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Web Appendix 1 Estimation in SCMMs using GEEs

As noted in the main text, the GEE estimates of the parameters in SCMM (1) are only unbiased
under the assumption that Yt is independent of future exposures and covariates conditional on past
exposures and covariates for all t = 1, . . . , T [1]:

E(Yt|X̄t, L̄t) = E(Yt|X̄T , L̄T ). (A1)

This assumption is only met in certain circumstances. Referring to Figure 1(b), the assumption is
not met when:

(a) There is a direct arrow from Yt−1 to Xt (as shown).

(b) There is a direct arrow from Yt−1 to Lt (as shown).

(c) The association between Yt−1 and Lt is confounded by UY (not shown in the figure).

(d) There is unmeasured confounding between Yt−1 and Xt (not shown in the figure).

We refer to bias induced by a violation of (A1) as GEE bias. However, we emphasise that this is
a specific type of bias which can arise when the assumption in (A1) is violated, and is not a bias
from which all GEEs suffer. One way to avoid GEE bias is to solve the GEEs using a diagonal
working correlation matrix which assumes independence between the outcome measures made
at different times [1] ([2] and [3] discuss more efficient alternatives). The resulting estimates
can be inefficient because they ignore information on which observations were obtained from
which subject. This can be remedied by explicitly modelling the dependence between the repeated
outcomes as described in the main text (equation (2)).

Web Appendix 2 Simulation study: Data generation

Simulation Scenario 1

We generated data for n = 200 individuals observed at T = 5 visits based on the scenario
illustrated in Figure 1(a). The data were simulated by first generating X1, followed by generating
Yt to depend on Xt, Xt−1 and UY (t = 1, . . . , T ), and finally generating Xt to depend on Xt−1,
Yt−1 and UX (t = 2, . . . , T ). The exposure at visit 1 for individual i, X1i, was generated from a
Bernoulli distribution using the model Pr(X1i = 1) = eα01+uXi/(1+eα01+uXi) where eα01 = 1/3
and where the uXi are individual random effects generated from a normal distribution with mean 0
and standard deviation 0.2. An individual with the mean random effect (uXi = 0) has probability
1/4 of having X1i = 1 at visit 1.

The continuous outcome for individual i at visit t, Yti (t = 1, . . . , 5), was generated using

Yti = Xti + 0.5Xt−1,i + uY i + εYti , t = 1, . . . , 5 (A2)

where the uY i are random effects generated from a normal distribution with mean 0 and standard
deviation 0.5 and where εYti are random errors generated from a standard normal distribution. The
parameter that represents the effect of Xt on Yt has true value 1 and it is this effect that we aim to
estimate.
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Exposures at subsequent visits (t = 2, . . . , T ) were generated using

Pr(Xti = 1|X̄t−1,i, Ȳt−1,i) =
exp(α0t + αXXt−1,i + αY Yt−1,i + uXi)

1 + exp(α0t + αXXt−1,i + αY Yt−1,i + uXi)
(A3)

using eαY = 2, α0t = log(0.2/0.8), αX = log(0.2/0.8)− α0t. The probability of being exposed
at time t (t ≥ 2) is 0.2 for an individual who was unexposed at time t− 1 and 0.8 for an individual
exposed at time t− 1, for a person with average random effect and Yt−1 = 0.

Simulation Scenario 2

A second simulation scenario was used to further assess the test for long term direct exposure
effects. Scenario 2 is a modification of Scenario 1 with the direct effect of Xt−1 on Yt omitted, by
omitting the term in Xt−1 from equation (A2).

1000 data sets were simulated.

Web Appendix 3 Further results from simulation scenario 1

Table 1 summarises the weights used in the IPW estimation of MSM in simulation scenario 1. 
Table 2 shows results from extending simulation scenario 1 to 10 visits per individual. When the 
number of visits is increased the observed biases are seen to be greater.

Web Table 1: Simulation Scenario 1. Summary of Weights From IPW Analyses Corresponding to 
the Results Shown in Table 1. The Results Shown are the Mean Across 1000 Simulated Data 
Sets of the Mean of the Weights in a Given Simulation, the SD of the Weights, the Median of the 
Weights, and the Minimum and Maximum Weights.

