI. GL. LI. GALTILI	40%+10%	-22 8+1 1
Q02505	MUC3A G12I		RASLILI, T. T. LI. AL. LI. T. LI. GALTILI	16%+5%	N M
P10314	1A32-2	TATVG TT AG I.V I.F GA MFAGAVVAAVRWRRK	RASLILTTILLIULIGALLEALTIT	39%+4%	-8 2+0 4
P10314	1A32-2 G12I		RASLILTTLLIVILTALIFALTLT	4%+9%	N M
096136	COX14-2	VKTESTSMMIITUVCCVICSVRVVHVEOW		39%+4%	-7 9+0 1
096136	COX14-2 G12L		PASILIMMITYIIGILISCITT	28%+2%	N M
P16180	1431-2	TATUCTIACIUI ECAVEACAVVAAVDWDDK		36%+10%	-10.7+0.0
P16180	1431-2 612	IAIVGILAGUVEFGAVFAGAVVAAVRWRRR	PAGELITILIUI LUALAGLILI	10%+13%	N M
D20322	TNID1R 2		PASELETTELY LETALEAGELET	35%+100/	11 2±0 1
P20333		IGDEALAVGLIVGV TA LG LL II GV VN CV IMTQVKKK	RASLLTALLLLLGVLLCVLLL	15%±20%	-11.3±0.1
007800	MCI 1		RASELLTALLELLELVELCVELLE	250/ 100/	11.11.
007800		EGGIKNVLL AF AG VA GV GA GL AY LIR	KASLLLAFLLVALLGALLAYLILI	30%±8%	-22.0±0.1
		· · · · · · · · · · · · · · · · · · ·	KASLLLAFLLVALLIALLAYLILI	19%±4%	IN.IVI.
P17342	ANPRO	LEESAVTGIVVGALLGAGLLMAFYFFRKK	KASLLL L LLSALLGILLGALILI	34%±4%	-19.4±0.1
P17342	ANPRG-G12I		KASLLL L LL SA LL II LL GA LILI	24%±1%	IN.IVI.

Table S1. Final set of TOXCAT constructs and their C1 mutants

Uniprot Accession
Relative CAT activity compared to GpA (average ± standard deviation)
CATM energy of the poly-Leu construct (average ± standard deviation). N.M. = no model predicted.
Constructs with C1 values >30% but at least a 75% reduction

