Figure S1

Α

С

MDA-MB-231

MDA-MB-231-Sox2

MDA-MB-231-Sox2

HMLE-Snail

HMLE-Snail

11.0%

ALDH+

11.0%

10³

150

100

50

0

0

MDA-MB-231

MDA-MB-231-Sox2

Hegaline .

HMLE-Snail

10²

101

10² 103 101 101 0 0 D MDA-MB-231 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.0 Positive 0.0 Positive Reporter Reporter Negative

Figure S1. HMLE-snail cell is the suitable CSCs model for high-throughput siRNA screen.

(A) Stemness factors OCT4, SOX2, Nanog, and sca-1 were detected in MDA-MB-231, MDA-MB-231-SOX2 and HMLE-Snail cells by RT-PCR. (B) The sphere formation ability of three cell models were tested. (C) ALDH+ staining assay was performed in three candidate cell models. (D) The sensitivity to dual-luciferase OCT4 reporter was studied in three cell models.

Figure S2

D

Figure S2. Various approaches to further identify important candidates.

(A) The pathway distribution of candidate genes. The siRNA library target 1027 inflammation genes involved in 17 functional sub-pathways of various phases of inflammation response. (B) The hits numbers in various inflammation pathways. (C) **ALDH assay was performed to screen genes which down-regulation could decrease ALDH+ subpopulation in HMLE-snail cells. 10 candidates were screened out from 72 genes.** (D) The correlation of the 10 identified genes with CSC related signaling pathways including Wnt & SHH, Notch, BMP, PI3K-AKT, and C-MYB transcription factor network were analyzed.

Supplemental Figure 3

Figure S3. Quantification results of the western blot data by three biological repeats.

(A) Quantification results of figure 1E. (B) Quantification results of figure 2A. (C) Quantification results of figure 2E. (D) Quantification results of figure 2J. The bar graph shows the statistical result of three separate experiments. *Indicates significant difference with P<0.05, **indicates significant difference with P<0.01, ***indicates significant difference with P<0.001.

Supplemental Figure 4

Figure S4. Quantification results of the western blot data by three biological repeats.

(A) Quantification results of figure 3A. (B) Quantification results of figure 3G. (C) Quantification results of figure 4B. The bar graph shows the statistical result of three separate experiments. *Indicates significant difference with P<0.05, **indicates significant difference with P<0.01, ***indicates significant difference with P<0.01.

Supplemental Figure 5

С 2.0-Proteins/actin ratio 1.5 1.0 0.5 0.0 MCS-CAM3-

Figure S5. Quantification results of the western blot data by three biological repeats.

(A) Western was performed to detect the inhibition efficiency of different Src inhibitors to Src and downstream signaling activation. (B) Quantification results of figure 5A. (C) Quantification results of figure 5B. (D) Quantification results of figure 5C. The bar graph shows the statistical result of three separate experiments. *Indicates significant difference with P<0.05, **indicates significant difference with P<0.001.

Figure S6. Quantification results of the western blot data by three biological repeats.

(A) Quantification results of figure 6A. (B) Quantification results of figure 6C. (C) Quantification results of figure 6D. (D) Quantification results of figure 6I. (E) Quantification results of figure 7A. (F) Quantification results of figure 7C. (G) Quantification results of figure 7G. The bar graph shows the statistical result of three separate experiments. *Indicates significant difference with P<0.05, **indicates significant difference with P<0.01, ***indicates significant difference with P<0.001.

Supplemental Table 1. Primer sequences

Name	Sequence
ICAM3-sh1	AAAAGCAGTACTGATTGTCCCAGCTTTGGATCCAAAGCTGGGACAATCAGT ACTGC
ICAM3-sh2	AAAAGCAATGGCTCTCAGATAACAGTTGGATCCAACTGTTATCTGAGAGCC ATTGC
SC	AAAAGCTACACTATCGAGCAATTTTGGATCCAAAATTGCTCGATAGTGTAG C
Flag-ICAM3-F	GCTCTAGAGCCACCATGGATTACAAGGATGACGACGATAAGAGCCCGATGG CCACCATGGTACC
Flag-ICAM3-R	CGACGCGTTCACTCAGCTCTGGACGG
ICAM3-mut1-R	CGACGCGTTCACTCAGCTCTGGACGGTTCTTCCCCCATTGCTTCTGTCGGCT GCATAGACGTGAGGGGCAGAGCGGTGCTCTCC
ICAM3-mut2-R	CGACGCGTCTAGGTGCTCTCCTCCCTAAC
ICAM3-CHIP-1- F	ATTGACTTAGCGCTTTCTCTGC
ICAM3-CHIP-1- R	TTAGGGAGTTTGAAGGCTTTATT
ICAM3-CHIP-2- F	GTGGGGATCCCGTTCTTC
ICAM3-CHIP-2- R	TCCCTGAAGACGTACATTAAGG
ICAM3-CHIP-3- F	CTTGCACAGGAACAGTAGCG
ICAM3-CHIP-3- R	ACGAAGAACGGGATCCC

