
S1 

SUPPLEMENTARY METHODS 
 

Statistical analysis of the Tn-seq output. 
The output of the Tn-seq analysis pipeline for the chromosomal genes was used in the 

fitness classification of genes as follows. First, all genes with no observed insertions (i.e., no 
reads) were classified as essential. Although this step may result in small genes (that lack 
insertions by chance) being falsely annotated as essential, manually checking these genes 
showed many are expected to be truly essential (e.g. ribosomal proteins), supporting the 
inclusion of this step. Next, GEI scores were imported into R version 3.2.3 and log transformed. 
Initial clustering of the log transformed GEI scores into fitness categories was performed using 
the Mclust function of the Mclust package in R [1]. In short, this function attempted to explain 
the distribution of GEI values by fitting a series of overlapping Guassian distributions, with the 
number and shape of the distributions determined by Mclust (Bayesian Information Criteria was 
used to determine the optimal number of distributions [and hence clusters] that best explains the 
data). The data were then assigned to different categories based on the probability of the data 
point arising from each of the distributions. Sample output data from Mclust showing the 
distribution of the data and the clustering is provided as Figure S16. As high uncertainty in the 
classification of genes at the borders of groupings exists, the clusters were refined through the 
use of affinity propagation implemented by the apcluster function of the apcluster package of R 
[2], which groups data points in a method independent of k-means or Gaussian distributions. All 
genes belonging to the same group as determined by affinity propagation implemented in 
apcluster that contained an essential gene, as determined in any of the previous steps, were re-
annotated as essential. Additionally, all genes belonging to the same group in the apcluster 
output that spanned the border of two groups as determined by Mclust were transferred to the 
same classification, based on which cluster the genes had a higher median probability of being 
derived from in the Mclust analysis. Finally, genes that were classified as ‘essential’ in one 
medium and ‘large growth impairment’ in the second medium, but that were identified as having 
no medium specificity based on clustering of the fold changes between media, were considered 
as essential in both media. Few genes were impacted by this final step, and these were those that 
straddle the threshold between these two fitness categories. The reclassification was performed 
based on the logic that a gene cannot i) contribute to growth equally in both media but ii) be 
essential in only one of the two media. 
 Genes with GEI scores significantly different between conditions were determined as 
follows. The GEI fold changes between the conditions of interest were imported into R, log 
transformed, and the following clustering performed independently for each fold change 
comparison. The log transformed fold changes were clustered using Mclust in R as described 
above for the GEI scores. In the case of the media comparisons, three clusters were produced by 
Mclust: ‘Little to no difference’, ‘Moderate difference’, and ‘Large difference’; only genes with 
a fold change classified as ‘Large difference’ were considered to display growth medium 
specificity. In the case of comparing between strains, only two clusters were produced by Mclust: 
‘Little to no difference’ and ‘Difference between strains’. Sample output data from Mclust 
showing the distribution of the fold change data and the clustering is provided in Figure S16, 
which helps to illustrate why there is a difference in the number of categories for these 
comparisons. These clusters were then refined using apcluster in R as described above for the 
GEI scores. 
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Gene functional enrichments. 
Assignment of chromosomal genes into specific functional categories was performed 

largely based on the annotations provided in the S. meliloti Rm1021 online genome database 
(https://iant.toulouse.inra.fr/bacteria/annotation/cgi/rhime.cgi). This website pulls annotations 
from several databases including PubMed, Swissprot, trEMBL, and Interpro. Additionally, it 
provides enzyme codes, PubMed IDs, functional classifications, and suggested Gene Ontology 
(GO) terms for most genes. The numerous classifications were simplified to 18 functional 
categories, designed to adequately cover all core cellular processes. Each category was based on 
a generic GO term, and the categories (with related GO terms in parentheses) were: signal 
transduction (GO:0007165), lipid metabolism (GO:0006629), amino acid metabolism 
(GO:0006520), translation (GO:0006412), electron transport (GO:0009055), transport 
(GO:0006810), carbohydrate metabolism (GO:0005975), nucleic acid metabolism 
(GO:0090304), cell division (GO:0051301), motility and attachment (GO:0048870 and 
GO:0022610), oxidoreductase activity (GO:0016491), cofactor metabolism (GO:0051186), DNA 
metabolism (GO:0006259), transcription (GO:0097659 plus GO:1903506), cell wall 
(GO:0042546), hypothetical (no GO term), and miscellaneous (no GO term). 