Uniprot AC ¹	Name	Wild-type Sequence	Poly-Leu Construct	TOXCAT ²	CATM (kcal/mol) ³
Q15116	PDCD1	TL VV GV VG GL LG SL VLLVWVLAVICSR	RASLLL TL LL GV LL GL LL SL LILI	215%±5%	-35.6±0.6
Q15116	PDCD1_G12I		RASLLL TL LL GV LL IL LL SL LILI	44%±10%	N.M.
Q96LC7	SIG10	FSNGAFLGIGITALLFLCLALIIMKIL	RASLLL LF LL GA LL GI LL TA LILI	214%±10%	-38.9±0.9
Q96LC7	SIG10_G12I		RASLLL LF LL GA LL II LL TA LILI	36%±2%	N.M.
Q15904	VAS1	DCAS FF SA GI WM GL LT SL FMLFIFTYG	RASLLL FF LL GI LL GI LL SL LILI	165%±19%	-44.5±0.8
Q15904	VAS1-G12I		RASLLL FF LL GI LL II LL SL LILI	20%±9%	N.M.
Q96D42	HAVCR1	TK gi ya gv ci sv lvllallgviiakky	RASLLL LL LL GI LL GV LL SV LILI	160%±5%	-37.5±0.9
Q96D42	HAVCR1_G12I		RASLLL ll LL GI LL IV LL SV LILI	20%±5%	N.M.
Q6P7N7	TMM81	VAS AL GI GI AI GV VG GV LVRIVLCALR	RASLLL AL LL GI LL GV LL GV LL	145%±6%	-44.8±0.7
Q6P7N7	TMM8I_G12I		RASLLL AL LL GI LL IV LL GV LILI	29%±2%	N.M.
Q8NCU8	YB039	ERTLQL SV LV AF AS GV LL GW QAN	RASLLL SV LL AF LL GV LL GW LILI	135%±45%	-23.2±0.5
Q8NCU8	YB039_G12I		RASLLL SV LL AF LL IV LL GW LILI	-2%±1%	N.M.
Q9Y6N1	COX11	KTTL TY VA AV AV GM LG AS YAAVALY	RASLLL TY LL AV LL GM LL AS LILI	128%±9%	-33.3±0.3
Q9Y6N1	COX11_G12I		RASLLL TY LL AV LL IM LL AS LILI	25%±5%	N.M.
P13591	NCAM1	TS GL ST GA IV GI LIVIFVLLLVVVDIT	RASLLL LL LL GL LL GA LL GI LILI	127%±1%	-32.8±0.6
P13591	NCAM1-G12I		RASLLL LL LL GL LL IA LL GI LILI	34%±2%	N.M.
O75354	ENTP6	SLR VA KV AY AL GL CV GV FIYVAYIKWH	RASLLL VA LL AY LL GL LL GV LILI	106%±7%	-25.3±0.1
075354	ENTP6-G12I		RASLLL VA LL AY LL IL LL GV LILI	73%±2%	N.M.
Q9NVM1	EVA1B	ESFGL YF VL GV CF GL LL TL CLLVISIS	RASLLL YF LL GV LL GL LL TL LILI	105%±10%	-38.0±0.5
Q9NVM1	EVA1B_G12I		RASLLL YF LL GV LL IL LL TL LILI	26%±6%	N.M.
Q86X52	CHSS1	GRRAWL SV LL GL VL GF VL AS RLVLARA	RASLLL SV LL GL LL GF LL AS LILI	93%±7%	-35.8±0.1
Q86X52	CHSS1-G12I		RASLLL SV LL GL LL IF LL AS LILI	17%±5%	N.M.
Q9UKU0	ACSL6	FRSL SA TT LV SM GA LA AI LAYWFTHRA	RASLLL SA LL LV LL GA LL AI LILI	59%±17%	-13.3±0.1
Q9UKU0	ACSL6-G12I		RASLLL SA LL LV LL IA LL AI LILI	24%±4%	N.M.
Q93038	TNR25	WRQMFWVQVLLAGLVVALLLGATLTYT	RASLLLFWLLVLLLGLLLALLILI	56%±9%	-17.5±0.3
Q93038	TNR25_G12I		RASLLLFWLLVLLLILLAL	56%±8%	N.M.
P05026	AT1B1	WFKILLFY VI FY GC LA GI FI GT IQVMLLTISEFK	RASLLL VI LL GC LL GI LL GT LILI	39%±3%	-33.7±0.3
P05026	AT1B1_G12I		RASLLL VI LL GC LL II LL GT LILI	24%±8%	N.M.
Q8N6P7	I22R1	TWTYSFSGAFLFSMGFLVAVLCYLSYR	RASLLL LT LL YS LL GA LL FS LILI	31%±9%	-21.9±0.1
Q8N6P7	I22R1_G12I		RASLLL LT LL YS LL IA LL FS LILI	39%±11%	N.M.

Table S2. Constructs removed because of growth defect on maltose media

Uniprot Accession
Relative CAT activity compared to GpA (average ± standard deviation)
CATM energy of the poly-Leu construct (average ± standard deviation). N.M. = no model predicted.

Table S3. Constructs removed because the TOXCAT signal of the WT sequence was <30%

