## CK1ɛ and p120-catenin control Ror2 function in non-canonical Wnt signaling

Josué Curto, Beatriz Del Valle-Pérez, Aida Villarroel, Guillem Fuertes, Meritxell Vinyoles, Raúl Peña, Antonio García de Herreros and Mireia Duñach



Fig. S1. A Wnt5a antibody prevents the stimulation of JNK2 and ERK2 Serine kinases and the association of Fz with Dvl-2 induced by Wnt5a. Control or Wnt5a-condtioned medium were incubated with a Wnt5a mab or an irrelevant IgG (both 2  $\mu$ g.mL<sup>-1</sup>) for 1 h. HEK293T cells were treated for 10 min with the indicated conditional medium. Extracts were analyzed by WB with the indicated antibodies (A). JNK2 and ERK2 phosphorylation were determined with anti-phospho antibodies against JNK and anti ERK (see Fig. 1). (B) Fz2 was immunoprecipitated and associated Dvl2 was detected by WB.



**Fig. S2. The tyrosine kinase inhibitor Herbimycin affects Wnt5a signaling.** When indicated, HEK293T cells were pretreated for 1 hour with Herbimycin (Hb, 20 ng.mL<sup>-1</sup>) and stimulated with control or Wnt5a-conditioned medium for additional 5 min. (**A**) Ror2-HA was immunoprecipitated from HEK293T cell extracts overexpressing Ror2-HA and immunocomplexes were analyzed by WB. (**B**, **C**) HEK293T cells were pretreated with inhibitors; then, cells were stimulated with control or Wnt5a-conditioned medium for one additional hour supplemented with the inhibitor when indicated. Fz2 was immunoprecipitated from cell extracts and associated Dv12 detected by WB (B), or GST–PAK pull-down assays were performed and active Rac1 analyzed by WB (C).



**Fig. S3. CK1 cRISPR cells contain unaltered levels of CK1 .** Levels of the indicated proteins were determined by WB in total extracts from control or CK1 cRISPR cells.









## Fig. S5. CK1ɛ deficiency prevents Wnt5a-induced JNK2 phosphorylation and Rac1

activation. HEK293T cells were depleted of CK1ɛ using specific shRNA or a scrambled shRNA as a control. (A) Cells were treated with control or Wnt5a-conditioned medium for the indicated times and total levels of phosphorylated proteins were determined by WB with specific antibodies. The arrow indicates phosphorylated Dvl2. (B) Cells were treated for 1 h with control or Wn5a-conditioned medium. GST–PAK pull-down assays were performed and active Rac1 was detected by WB.



**Fig. S6. N-cadherin is not required for Wnt5a signaling.** (**A**) HEK293T cells were depleted of N-cadherin using a specific shRNA or a scrambled shRNA as a control. Cells were treated with control or Wnt5a-conditioned medium for 1h; Fz2 was immunoprecipitated from cell extracts and associated proteins were determined by WB. (**B**) N-cadherin was immunoprecipitated from extracts of cells treated with Wnt5a for 1 h when indicated. Immunocomplexes were analyzed by WB.



**Fig. S7. Herbimycin decreases Wnt5a-induced p120-catenin phosphorylation and interaction with Ror2**. When indicated HEK293T cells were pretreated for 1 h with Hb (20 ng.mL<sup>-1</sup>) and then stimulated with control or Wnt5a-conditioned medium for additional 5 min. Cells were lysed and p120-catenin was immunoprecipitated. Tyrosine phosphorylated p120-catenin and associated Ror2 were analyzed by WB.



**Fig. S8. Ror2 and p120-catenin interact**. (**A**) Diagram of p120-catenin isoform 1 and the cytosolic region of Ror2 (cyto-Ror2) illustrating the different protein domains. ST-R and P-R indicate the Ser-Thr and Pro-rich domains. (**B**) GST–p120-catenin fusion proteins (7 pmol) were incubated with cells extracts overexpressing Ror2-HA and treated with Wnt5a-conditioned medium for 5 min. A pull-down assay was performed and bound Ror2-HA was analyzed by WB with anti-HA. (**C**) Full-length GST–p120-catenin (7 pmol) was in vitro phosphorylated with recombinant Src or CK1 kinases. A pull-down assay was performed by incubating the fusion proteins with cell extracts overexpressing Ror2-HA. Protein complexes were affinity purified and analyzed by WB. (**D**) Different GST–cytoRor2 fusion proteins (0.5 pmol) were incubated with recombinant p120-catenin (2 pmol). Protein complexes were affinity purified and analyzed by WB with anti-p120-catenin. (**E**) GST–cytoRor2 (amino acids 426-944) was in vitro phosphorylated with recombinant Src kinase for 2 h. A binding assay was performed by incubating 2 pmol of GST-cytoRor2 with 1 pmol of recombinant p120-catenin.



Fig. S9. Herbimycin promotes Ror2 internalization. HEK293T cells pretreated with monodansylcadaverine (MDC, 50  $\mu$ M) for 30 min in (A) or Hb (20 ng.mL<sup>-1</sup>) for 1 hour in (B). Then, cells were stimulated with control or Wnt5a-conditioned medium with the corresponding inhibitor for additional 20 min. Surface proteins were biotinylated and a pull-down assay was performed with NeutrAvidin Agarose. Biotinylated Ror2 and phosphorylated JNK were analyzed by WB with specific antibodies.