Occasionally, ambiguous or conflicting annotations were observed. In these cases, 
protein BLASTp searches through the National Center for Biotechnology Information (NCBI) 
server were performed against the non-redundant protein database. If putative domains were 
detected within the amino acid sequence, a combination of the best hit (lowest E-value) and 
consensus among domain annotations were used to categorize the gene in question. If no putative 
domains were detected, the functional annotation was based on the best scoring protein hits in 
the database (E-value threshold of 1x10-25). The functional annotations of all chromosomal genes 
are provided in Data Set S6. 
 
Development of iGD1575b. 
 For in silico analysis of redundancy in the S. meliloti genome, the previously published S. 
meliloti genome-scale metabolic model iGD1575 [3] was modified slightly. As indicated in 
Table S8, the biomass composition was updated to include 31 additional compounds at trace 
concentrations, including vitamins, coenzymes, and ions, in order to ensure the corresponding 
transport or biosynthetic pathways were essential. However, the original model iGD1575 was 
unable to produce vitamin B12 (calomide; cpd00166) and holo-carboxylate (cpd12847), as the 
addition of either compound into the biomass reaction prevented growth of the model. To rectify 
this, the reversibility of rxn00792_c0 was changed from ‘false’ to ‘true’, as this reaction must 
function in the reverse direction for production of holo-carboxylate, and the reactions rxn01609, 
rxn06864, and rxnBluB were added to the model. However, no new genes were included in the 
model. This updated model was termed iGD1575b and is available in SBML and MATLAB 
format in File S2. 
 
Simulating the removal of pSymA and pSymB in silico. 

Several modifications to iGD1575b were required in order to produce a viable model 
following the deletion of all pSymA and pSymB genes. As described previously [3], 
succinoglycan was removed from the biomass composition, ‘gapfill’ GPRs (gene-protein-
reaction relationships) were added to the reactions ‘rxn01675_c0’, ‘rxn01997_c0’, 
‘rxn02000_c0’, and ‘rxn02003_c0’ in order to allow the continued production of the full LPS 
molecule, as well as to ‘rxn00416_c0’ to allow asparagine biosynthesis. Additionally, ‘gapfill’ 
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GPRs were added to the reactions ‘rxn03975_c0’ and ‘rxn03393_c0’ so that removal of pSymA 
and pSymB did not prevent biosynthesis of vitamin B12 and ubiquinone-8, respectively. Finally, 
a glycerol export reaction via diffusion (rxnBLTPcpd00100b) was added to remove the glycerol 
build-up resulting from cardiolipin biosynthesis. The modified version of the model was termed 
iGD1575c, and is available in in SBML and MATLAB format in File S2. For simulating the 
removal of pSymA and pSymB in MATLAB, all pSymA and pSymB genes were deleted from 
the iGD1575b model using the deleteModelGenes function, followed by the removal of all 
constrained reactions using the removeRxns function. 
 
Building the draft R. leguminosarum and S. meliloti metabolic models. 
 A draft, fully automated model containing no manual curation for R. leguminosarum bv. 
viciae 3841 was built using the KBase webserver (www.kbase.us). The Genbank file 
(GCA_000009265.1_ASM926v1_genomic.gbff) of the R. leguminosarum genome [4] was 
uploaded to KBase and re-annotated using the ‘annotate microbial genome’ function, 
maintaining the original locus tags. An automated metabolic model was then built using the 
‘build metabolic model’ function, with gap-filling. This model included 1537 genes, 1647 
reactions, and 1731 metabolites, and is available in in SBML and MATLAB format in File S2. 
The biomass composition was not modified from the default Gram negative biomass of KBase. 
All essential model genes were determined using the COBRA Toolbox in MATLAB with the 
singleGeneDeletion function and the MOMA protocol, with exchange reaction bounds set as 
provided in Table S7. 

A draft, fully automated model containing no manual curation for S. meliloti Rm1021 
was built as described above for R. leguminosarum but starting with the Genbank file 
(GCA_000006965.1_ASM696v1_genomic.gbff) for the S. meliloti genome [5]. The draft model 
included 1254 genes, 1698 reactions, and 1666 metabolites, and is available in in SBML and 
MATLAB format in File S2. 
 