Uniprot					CATM
AC1	Name	Wild-type Sequence	Poly-Leu Construct	TOXCAT ²	(kcal/mol) ³
Q6UXN7	TO201	LLR LL AA AA AC GA FA FL GYCIYLNRK	RASLLL LL LL AA LL GA LL FL LILI	28%±4%	-26.6±1.3
Q6UXN7	TO20L_G12I		RASLLL ll ll aa ll ia ll fl lili	29%±2%	N.M.
Q8TEM1	PO210	SYQVMF FT LF AL LA GT AV MI IAYHTVC	RASLLL FT LL AL LL GT LL MI LILI	28%±5%	-25.7±0.2
Q8TEM1	PO210_G12I		RASLLL FT LL AL LL IT LL MI LILI	40%±11%	N.M.
Q9BRQ8	AIFM2	QVSVESGALHV VI VG GG FG GI AA AS QL	RASLLL VI LL GG LL GI LL AS LILI	26%±8%	-29.0±0.1
Q9BRQ8	AIFM2_G12I		RASLLL VI LL GG LL II LL AS LILI	22%±10%	N.M.
Q8IVU1	IGDCC3	TT GI VI GI HI GV TCIIFCVLFLLFGQR	RASLLL LL LL GI LL GI LL GV LILI	25%±6%	-41.1±0.5
Q8IVU1	IGDCC3_G12I		RASLLL LL LL GI LL II LL GV LILI	22%±4%	N.M.
O15197	EPHB6	RL SL VI GS IL GA LAFLLLAAITVLAVV	RASLLL LL LL SL LL GS LL GA LILI	25%±3%	-21.6±0.2
O15197	EPHB6_G12I		RASLLL LL LL SL LL IS LL GA LILI	18%±5%	N.M.
Q13586	STIM1	LKDFMLV VS IV IG VG GC WF AY IQNRYS	RASLLL VS LL IG LL GC LL AY LILI	24%±6%	-20.4±0.4
Q13586	STIM1_G12I		RASLLL VS LL IG LL IC LL AY LILI	27%±8%	-20.2±1.9
B6SEH8	ERVV1	KRA LG LI LA GM GA AI GM IAAWGGFTYH	RASLLL LG LL LA LL GA LL GM LILI	24%±8%	-19.5±0.2
B6SEH8	ERVV1_G12I		RASLLL LG LL LA LL IA LL GM LILI	22%±5%	-9.2±0.4
Q8N3T1	GLT15	HRACRLQ FL LL L ML GC VL MM VAMLHAAH	RASLLL FL LL LL LL GC LL MM LILI	19%±1%	-18.1±0.4
Q8N3T1	GLT15_G12I		RASLLL FL LL LL LL IC LL MM LILI	37%±7%	N.M.
P05067	A4	SNK GA II GL MV GG VVIATVIVITLVMLKKK	RASLLL LS LL GA LL GL LL GG LILI	18%±4%	-35.2±0.1
P05067	A4_G12I		RASLLL LS LL GA LL IL LL GG LILI	16%±3%	N.M.
Q96I36	COX14	YKTFST SM ML LT VY GG YL CS VRVYHYFQW	RASLLL SM LL LT LL GG LL CS LILI	14%±2%	-21.1±0.1
Q96I36	COX14_G12I		RASLLL SM LL LT LL IG LL CS LILI	27%±7%	-5.1±0.7

¹Uniprot Accession ²Relative CAT activity, compared to GpA (average ± standard deviation) ³CATM energy of the poly-Leu construct (average ± standard deviation). N.M. = no model predicted.