Weights Mean weight SD weight Median weight Min. weight Max. weight
Unstabilized 12.348 63.428 3.610 1.339 1453.428
Stabilized 1.000 0.469 0.989 0.154 6.070
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Web Table 2: Simulation Scenario 1. Simulation Results Extended to 10 Visits Per Person. 
The Results Shown are the Bias in the Estimated Short Term Causal Effect of Xt on Yt Averaged 
over 1000 Simulations, the Corresponding Monte Carlo 95% Confidence Interval (in Brackets), 
and the Empirical Standard Deviation (SD). All Models Were Fitted Using GEEs with an 
Independence Working Correlation Matrix and an Unstructured Working Correlation Matrix.

Model Independence Unstructured
Bias (95% CI) SD Bias (95% CI) SD

Sequential conditional mean models
Form of E(Yt|X̄t, Ȳt−1)
(i) Xt 0.514 (0.510,0.519) 0.068 0.294 (0.290,0.298) 0.064
(ii) Xt + Yt−1 0.192 (0.188,0.196) 0.063 0.061 (0.057,0.065) 0.063
(iii) Xt +Xt−1 0.133 (0.129,0.138) 0.072 0.000 (-0.005,0.004) 0.070
(iv) Xt +Xt−1 + Yt−1 0.001 (-0.004,0.005) 0.072 0.006 (0.002,0.010) 0.071

Sequential conditional mean models using propensity scores
Form of E(Yt|X̄t, Ȳt−1, P̂ St)

(i) Xt + P̂St 0.009 (0.005,0.014) 0.073 0.004 (0.000,0.009) 0.071
(ii) Xt + Yt−1 + P̂St 0.006 (0.002,0.011) 0.073 0.014 (0.010,0.019) 0.072
(iii) Xt +Xt−1 + P̂St 0.013 (0.008,0.018) 0.074 0.000 (-0.005,0.004) 0.070
(iv) Xt +Xt−1 + Yt−1 + P̂St 0.002 (-0.003,0.006) 0.073 0.006 (0.002,0.010) 0.072

IPW and MSMs
Form of E(Y x̄t

t )
Unstabilized weights
(i) ω0 + ωX1xt 0.073 (0.042,0.104) 0.498 0.147 (-0.116,0.409) 4.236
(ii) ω0 + ωX1xt + ωX2xt−1 0.034 (0.005,0.062) 0.459 0.051 (-0.190,0.292) 3.893
Stabilized weights
(i) ω0 + ωX1xt 0.339 (0.334,0.343) 0.079 0.247 (0.231,0.264) 0.263
(ii) ω0 + ωX1xt + ωX2xt−1 -0.004 (-0.010,0.002) 0.092 -0.016 (-0.080,0.048) 1.025
Stabilized weights: truncated at the 1st and 99th percentiles
(i) ω0 + ωX1xt 0.354 (0.349,0.358) 0.074 0.235 (0.229,0.241) 0.096
(ii) ω0 + ωX1xt + ωX2xt−1 0.014 (0.009,0.020) 0.083 -0.055 (-0.063,-0.048) 0.123
Stabilized weights: truncated at the 5th and 95th percentiles
(i) ω0 + ωX1xt 0.374 (0.370,0.379) 0.072 0.253 (0.249,0.258) 0.073
(ii) ω0 + ωX1xt + ωX2xt−1 0.025 (0.020,0.030) 0.079 -0.043 (-0.048,-0.038) 0.081
Stabilized weights: truncated at the 10th and 90th percentiles
(i) ω0 + ωX1xt 0.393 (0.389,0.398) 0.070 0.263 (0.259,0.267) 0.070
(ii) ω0 + ωX1xt + ωX2xt−1 0.043 (0.038,0.048) 0.076 -0.034 (-0.039,-0.029) 0.077
Stabilized weights: truncated at the 20th and 80th percentiles
(i) ω0 + ωX1xt 0.424 (0.420,0.429) 0.068 0.275 (0.271,0.279) 0.067
(ii) ω0 + ωX1xt + ωX2xt−1 0.069 (0.065,0.074) 0.074 -0.022 (-0.027,-0.017) 0.074
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Web Appendix 4 Results from simulation scenarios 2-4

The comparison of SCMMs and IPW of MSMs was also investigated in simulation scenario 2
(described above), and in two further scenarios:

Simulation scenario 3 No direct effect of Yt−1 on Xt.