Building the S. meliloti core metabolic reconstruction, iGD726. 
 The iGD726 model was built from the ground-up using the existing genome-scale model 
as a reaction and GPR database, and with the Tn-seq data as a guide. The iGD726 model began 
as an empty SBML formatted file, and the first reaction that was added was a biomass reaction 
involving a single substrate (e.g., protein). The pathways (including central carbon metabolism) 
required to produce this biomass substrate were added reaction-by-reaction to the new 
reconstruction file. These reactions were taken from the original model, or were taken from other 
sources, primarily the Kyoto Encyclopedia of Genes and Genomes (KEGG) database [6], if an 
appropriate reaction was missing in the original model. Pathway reconstruction was guided by 
the metabolic maps of KEGG and the Tn-seq data; if multiple pathways could be used to 
generate the same compound, the essentiality data of the Tn-seq screen were used to inform the 
decision of which pathway to include. When the necessary pathways were built, the model was 
converted to COBRA format, and FBA simulations were run to test if biomass could be 
produced. If not, we attempted to identify gaps both manually, and with the detectDeadEnds 
function of the COBRA Toolbox. In cases where we remained unable to identify the missing 
reaction(s), all reactions from the original model were transferred to the new reconstruction, 
following which they were cumulatively deleted until only the essential reaction(s) remained. 
When it was understood why these reactions were essential, they were either retained in the new 
reconstruction, or replaced with an alternative pathway, guided by the Tn-seq data. When the 
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model was capable of producing biomass (based on FBA simulations), the next biomass 
component was added to the biomass reaction, and the process repeated. This iterative process 
continued until the model could produce all biomass reactions. As the original model is a full 
genome-scale metabolic reconstruction, encompassing core and accessory metabolism, not all 
reactions were transferred to iGD726; only those essential for biomass production or to 
accurately capture the Tn-seq data were included in iGD726. 
 Throughout the above process, the Tn-seq data were used to refine the gene-reaction 
associations. Each time a new reaction was added to the core reconstruction, the genes associated 
with the reaction were checked against the Tn-seq data, and a literature search for each 
associated gene was performed. The gene associations were then modified as necessary to ensure 
the model accurately captured the experimental data. For example, if a gene was experimentally 
determined to be essential (in the Tn-seq data or the literature), but the corresponding reaction 
for the gene was associated with multiple alternative genes, all genes but the essential gene were 
removed from the reaction. Similarly, for essential reactions associated with non-essential genes, 
either i) all genes associated with the reaction in the original model were added; ii) if only one 
gene was associated with the reaction in the original model, an Unknown was added to reflect 
the apparent redundancy in the genome; or iii) an alternative, redundant pathway was added. 
Where possible, Unknowns in the gene associations were replaced with genes whose gene 
product may catalyze the reaction; this was only done if there was some level of experimental 
support for doing so. 

Core model reconstruction was performed providing sucrose as a carbon source during 
the FBA simulations. Once a functional model was prepared, it was expanded to include the 
necessary metabolic and transport reactions to also allow growth with glucose or succinate as the 
carbon source. Finally, when biomass could be produced using any of the three carbon sources, 
the list of model genes was compared with the list of 489 core growth promoting genes to 
identify genes not included in the model but experimentally determined to contribute to growth. 
When possible, missing genes and their corresponding reactions were added to the core model. 
 During the construction of the core model, we additionally updated the biomass 
composition. This included modifying the membrane lipid composition to include lipids with 
different sized fatty acids based on the ratio experimentally determined [7]; the original genome-
scale model contained only one representative per each membrane lipid class. Additionally, 
essential vitamins, cofactors, and ions were added to the biomass composition at trace 
concentrations to ensure that their biosynthesis or transport was essential. The complete biomass 
composition is provided in Table S3. 