Uniprot AC ¹	Name	Wild-type Sequence	Poly-Leu Construct	TOXCAT ²	CATM (kcal/mol) ³
P43489	TNR4	GRAVAA IL GL GL VL GL LG AL AILLALY	RASLLL IL LL GL LL GL LL AL LILI	102%±11%	-39.7±0.1
P43489	TNR4_G12I		RASLLL IL LL GL LL IL LL AL LILI	109%±13%	N.M.
Q9UPZ6	THS7A	K TW VY GV AA GA FVLLIFIVSMIYLACK	RASLLL LL LL TW LL GV LL GA LILI	87%±37%	-3.2±0.1
Q9UPZ6	THS7A_G12I		RASLLL LL LL TW LL IV LL GA LILI	76%±9%	N.M.
Q7L8C5	STY13	SVA VI AL GA TL GT AT SI LALCGVTCLCRH	RASLLL VI LL GA LL GT LL SI LILI	79%±5%	-31.0±0.1
Q7L8C5	STY13_G12I		RASLLL VI LL GA LL IT LL SI LILI	45%±6%	N.M.
Q08ET2	SIG 14	LVL TL IR GA LM GA GF LL TYGLTWIYYTRC	RASLLL TL LL GA LL GA LL LL LILI	77%±7%	-26.3±0.1
Q08ET2	SIG14_G12I		RASLLL TL LL GA LL IA LL LL LILI	39%±14%	N.M.
Q8TDF5	NETO1	S GT VI GV TS CI VIILIIISVIVQIKQA	RASLLL LL LL GT LL GV LL CI LILI	72%±5%	-32.9±0.3
Q8TDF5	NETO1_G12I		RASLLL LL LL GT LL IV LL CI LILI	38%±%	N.M.
Q99795	GPA33	MNVALYVGIAVGVVAALIIIGIIIYC	RASLLL LM LL AL LL GI LL GV LILI	68%±17%	-23.3±0.0
Q99795	GPA33_G12I		RASLLL IM LL AL LL II LL GV LILI	38%±7%	N.M.
Q9BY71	LRRC3	TTD VA ML VT MF GW FA MV IAYVVYYVRH	RASLLL VA LL VT LL GW LL MV LILI	68%±10%	-8.3±0.4
Q9BY71	LRRC3_G12I		RASLLL VA LL VT LL IW LL MV LILI	57%±12%	N.M.
Q30201	HFE	TL VI GV IS GI AV FV VILFIGILFIILRKRQ	RASLLL TL LL GV LL GI LL FV LILI	64%±9%	-23.3±0.2
Q30201	HFE-G12I		RASLLL TL LL GV LL II LL FV LILI	53%±5%	N.M.
Q5SSG8	MUC21	AWEIFLITLVSV VA AV GL FA GL FF CV R	RASLLL VA LL GL LL GL LL CV LILI	60%±6%	-32.3±0.4
Q5SSG8	MUC21_G12I		RASLLL VA LL GL LL IL LL CV LILI	43%±%	N.M.
Q9P2S2	NRXN2	GMVVGIVAAAALCILILLYAM	RASLLL LS LL GM LL GI LL AA LILI	54%±2%	-33.7±0.2
Q9P2S2	NRXN2_G12I		RASLLL LS LL GM LL II LL AA LILI	39%±8%	N.M.
Q2M385	MPEG1	SG GA AA GV TV GV TTILAVVITLAIYGT	RASLLL LL LL GA LL GV LL GV LILI	34%±6%	-33.9±0.9
Q2M385	MPEG1_G12I		RASLLL LL LL GA LL IV LL GV LILI	33%±1%	N.M.
Q8N967	LRTM2	MGT VI IA GV VC GV VC IM MVVAAAYGCI	RASLLL VI LL GV LL GV LL IM LILI	32%±5%	-17.1±0.3
Q8N967	LRTM2_G12I		RASLLL VI LL GV LL IV LL IM LILI	31%±13%	N.M.
Q9H3N1	TMX1	WGSYTV FA LA TL FS GL LL GL CMIFVADCL	RASLLL FA LL TL LL GL LL GL LILI	31%±3%	-9.0±0.4
Q9H3N1	TMX1_G12I		RASLLL FA LL TL LL IL LL GL LILI	32%±5%	N.M.
Q9H6B4	CLMP	MVAGAVTGIVAGALLIFLLVWLLIRRK	RASLLL M LL GA LL GI LL GA LILI	30%±7%	-33.8±0.1
Q9H6B4	CLMP_G12I		RASLLL IM LL GA LL II LL GA LILI	33%±4%	N.M.

Table S4. Constructs discarded because of TOXCAT signal >30% for the C1_{Gly→lle} variant

¹Uniprot Accession ²Relative CAT activity, compared to GpA (average ± standard deviation) ³CATM energy of the poly-Leu construct (average ± standard deviation). N.M. = no model predicted.