Simulation scenario 4 No direct effect of Xt−1 on Yt and no direct effect of Yt−1 on Xt.

Simulation scenarios 2-4 are illustrated in Figure A1. SCMMs and IPW of MSMs were applied
exactly as described for the simulation scenario 1 and the results are shown in Table A3. The test
for long term direct effects was also performed.

Simulation scenario 2

Estimates from SCMMs (i) and (iii) are subject to confounding bias (Yt−1 acts as a confounder via
UY ) when an independence working correlation matrix is used. This bias is eliminated by using
an unstructured working correlation matrix. Adjustment for Yt−1 under SCMM (ii) gives a bi-
ased estimate when using an independence working correlation matrix because adjusting for Yt−1

opens up a ‘back-door’ path from Xt to Yt via UY , inducing confounding by Xt−1 (‘collider-
stratification’). This bias is eliminated by using an unstructured working correlation matrix be-
cause the effect of modelling the correlation across outcomes is that the GEE estimates assign a
zero coefficient to Yt−1, thus effectively overcoming the earlier problem of collider-stratification.
Model (iv) gives an unbiased estimate by inclusion of both Xt−1 and Yt−1.

Propensity score adjustment delivers a double robustness property and therefore gives unbiased
estimates under all models in all scenarios, using either working correlation matrix.

MSMs (i) and (ii) are both correctly specified and both give almost unbiased estimates using
either stabilized or unstabilized weights. As we expect, unstabilized weights give large empirical
standard deviations, especially using an unstructured working correlation matrix. The empirical
standard deviations are larger using stabilized IPW estimates than using SCMM. In this scenario
using truncated weights results in some very small gains in efficiency, but at the expense of bias,
and the IPW estimates still have lower efficiency than the SCMM estimates except under extreme
truncation of the weights.

Simulation scenario 3

Here the effect ofXt on Yt is confounded byXt−1, therefore SCMMs (i) and (ii) give confounding
bias. MSM (i) does not model the direct effect of Xt−1 on Yt; this can be accounted for using un-
stabilized weights and approximately unbiased estimates are obtained using unstabilized weights
(there is some small finite sample bias). The direct effect of Xt−1 on Yt is not accounted for in
MSM (i) fitted using stabilized weights, resulting in bias. MSM (ii) is correctly specified and the
estimates are unbiased (apart from small finite sample bias). stabilized weights give similar preci-
sion as found using SCMMs. This is not surprising because the probabilities in the numerator and
denominator of the stabilized weights are theoretically identical in this scenario, so all stabilized
weights are close to 1. For this reason, truncating the stabilized weights has negligible impact on
the results.

In the test for long term direct effects the mean estimate of δY across 1000 simulations was 6.900
with standard deviation 1.666, and 99.7% of the 95% confidence intervals for δY excluded 0.

Simulation scenario 4
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Here there is no confounding of the effect of Xt on Yt by past exposures or past outcome. More-
over, past outcome does not have a direct effect on future exposure, hence no GEE bias. SCMMs
(i) and (iii) thus give unbiased estimates using both an independence and an unstructured working
correlation matrix. As in Scenario 2, adjustment for Yt−1 under Model (ii) gives a biased esti-
mate when using an independence working correlation matrix due to collider-stratification, with
the bias being eliminated by using an unstructured working correlation matrix. Model (iv) gives
an unbiased estimate by inclusion of Xt−1.

MSMs (i) and (ii) are both correctly specified and both give almost unbiased estimates using either
stabilized or unstabilized weights (there is small finite sample bias for MSM (ii)). As we expect,
unstabilized weights give large empirical standard deviations, especially using an unstructured
working correlation matrix. Stabilized weights give similar precision as found using SCMMs. As
in Scenario 3, this is not surprising because all stabilized weights are close to 1 and for this reason,
truncating the stabilized weights has negligible impact on the results.