The final model contained 726 genes, 681 reactions, and 703 metabolites, and is provided 
in SBML and MATLAB format in File S2, and as an Excel file in Data Set S5. The Excel file 
contains all necessary information for use as a S. meliloti metabolic resource, including the 
reaction name, the reaction equation using the real metabolite names, the associated 
genes/proteins, and references. Additionally, for each reaction, the putative orthologs of the 
associated genes in 10 related Rhizobiales species are included, allowing the model to provide 
useful information for each of these organisms. 
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SUPPLEMENTARY RESULTS 
 

Validation of the between-strain differences in the Tn-seq data. 
 In an attempt to independently validate the results of the Tn-seq experiment, 16 genes 
showing strain-specific phenotypes (14 genes whose disruption appeared to result in a larger 
growth defect in the ∆pSymAB strain, and 2 genes whose disruption appeared to result in a 
larger growth defect in the wild-type strain) were mutated through single cross-over plasmid 
integration. As described in the Results section of this manuscript, the between-strain differences 
of ~ 75% of these genes were confirmed by the validation experiment. Even if only 75% of the 
between-strain differences in the Tn-seq data are real, this is still a remarkable number of 
between-strain differences. However, we expect that many of the differences between the Tn-seq 
and validation experiments are not false positives, but instead a result of differences in growth 
conditions. More specifically, the validation experiments involve isogenic cultures, whereas the 
Tn-seq experiment is based on competitive growth in which less than 0.01% of the initial cell 
population would contain the mutation of interest. 
 A possible example of the growth condition differences influencing the results is the data 
for feuQ. The feuN, feuP, and feuQ genes encode a system resulting expression of ndvA and 
ndvB, whose products are involved in periplasmic β-glucan biosynthesis [8,9]. In the Tn-seq 
data, all five of these related genes contained many fewer insertions in the ∆pSymAB 
background than in the wild-type background, and this was observed in both of the media. 
However, in the validation experiment, mutation of feuQ did not result in the expected phenotype 
(none of the other four genes were tested). Given that all five of these genes (encoded as three 
operons in two different chromosomal loci) are involved in a common process, and that all five 
have the same phenotype in the Tn-seq data (independent of medium), it is unlikely that these 
represent false positives. Instead, we interpret the difference between the Tn-seq and validation 
experiments as reflective of the difference in growth conditions of these two experiments, 
highlighting how a failure to validate a phenotype does not necessarily mean that the Tn-seq 
observed phenotype is a false positive. 
 In summary, it is expected that some of the genes identified as having between-strain 
differences in the Tn-seq data are false positives. However, many of those that could not be 
independently confirmed in the validation experiment many not represent false positives and 
instead reflect differences in experimental settings. 
 
Comparison of pipelines for classification of gene fitness phenotypes. 
 The analyses presented in the manuscript are based on gene classifications performed 
using the clustering based approach described in the Materials and Methods. Subsequently, the 
TSAS pipeline [10] was run to verify that the clustering based approach did not result in the 
inclusion of excessive false positives. Here, these approaches are compared. 

The main step of the clustering based approach involved assuming that the data are 
explained by multiple overlapping Guassian distributions (i.e., non-essential genes form one 
distribution, essential genes form an independent distribution, etc.). The number and shape of 
distributions that best explains the data were then found, and genes classified based on the 
probability that they belonged to each of the fitted distributions. 

In the case of TSAS, the reads are reduced to the number of unique insertions; i.e., all 
reads mapping to the same location are reduced to a single insertion. The data are then assumed 
to belong to a single Binomial distribution, and the probability of finding the detected number of 
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insertions by chance is calculated. Different p-value corrections are then applied to correct for 
multiple testing. The key outputs of this approach are p-values indicating the probability that 
genes have fewer than expected insertions; it does not distinguish between essential genes and 
genes whose mutation result in a non-lethal growth defect. 

To ensure that the various steps of clustering based approach did not result in the 
identification of an excessively large number of false positive essential genes, the outputs of 
these methods were compared. Of the 307 genes classified as essential in all four samples, 269 
(88%) were considered to have fewer than expected insertions with the TSAS pipeline and a 
strict significance threshold (field wide error rate Bonferroni correction < 0.01). Most of the 38 
genes not considered to have fewer than expected insertions were small genes with no insertions. 
However, inspection of their annotations revealed that most are expected to be essential, 
highlighted by the fact that this list includes 24 ribosomal proteins, and therefore their annotation 
as essential by the clustering pipeline is probably accurate. Additionally, if a somewhat less strict 
significance threshold is used (Benjamini-Hochberg adjusted p-value < 0.01), 300 (98%) of the 
307 core essential genes are classified as having fewer than expected insertions. Given these 
results, we conclude that the clustering based approach did not result in an artificially high 
number of false positives, and that the global systems-level analyses reported in this study are 
unlikely to be significantly impacted by the choice of statistical analysis. 

Results from both the clustering approach and the TSAS pipeline are provided in Data 
Set S1. 
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