
Supplementary Material: Disambiguating brain functional connectivity

1. Methods

1.1. Model

We consider nodes X and Y , which can be observed in multiple states. In each state the nodes produce signals distributed
according to an ergodic stochastic process. Consider a state A, where the signals have distributions XA(t) and YA(t):

XA(t) = {Xt, t ∈ T}
YA(t) = {Yt, t ∈ T}

T specifies some experimental observational period. These periods enable the estimation of covariances:

ΣXA,YA =

[
σ2
XA

σXAσYAρXAYA
σXAσYAρXAYA σ2

YA

]

Additive signal change analysis explores the putative relationship between two states, say A and B. State B is modelled by an
introduction of new signals to A, XN and YN , such that:

XB = XA +XN

YB = YA + YN

The addition of XN and YN and will alter covariances. We can consider the overall covariance structure of putative signals:
XA

XN

YA
YN

 ∼M
0,

σ2
XA

σXAσXNρXA,XN σXAσYNρXA,YA σXAσYAρXA,YN
σXAσXNρXA,XN σ2

XN
σXNσYNρXN ,YA σXNσYAρXN ,YN

σXAσYAρXA,YA σXNσYAρYA,XN σ2
YA

σYNσYAρYA,YN
σXAσYNρXA,YN σXNσYNρXN ,YN σYAσYNρYA,YN σ2

YN

 (1)

We are interested in making inferences regarding the nature of XN and YN from available data. For example, whether they
could be uncorrelated signals (e.g. uncorrelated noise), or identical signals (e.g. a common signal component). This involves
making inferences relating to variables in Eqn. (1), based on observed covariances (QA, QB). To make inferences on these
variables, we determine whether observed functional connectivity changes can be explained by changes when specific constraints
on these variables hold. We pose this as a problem of determining whether the observed covariance in state B, QB (equally, the
corresponding correlation) falls within the limits implied by the specified constraints given QA and the observed changes in
variance (e.g. σ̂XB − σ̂XA ).

Identification of limits on σXB ,YB given equality and inequality constraints can be achieved by solving the Karush-Kuhn-Tucker
(KKT) conditions. We identify limits for three classes of change: additive signal changes, changes in a common signal, and
changes in uncorrelated signal. Each of these correspond to specific constraints on the covariance structure. We first describe
results without considering uncertainty due to limited data sampling. We then describe an approach to account for uncertainty.

1.1.1. Bounds on correlation changes produced by Additive Signal Changes.

We define Additive Signal Changes as changes produced by the addition of new signal to a node that has non-negative correlation
with the existing signal. Such changes always produce a change in variance, and encompass common types of signal changes
across many different contexts. We aim to determine whether observed changes in σXB ,YB could be explained by such changes.
The additive signal may appear either of the two states, for either node. Using the above formulation, we have:

XB = XA +XN ,where,

{
ρXA,XN ≥ 0 if σ2

XB
≥ σ2

XA

ρXB ,−XN ≥ 0 otherwise.

YB = YA + YN ,where,

{
ρYA,YN ≥ 0 if σ2

YB
≥ σ2

YA

ρYB ,−YN ≥ 0 otherwise.
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For an uncorrelated additive signal the difference in variance between the original and new signal will be equal to the variance of
the additional signal. For a positively correlated additive signal the variance change will always exceed the variance of the signal
being added. This implies, from above:

σ2
XN ≤ |σ

2
XB − σ

2
XA | (2)

σ2
YN ≤ |σ

2
YB − σ

2
YA | (3)

To simplify the analysis, we analyse the system in terms of orthogonal component unit vectors. We define the first component,
S1, to correspond to the process XA. The second component, S2, corresponds to that component of YA that is orthogonal to
XA (OYAXA ). The next component S3 corresponds to the signal of XN orthogonal to the previous two components, and the final
component S4 corresponds to remaining variability in YN that is orthogonal to other signals. Thus the putative signals can be
defined:

XA = a11S1

YA = a21S1 + a22S2

XN = a31S1 + a32S2 + a33S3

YN = a41S1 + a42S2 + a43S3 + a44S4

From observations of original covariance and variances (σXA,YA ), we can estimate a11, a21, and a22. We therefore have un-
knowns a31, a32, a33, a41, a42 a43, and a44.