In the test for long term direct effects the mean estimate of δY across 1000 simulations was 0.088
with standard deviation 2.357, and 7.1% of the 95% confidence intervals for δY excluded 0.
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Web Figure 1: Associations Between an Exposure (Xt) and Outcome (Yt) Measured 
Longitudinally, With Random Effects UX and UY .

(a) Simulation scenario 2

(b) Simulation scenario 3

(c) Simulation scenario 4
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Web Table 3: Results from Simulation Scenarios 2-4. Simulation Results. The Results Shown are 
the Bias in the Estimated Short Term Causal Effect of Xt on Yt Averaged over 1000 Simulations, 
the Corresponding Monte Carlo 95% Confidence Interval (in Brackets), and the Empirical 
Standard Deviation (SD). All Models Were Fitted Using GEEs with an Independence Working 
Correlation Matrix and an Unstructured Working Correlation Matrix.

Model Independence Unstructured
Bias (95% CI) SD Bias (95% CI) SD

Simulation scenario 2
Sequential conditional mean models
Form of E(Yt|X̄t, Ȳt−1)
(i) Xt 0.132 (0.127,0.137) 0.078 0.000 (-0.005,0.005) 0.079
(ii) Xt + Yt−1 -0.054 (-0.060,-0.049) 0.081 -0.001 (-0.007,0.005) 0.094
(iii) Xt +Xt−1 0.117 (0.111,0.123) 0.090 -0.001 (-0.007,0.004) 0.093
(iv) Xt +Xt−1 + Yt−1 0.000 (-0.006,0.006) 0.093 -0.001 (-0.007,0.005) 0.093
Sequential conditional mean models using propensity scores
Form of E(Yt|X̄t, Ȳt−1, P̂ St)

(i) Xt + P̂St 0.000 (-0.005,0.006) 0.094 -0.001 (-0.007,0.005) 0.094
(ii) Xt + Yt−1 + P̂St -0.001 (-0.007,0.005) 0.094 -0.001 (-0.007,0.005) 0.094
(iii) Xt +Xt−1 + P̂St 0.004 (-0.001,0.010) 0.094 -0.001 (-0.007,0.005) 0.094
(iv) Xt +Xt−1 + Yt−1 + P̂St 0.000 (-0.006,0.006) 0.094 -0.001 (-0.007,0.005) 0.094
IPW and MSMs
Form of E(Y x̄t

t )
Unstabilized weights
(i) ω0 + ωX1xt 0.003 (-0.018,0.023) 0.332 0.087 (-0.050,0.223) 2.202
(ii) ω0 + ωX1xt + ωX2xt−1 0.007 (-0.012,0.026) 0.306 -0.015 (-0.089,0.060) 1.203
Stabilized weights
(i) ω0 + ωX1xt 0.000 (-0.005,0.006) 0.087 -0.060 (-0.077,-0.043) 0.275
(ii) ω0 + ωX1xt + ωX2xt−1 -0.002 (-0.008,0.005) 0.105 0.108 (-0.233,0.448) 5.495
Stabilized weights: truncated at the 1st and 99th percentiles
(i) ω0 + ωX1xt 0.016 (0.010,0.021) 0.084 -0.058 (-0.064,-0.053) 0.089
(ii) ω0 + ωX1xt + ωX2xt−1 0.019 (0.013,0.025) 0.099 -0.052 (-0.058,-0.045) 0.104
Stabilized weights: truncated at the 5th and 95th percentiles
(i) ω0 + ωX1xt 0.025 (0.020,0.030) 0.083 -0.049 (-0.054,-0.043) 0.085
(ii) ω0 + ωX1xt + ωX2xt−1 0.027 (0.021,0.033) 0.097 -0.043 (-0.049,-0.037) 0.100
Stabilized weights: truncated at the 10th and 90th percentiles
(i) ω0 + ωX1xt 0.043 (0.037,0.048) 0.081 -0.038 (-0.044,-0.033) 0.084
(ii) ω0 + ωX1xt + ωX2xt−1 0.045 (0.039,0.051) 0.095 -0.032 (-0.039,-0.026) 0.098
Stabilized weights: truncated at the 20th and 80th percentiles
(i) ω0 + ωX1xt 0.069 (0.064,0.074) 0.080 -0.025 (-0.030,-0.020) 0.081
(ii) ω0 + ωX1xt + ωX2xt−1 0.068 (0.062,0.074) 0.093 -0.021 (-0.027,-0.015) 0.096

continued on next page
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continued from previous page
Model Independence Unstructured

