Supplemental Information

Thymidine catabolism promotes NADPH oxidase-derived reactive oxygen species (ROS) signalling in KB and yumoto cells

Sho Tabata¹, Masatatsu Yamamoto², Hisatsugu Goto³, Akiyoshi Hirayama¹, Maki Ohishi¹, Takuya Kuramoto³, Atsushi Mitsuhashi³, Ryuji Ikeda⁴, Misako Haraguchi⁵, Kohichi Kawahara², Yoshinari Shinsato², Kentaro Minami², Atsuro Saijo³, Yuko Toyoda³, Masaki Hanibuchi³, Yasuhiko Nishioka³, Saburo Sone³, Hiroyasu Esumi⁶, Masaru Tomita¹, Tomoyoshi Soga¹, Tatsuhiko Furukawa², Shin-ichi Akiyama⁷

¹Institute for Advanced Biosciences, Keio University, 246-2 Mizukami, Kakuganji, Tsuruoka, Yamagata 997-0052, Japan.

²Department of Molecular Oncology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.

³Department of Respiratory Medicine and Rheumatology, Institute of Biomedical Sciences, Tokushima University Graduate School, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan.

⁴Department of Pharmacy, University of Miyazaki Hospital, 5200 Kihara, Kiyotake-cho, Miyazaki, 889-1692, Japan.

⁵Department of Biochemistry and Molecular Biology, Graduate School Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan.

⁶Clinical Research, Research Institute for Biomedical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba 278-0022, Japan.

⁷Clinical Research Center, National Kyushu Cancer Center, 3-1-1 Notame Minami-ku, Fukuoka 811-1395, Japan.

SUPPLEMENTAL FIGURES AND TABLE

Figure S1. Knock down of *NOX2* and *p22phox* in KB/CV and KB/TP cells. KB/CV and KB/TP cells were transfected with *NOX2* siRNA or *p22phox* siRNA. mRNA levels of NOX2 and p22phox were determined by real time PCR.

Figure S2. Knockdown of DUOX1 in Yumoto cells. (a) Expression of *NOX* isoforms in Yumoto. Expression levels of *NOX* isoforms in Yumoto cells were determined by real-time PCR. (b) Effect of TP silencing on *DUOX1* and *IL-8* expression in Yumoto cells. (c) Knockdown of DUOX1 in Yumoto cells. (d) Effect of DUOX1 downregulation on the generation of ROS in Yumoto cells. Yumoto cells transfected with *DUOX1* siRNA were treated with 10 μ M H₂DCF-DA for 1h and the ROS levels were determined by using FACScan. (d) Effect of DUOX1 knockdown on *IL-8* expression in Yumoto cells. (f) Effect of DHEA on HO-1 expression in Yumoto cells. Data are presented as mean \pm SD. **P* < 0.01.

Figure S3. NADPH and GSH levels in KB/CV and KB/TP cells. Effect of TP on levels of NADPH (left) and GSH (right) in KB cells. NADPH levels in KB/CV and KB/TP cells were measured using a NADPH assay kit. GSH levels in KB/CV and KB/TP cells were determined using a GSH assay kit. Data are presented as mean \pm SD. *P < 0.01, **P < 0.05.

Table S1. Primer sequences for real-time PCR assays.

Gene	Forward Primer $(5' \rightarrow 3')$	Reverse Primer (5'→3')
TP	GCTGGAGTCTATTCCTGGATTC	ACTGAGAATGGAGGCTGTGATG
IL-8	CCTGATTTCTGCAGCTCTGTGT	GGTGGAAAGGTTTGGAGTATGTCT
HO-1	CGGGCCAGCAACAAAGTGCAAG	GTGTAAGGACCCATCGGAGAAG
NOX1	ACAAATTCCAGTGTGCAGACCA	AGACTGGAATATCGGTGACAGCA
NOX2	CTGCGATTCACACCATTGCAC	CGTGATGACAACTCCAGTGATG
NOX3	ATGCAACCATCCACATCGTG	CGCCTGCTATTGTCCTTAGC
NOX4	CAGAAGGTTCCAAGCAGGAG	AAGTTGAGGGCATTCACCAG
NOX5	CAGCTCTGCATGTGAAAGAG	CATCGATGTCATACACCTGG
DUOX1	CGACATTGAGACTGAGTTGA	CTGGAATGACGTTACCTTCT
DUOX2	AACCTAAGCAGCTCACAACT	CAGAGAGCAATGATGGTGAT
p22phox	TCCTGCATCTCCTGCTCTC	CACAGCCGCCAGTAGGTAG
GAPDH	GTCAACGGATTTGGTCGTAT	TGGTGATGGGATTTCCATTG

• Figure S2

Figure S4. Uncropped images used in Figures 1E and S2.