ICAM3-CHIP-4-	GAGGAAAGGGGAGGGC
F	
ICAM3-CHIP-4-	CGCTACTGTTCCTGTGCAAG
R	

Supplemental Table 2. Antibodies

Antibody		Clone, Cat #	Vendor	City, State,
				Country
ICAM3	Rabbit monoclonal	EPR3994, ab109405	Abcam	Hong Kong, China
OCT4	Rabbit polyclonal	ab19857	Abcam	Hong Kong, China
Nanog	Rabbit polyclonal	ab80892	Abcam	Hong Kong, China
Akt1/2/3	Rabbit monoclonal	ab32505	Abcam	Hong Kong, China
SOX2	Rabbit polyclonal	H-65, sc-20088X	Santa Cruz	Santa Cruz, CA,
			Biotechnology	USA
β-actin	Mouse monoclonal	sc-47778	Santa Cruz	Santa Cruz, CA,
			Biotechnology	USA
ABCG2	Mouse monoclonal	sc-377176	Santa Cruz	Santa Cruz, CA,
			Biotechnology	USA
MDR-1	Mouse monoclonal	sc-55510	Santa Cruz	Santa Cruz, CA,
			Biotechnology	USA
β-Catenin	Rabbit monoclonal	#8480	Cell Signal	Danvers, MA, USA
			Technology	
Src	Rabbit monoclonal	36D10, 2109s	Cell Signal	Danvers, MA, USA
			Technology	
p-Src(Tyr416)	Rabbit monoclonal	D49G4, 6943t	Cell Signal Danvers, MA, US	
			Technology	
p-	Rabbit monoclonal	D9E, 4060s	Cell Signal	Danvers, MA, USA
AKT(Ser473)			Technology	
PI3K p85	Rabbit monoclonal	4292s	Cell Signal	Danvers, MA, USA
			Technology	
p-PI3K	Rabbit monoclonal	4228s	Cell Signal	Danvers, MA, USA
			Technology	
Caspase3	Rabbit monoclonal	9662s	Cell Signal	Danvers, MA, USA
			Technology	
Lamin A/C	Rabbit polyclonal	A01455-40	GenScript	Piscataway, NJ,
				USA
P50	Rabbit polyclonal	14220-1-AP	Proteintech	Rosemont, CHI,
				USA

Cytokines & cytokine signaling	Adhesion Extravasation Migration	Leukocyte signaling	MAPK signaling	Others (25)
(10)	(23)	(2)	(12)	
STAT2 SOCS3 IL1A IL1B TGIF2 IL17RA PDGFB IL12A CSF2 IFNB1	CTTN MMP7 MMP10 SELPLG PXN ITGAX MYH10 CCL8 CCL13 CCL13 CCL1 CCL5 CCL16 CCR7 ITGA3 ICAM2 PECAM1 ICAM2 PECAM1 ICAM3 CEACA5 CCR2 CCR2 CCR2 CCR2 CCR2 CCR2 CCR2 CCR	SLAMF7 LAT	RAPGEF3 EEF2K BCAR1 MAP2K4 KSR1 PRKCA MEF2B MEF2C YWHAG DUSP4 ELK1 DUSP9	PLA2G2A ALOX5AP MGST2 PTGER4 TBXAS1 PTGS1 RGS1 PDE3A PDE4C HSP90B1 KIAA1271 RELA NFRKB BCL3 EIF2AK2 NFKB1 IKBKB AKT2 PRTN3 TNFRSF9 LTBR TNFRSF12A BBC3 BCL2L12 CASP10

Supplemental table 3. 72 hit genes from twice high throughput siRNA screen.

The 72 hit genes from twice high throughput siRNA screen were listed in the table and they were divided into 5 groups including cytokines & cytokine signaling molecules, adhesion-extravasation-migration pathway molecules, leukocyte signaling molecules, MAPK signaling molecules and others.