Bias (95% CI) SD Bias (95% CI) SD
Simulation scenario 3
Sequential conditional mean models
Form of E(Yt|X̄t, Ȳt−1)
(i) Xt 0.255 (0.250,0.260) 0.083 0.198 (0.193,0.203) 0.079
(ii) Xt + Yt−1 0.108 (0.103,0.112) 0.075 0.050 (0.045,0.055) 0.077
(iii) Xt +Xt−1 -0.002 (-0.007,0.004) 0.089 -0.001 (-0.006,0.004) 0.086
(iv) Xt +Xt−1 + Yt−1 -0.002 (-0.007,0.003) 0.087 0.002 (-0.003,0.008) 0.087
Sequential conditional mean models using propensity scores
Form of E(Yt|X̄t, Ȳt−1, P̂ St)

(i) Xt + P̂St -0.001 (-0.006,0.005) 0.087 0.001 (-0.004,0.007) 0.086
(ii) Xt + Yt−1 + P̂St -0.001 (-0.006,0.004) 0.087 0.006 (0.000,0.011) 0.087
(iii) Xt +Xt−1 + P̂St -0.002 (-0.008,0.003) 0.088 -0.001 (-0.006,0.004) 0.086
(iv) Xt +Xt−1 + Yt−1 + P̂St -0.002 (-0.007,0.003) 0.087 0.003 (-0.003,0.008) 0.087
IPW and MSMs
Form of E(Y x̄t

t )
Unstabilized weights
(i) ω0 + ωX1xt 0.021 (0.007,0.036) 0.236 -0.016 (-0.044,0.012) 0.454
(ii) ω0 + ωX1xt + ωX2xt−1 0.015 (0.001,0.029) 0.223 0.003 (-0.025,0.030) 0.448
Stabilized weights
(i) ω0 + ωX1xt 0.254 (0.249,0.259) 0.081 0.198 (0.193,0.203) 0.080
(ii) ω0 + ωX1xt + ωX2xt−1 -0.003 (-0.008,0.003) 0.087 -0.001 (-0.007,0.004) 0.086
Stabilized weights: truncated at the 1st and 99th percentiles
(i) ω0 + ωX1xt 0.254 (0.249,0.259) 0.081 0.197 (0.192,0.202) 0.080
(ii) ω0 + ωX1xt + ωX2xt−1 -0.002 (-0.008,0.003) 0.087 -0.001 (-0.007,0.004) 0.086
Stabilized weights: truncated at the 5th and 95th percentiles
(i) ω0 + ωX1xt 0.255 (0.249,0.260) 0.081 0.198 (0.193,0.203) 0.080
(ii) ω0 + ωX1xt + ωX2xt−1 -0.002 (-0.008,0.003) 0.087 -0.001 (-0.007,0.004) 0.086
Stabilized weights: truncated at the 10th and 90th percentiles
(i) ω0 + ωX1xt 0.255 (0.250,0.260) 0.081 0.198 (0.193,0.203) 0.080
(ii) ω0 + ωX1xt + ωX2xt−1 -0.002 (-0.008,0.003) 0.087 -0.001 (-0.007,0.004) 0.086
Stabilized weights: truncated at the 20th and 80th percentiles
(i) ω0 + ωX1xt 0.255 (0.250,0.260) 0.082 0.198 (0.193,0.203) 0.080
(ii) ω0 + ωX1xt + ωX2xt−1 -0.002 (-0.008,0.003) 0.088 -0.001 (-0.006,0.004) 0.086

continued on next page
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continued from previous page
Model Independence Unstructured

