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ADDITIONAL INFORMATION: CONE PROPAGATION VELOCITY CALCULA-

TIONS

We attribute fluctuations in instantaneous cone velocity values to thermal effects. In order

to employ conditions as close as possible to the experiments, we set the initial temperature

of the system at T = 300 K. Because of this, the z position of every atom fluctuates during

MD simulations. In the criteria employed, an atom is considered inside the deformation cone

when its position is lower than a threshold (z < 12 Å). If an atom is fluctuating down, its

instantaneous position might be lower than the threshold, although its equilibrium position

is not. The reverse might occur if it is fluctuating upwards. There is thus some uncertainty

in our criteria. Note also that relative fluctuations decrease as impact velocities increase,

which can be correlated to an increased ratio between kinetic and thermal energies (compare

figures S1 and S2). Our finding that deformation cones propagate at constant velocities is

corroborated by Haque et al. [1], that set initial temperatures to T = 1 K to avoid such

effects.

DERIVATION OF THE EQUATIONS

According to Pugno [2, 3], considering a collision generating large-sized fragments, the

absorbed energy (E) is proportional to the volume dislocated during the collision process

2



 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0  5  10  15  20  25

C
o

n
e

 v
e

lo
c
it
y
 (

k
m

/s
)

Elapsed time (ps)

FIG. S1. Instantaneous cone velocity values, for v = 600 m/s and θ = 0◦. The linear fit (red

line) suggests that, considering error bar fluctuations, the generated conical shape propagates at

constant velocity. For this impact velocity, the cone acceleration is a = −0.0066 ± 0.0092 km/s2

and the cone velocity is v = 1.99 ± 0.15 km/s. The points considered in the fit are to the right of

the yellow line (impact time).

(V ) and the proportionality constant is close to the strength of the material (σ), so we have

E = σV. (1)

From this equation it is possible to derive the strength of an N-layered material as

σN =
E

V
=
E

m
ρ, (2)

where ρ is the density of the target material and m is the mass of the affected region, which

in our case can be calculated as

m = ρAfNt, (3)

where Af , N and t are respectively the damaged zone area, number of layers and thickness

of the single layer. For the thickness we used the well-known graphene thickness t = 0.34

nm. So we have

σN =
E

ρAfNt
ρ. (4)
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FIG. S2. Instantaneous cone velocity values, for v = 1100 m/s and θ = 0◦. The linear fit (red

line) suggests that, considering error bar fluctuations, the generated conical shape propagates at

constant velocity. For this impact velocity, the cone acceleration is a = 0.0072± 0.0079 km/s2 and

the cone velocity is v = 2.64 ± 0.10 km/s. The points considered in the fit are to the right of the

yellow line (impact time).

Introducing the η parameter

η =
Ap

Af

, (5)

where Ap = πr2 is the particle cross section area with r being the particle radius. So we end

up with the equation presented in the paper

σN = dNρη (6)

where dN

dN =
E

ρApNt
(7)

is the well known specific penetration energy. Equation 7 allow us to relate the absorbed

energy during collision with the strength of the target material, and to directly compare our

dN results with the literature.
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To do the scale analysis we followed the procedure presented in Pugno [4] relating the

strength of the material with its structural size, here number of layers N

σN = σ∞

√
1 +

Nc

N +N
′
c

, (8)

where σ∞ is the strength of the bulk material, while Nc and N
′
c are critical values to be

determined.

So combining equations 6 and 8 we obtain the equation presented in the paper

dN = d∞

√
1 +

Nc

N +N
′
c

, (9)

where d∞ = σ∞/ηρ. From this equation it is possible to do a scale analysis considering the

specific penetration energy instead of the strength of the material.

THE EFFECT OF PRE-TENSION IN GRAPHENE LAYERS DURING BALLISTIC

PENETRATION

In this manuscript, we suggested that depositing graphene nanocoatings on low-density

substrates (such as graphene sponges) would maximize specific penetration energy values.

It should be noted, however, that in such a system graphene should not be pre-tensioned at

the onset of impact. If that is the case, the estimated values of specific penetration energy

could differ from those predicted here. Xia et al. showed that the shape of the graphene

membrane used in a ballistic penetration test influences stress distribution, which in turn

influences the specific penetration energy (SPE) [5]. As the absence of pre-tension is very

likely to lead to different stress distribution at impact, it might also lead to modified values

of specific penetration energy. Note, however, that the variations found by Xia et al. never

exceeded 20%. We therefore expect our main conclusions to remain valid.
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AZIMUTH ANGLE DEPENDENCE

FIG. S3. Results of ballistic tests where we fixed the impact velocity (v = 1100 m/s), the polar

angle (θ = 30◦), and varied the azimuth angle (φ). The tested φ values were (a) 15◦, (b) 30◦, (c)

45◦, and (d) 60◦. Note that fracture patterns were more localized for φ = 30◦ and φ = 45◦.
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LINEAR SCALE VERSION OF FIGURE 4
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FIG. S4. Alternative version of Figure 4, in which the same results are presented in a linear plot.
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