**Fig. S10. CK1ɛ binds to the C-terminal domain of Ror2**. Different GST–cytoRor2 fragments (0.5 pmol) were incubated with recombinant CK1ɛ (2 pmol). Protein complexes were affinity purified and analyzed by WB with anti-CK1ɛ. The bar under the diagram indicates the p120-catenin binding element in Ror2 as determined in Fig. S8.



## Fig. S11. CK1ɛ depletion decreases Ror2 protein stability but not Ror2 RNA levels. (A)

Cell extracts from control or CRISPR CK1 $\varepsilon$ -depleted HEK293T cells were analyzed by WB. (**B**) HEK293T cells were treated with Hb (20 ng.mL<sup>-1</sup>) or IC261 (15  $\mu$ M) for 1 hour. Total Ror2 protein levels were analyzed by WB with an anti-Ror2 antibody. (**C**) Total Ror2 protein levels were determined by WB in control or CK1 $\varepsilon$  CRISPR cells overexpressing Ror2-HA or GST for 48 hours. (**D**) RNA was isolated from control and CK1 $\varepsilon$  CRISPR cells. Ror2 RNA levels were measured by semi-quantitative RT-PCR. (**E**) Control or CK1 $\varepsilon$  HEK293T CRISPR were treated with MG132 (MG, 10  $\mu$ M) or Chloroquine (Chlq, 150  $\mu$ M) for 6 hours; cells extracts were prepared and Ror2 or Actin were analyzed by WB.



Fig. S12. Siah2 shRNA prevents  $\beta$ -catenin down-regulation caused by Wnt5a. HEK293T cells were depleted of Siah2 using a specific shRNA or scrambled. After 48 hours, cells were stimulated with control or Wnt5a-conditioned medium overnight, and  $\beta$ -catenin protein levels were analyzed by WB from total cell extracts.



## **Fig. S13. Ror2, p120-catenin and CK1E are required for Wnt5a-induced asymmetrical distribution of cortical actin in IEC-18 cells**. IEC-18 cells were transfected with the indicated shRNAs and a GFP-expression plasmid; after 24 hours cells were plated on Matrigel for 2h with control or Wnt5a-conditioned medium, fixed and stained for F-Actin and nucleus with Dapi. A GFP-positive cell showing a representative actin staining in the indicated conditions is shown.

| Antibody                                | Supplier                   | Reference   | Assay          |
|-----------------------------------------|----------------------------|-------------|----------------|
| Axin                                    | Santa Cruz Biotechnologies | sc-14029    | WB             |
| β-Actin                                 | Sigma                      | A5441       | WB             |
| β-catenin                               | BD Biosciences             | 610153      | WB             |
| CK1γ                                    | Abcam                      | ab64829     | WB/IP          |
| CK1e                                    | BD Biosciences             | 610445      | WB/IP          |
| СК18                                    | Abcam                      | ab48031     | WB             |
| Dvl2                                    | Cell Signaling             | 3216        | WB             |
| EEA1                                    | BD Biosciences             | 610457      | WB             |
| ERK1/2                                  | Cell Signaling             | 9107        | WB             |
| Fz (total)                              | Santa Cruz Biotechnologies | sc-9169     | WB/IP          |
| Fz2                                     | Abcam                      | ab52565     | WB/IP          |
| GST                                     | GE Healthcare              | 27457701    | WB             |
| НА                                      | Roche                      | 11867423001 | WB/IP          |
| JNK2                                    | Abcam                      | ab178953    | WB             |
| LRP6                                    | Santa Cruz Biotechnologies | sc-15399    | WB             |
| Na <sup>+</sup> , K <sup>+</sup> ATPase | Abcam                      | ab7671      | WB             |
| N-cadherin                              | BD Biosciences             | 610921      | WB/IP          |
| p120-catenin                            | BD Biosciences             | 610134      | WB/IP          |
| Phospho ERK 1/2                         | Cell Signaling             | 4370        | WB             |
| (Thr202/Tyr204)                         |                            |             |                |
| Phospho JNK (Thr183/Tyr185,             | Millipore                  | 07-175      | WB             |
| Thr221/Tyr223)                          |                            |             |                |
| Phospho p120-catenin (Ser 268)          | Santa Cruz Biotechnologies | sc-293000   | WB             |
| Phospho LRP5/6 (Thr1490)                | Cell Signaling             | 2568        | WB             |
| Phospho Tyrosine                        | BD Biosciences             | 610000      | WB/IP          |
| PR61e                                   | Jin et al. 2009            |             | WB             |
| Rac1                                    | BD Biosciences             | 610650      | WB             |
| Ror2                                    | Santa Cruz Biotechnologies | sc-374174   | WB/IP          |
| Wnt5a                                   | R&D System                 | AF645       | Wnt5a-         |
|                                         |                            |             | specific       |
|                                         |                            |             | neutralization |

**Table S1: List of antibodies used in this work**. The table indicates the source, catalogue number and use in Western Blot (WB) or immunoprecipitation (IP) experiments of all the antibodies employed in this article.