Bias (95% CI) SD Bias (95% CI) SD
Simulation scenario 4
Sequential conditional mean models
Form of E(Yt|X̄t, Ȳt−1)
(i) Xt -0.002 (-0.007,0.003) 0.083 -0.001 (-0.006,0.004) 0.078
(ii) Xt + Yt−1 -0.091 (-0.096,-0.086) 0.079 -0.001 (-0.006,0.005) 0.086
(iii) Xt +Xt−1 -0.002 (-0.007,0.004) 0.089 -0.001 (-0.006,0.004) 0.086
(iv) Xt +Xt−1 + Yt−1 -0.002 (-0.008,0.003) 0.087 -0.001 (-0.006,0.004) 0.085
Sequential conditional mean models using propensity scores
Form of E(Yt|X̄t, Ȳt−1, P̂ St)

(i) Xt + P̂St -0.002 (-0.008,0.003) 0.087 -0.001 (-0.006,0.004) 0.086
(ii) Xt + Yt−1 + P̂St -0.003 (-0.009,0.002) 0.087 -0.001 (-0.007,0.004) 0.085
(iii) Xt +Xt−1 + P̂St -0.002 (-0.008,0.003) 0.088 -0.001 (-0.006,0.004) 0.086
(iv) Xt +Xt−1 + Yt−1 + P̂St -0.002 (-0.008,0.003) 0.087 -0.001 (-0.006,0.005) 0.085
IPW and MSMs
Form of E(Y x̄t

t )
Unstabilized weights
(i) ω0 + ωX1xt 0.014 (0.000,0.028) 0.228 0.079 (-0.034,0.192) 1.824
(ii) ω0 + ωX1xt + ωX2xt−1 0.015 (0.002,0.029) 0.223 0.053 (-0.014,0.119) 1.074
Stabilized weights
(i) ω0 + ωX1xt -0.002 (-0.007,0.003) 0.081 -0.001 (-0.006,0.003) 0.078
(ii) ω0 + ωX1xt + ωX2xt−1 -0.002 (-0.008,0.003) 0.087 -0.001 (-0.007,0.004) 0.086
Stabilized weights: truncated at the 1st and 99th percentiles
(i) ω0 + ωX1xt -0.002 (-0.007,0.003) 0.081 -0.001 (-0.006,0.003) 0.078
(ii) ω0 + ωX1xt + ωX2xt−1 -0.002 (-0.008,0.003) 0.087 -0.001 (-0.007,0.004) 0.086
Stabilized weights: truncated at the 5th and 95th percentiles
(i) ω0 + ωX1xt -0.002 (-0.007,0.003) 0.081 -0.001 (-0.006,0.003) 0.078
(ii) ω0 + ωX1xt + ωX2xt−1 -0.002 (-0.008,0.003) 0.087 -0.001 (-0.007,0.004) 0.086
Stabilized weights: truncated at the 10th and 90th percentiles
(i) ω0 + ωX1xt -0.002 (-0.007,0.003) 0.081 -0.001 (-0.006,0.003) 0.078
(ii) ω0 + ωX1xt + ωX2xt−1 -0.002 (-0.008,0.003) 0.087 -0.001 (-0.006,0.004) 0.086
Stabilized weights: truncated at the 20th and 80th percentiles
(i) ω0 + ωX1xt -0.002 (-0.007,0.003) 0.081 -0.001 (-0.006,0.003) 0.078
(ii) ω0 + ωX1xt + ωX2xt−1 -0.002 (-0.008,0.003) 0.088 -0.001 (-0.006,0.004) 0.086
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Web Appendix 5 Handling study drop-out and missing data in SCMMs and 
IPW of MSMs

Drop-out is common in longitudinal studies. SCMMs are valid without modification when there
is study drop out under the assumption that there are no variables which predict drop out and are
associated with model covariates but not included in the model (‘ignorable drop out’). This is
likely to be more realistic when the exposure is measured close to the time of the outcome. In
contrast, in IPW estimation of MSMs, drop out is handled using inverse probability of censoring
weights (see e.g. [4]). A further advantage of SCMMs is that estimates from this analysis are valid
in the presence of missing data in time-varying covariates provided the missingness is independent
of the outcome given other covariates in the model [5], whereas in IPW of MSMs missingness
would have to be handled using additional weights.
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