Table S5. Progression of number of constructs from the computational analysis to the final set of experimental constructs

Human Single Pass Proteins in Uniprot	2,383
Wild-type with energy score below 0 kcal/mol	1,141
Poly-Leu sequences with energy score below 0 kcal/mol	1,020
Subset of sequences with non-polar interface	668
Poly-Leu sequences with energy score below -5 kcal/mol	604
Sequences selected for experimental analysis	65
Sequences that passed the maltose growth test (-15)	50
Sequences with TOXCAT >30% (-10)	40
Sequences with C1 mutation <30% and final set (-14)	26

Table S6. Uniprot Accession and description of the 26 final constructs applied for the
analysis

Uniprot		
Accession	Uniprot Entry Name	Protein Name
A6NKW6	F159B_HUMAN	Membrane protein FAM159B
A6NL88	SHSA7_HUMAN	Protein shisa-7
A8MWY0	K132L_HUMAN	UPF0577 protein KIAA1324-like
O60313	OPA1_HUMAN	Dynamin-like 120 kDa protein, mitochondrial
O95210	STBD1_HUMAN	Starch-binding domain-containing protein 1
P02724	GLPA_HUMAN	Glycophorin-A
P10314	1A32_HUMAN	HLA class I histocompatibility antigen, A-32 alpha chain
P16189	1A31_HUMAN	HLA class I histocompatibility antigen, A-31 alpha chain
P17301	ITA2_HUMAN	Integrin alpha-2
P17342	ANPRC_HUMAN	Atrial natriuretic peptide receptor 3
P20333	TNR1B_HUMAN	Tumor necrosis factor receptor superfamily member 1B
P55289	CAD12_HUMAN	Cadherin-12
P60602	ROMO1_HUMAN	Reactive oxygen species modulator 1
Q02505	MUC3A_HUMAN	Mucin-3A
Q07820	MCL1_HUMAN	Induced myeloid leukemia cell differentiation protein McI-1
Q3V5L5	MGT5B_HUMAN	Alpha-1,6-mannosylglycoprotein 6-beta-N-acetylglucosaminyltransferase B
Q96I36	COX14_HUMAN	Cytochrome c oxidase assembly protein COX14
Q96PJ5	FCRL4_HUMAN	Fc receptor-like protein 4
Q9H3T3	SEM6B_HUMAN	Semaphorin-6B
Q9NP84	TNR12_HUMAN	Tumor necrosis factor receptor superfamily member 12A
Q9NY15	STAB1_HUMAN	Stabilin-1
Q9UNN8	EPCR_HUMAN	Endothelial protein C receptor
Q9UNU6	CP8B1_HUMAN	7-alpha-hydroxycholest-4-en-3-one 12-alpha-hydroxylase

CATM Score Range ¹	-5 to -15	-15 to-25	-25 to -35	-35 to -45	-45 and below
Number of models	210	254	89	45	6
CATM energy score (kcal/mol)	-10.1±3.0	-19.5±2.7	-29.4±3.1	-39.0±2.9	-47.6±4.0
Van der Waals (kcal/mol)	-24.2±4.2	-29.9±3.7	-35.2±3.2	-39.7±3.7	-39.9±5.3
Cα-H hydrogen bonding (kcal/mol)	-3.4±4.9	-4.9±3.9	-7.6±3.2	-10.0±2.9	-13.2±0.8
Solvation (kcal/mol)	18.2±2.1	16.1±2.5	14.1±2.1	11.1±2.8	5.5±1.1
Crossing angle (°)	-52.3±8.1	-49.2±8.1	-47.3±4.4	-40.4±5.5	-31.6±2.1
Number of Ca-H bonds	4.7±1.0	4.3±0.9	5.6±1.3	7.3±1.1	8.0±0.0
Interface surface area (Å ²)	4730±910	4790±910	4730±710	4400±580	4070±490
Inter-helical distance (Å)	7.1±0.2	7.0±0.2	6.6±0.3	6.4±0.1	6.4±0.1
Van der Waals/Interface surface area (kcal/(mol Ų))	-0.0051±0.0013	-0.0063±0.0014	-0.0076±0.0013	-0.0091±0.0010	-0.0098±0.0006
Sequences with GxxxG	17%	28%	75%	100%	100%
Sequences with Sm-xxx-Sm	93%	96%	100%	100%	100%
Sequences with Gly at N1	2%	13%	67%	100%	100%
Sequences with Gly at C1	99%	97%	100%	98%	100%
Sequences with Gly at C5	17%	14%	16%	36%	50%

Table S7. Energetic and geometric properties of groups of CATM scores.

¹All values are reported as averages ± standard deviation. ²Sm-xxx-Sm are defined by any combinations of Gly, Ala, Ser and Cys at the first and last position.