We can define σXB ,YB in terms of these components:

σXB ,YB = σXA+XN ,YA+YN

= σXA,YA + σXA,YN + σYA,XN + σXN ,YN
= a11a21 + a11a41 + (a21a31 + a22a32) + (a31a41 + a32a42 + a33a43)

We can define equality constraints associated with the overall variances of signals observed in states A and B:

con(σ2
XB ) = a2

31 + a2
32 + a2

33 + 2a11a31 − (σ2
XB − σ

2
XA) = 0

con(σ2
YB ) = a2

41 + a2
42 + a2

43 + a2
44 + 2a21a41 + 2a22a42 − (σ2

YB − σ
2
YA) = 0

And inequality constraints associated with the requirement that changes are additive, as defined in Eqns. (2) & (3):

con(addX) = a2
31 + a2

32 + a2
33 − |σ2

XB − σ
2
XA | ≤ 0

con(addY ) = a2
41 + a2

42 + a2
43 + a2

44 − |σ2
YB − σ

2
YA | ≤ 0

To simplify derivations, the latter two constraints are converted to:

con(addX) = (σ2
XB − σ

2
XA)− |σ2

XB − σ
2
XA | − 2a11a31 ≤ 0

con(addY ) = (σ2
YB − σ

2
YA)− |σ2

YB − σ
2
YA | − 2a21a41 − 2a22a42 ≤ 0

The Langrangian for the maximum covariance is then given by:

L(a, λ) = a11a21 + a11a41 + (a21a31 + a22a32) + (a31a41 + a32a42 + a33a43)

− λσ2
XB

(
a2

31 + a2
32 + a2

33 + 2a11a31 − (σ2
XB − σ

2
XA)

)
− λσ2

YB

(
a2

41 + a2
42 + a2

43 + a2
44 + 2a21a41 + 2a22a42 − (σ2

YB − σ
2
YA)
)

− λaddX
(

(σ2
XB − σ

2
XA)− |σ2

XB − σ
2
XA | − 2a11a31

)
− λaddY

(
(σ2
YB − σ

2
YA)− |σ2

YB − σ
2
YA | − 2a21a41 − 2a22a42

)
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The KKT points have to satisfy:

∂L
∂a31

= a21 + a41 − 2λσ2
XB

(a11 + a31) + 2λaddXa11 = 0

∂L
∂a32

= a22 + a42 − 2λσ2
XB
a32 = 0

∂L
∂a33

= a43 − 2λσ2
XB
a33 = 0

∂L
∂a41

= a11 + a31 − 2λσ2
YB

(a21 + a41) + 2λaddY a21 = 0

∂L
∂a42

= a32 − 2λσ2
YB

(a22 + a42) + 2λaddY a22 = 0

∂L
∂a43

= a33 − 2λσ2
YB
a43 = 0

∂L
∂a44

= 2λσ2
YB
a44 = 0

For the inequality constraints:

λaddX

(
(σ2
XB − σ

2
XA)− |σ2

XB − σ
2
XA | − 2a11a31

)
= 0

λaddY

(
(σ2
YB − σ

2
YA)− |σ2

YB − σ
2
YA | − 2a21a41 − 2a22a42

)
= 0

λaddX , λaddY , λσ2
YB
≥ 0

With equality constraints:

a2
31 + a2

32 + a2
33 + 2a11a31 − (σ2

XB − σ
2
XA) = 0

a2
41 + a2

42 + a2
43 + a2

44 + 2a21a41 + 2a22a42 − (σ2
YB − σ

2
YA) = 0

To identify KKT points, it is necessary to assess cases where different numbers of inequality constraints are active.

Case 1: No active constraints (i.e.λaddX , λaddY = 0) We have:

a21 + a41 − 2λσ2
XB

(a11 + a31) = 0

a22 + a42 − 2λσ2
XB
a32 = 0

a43 − 2λσ2
XB
a33 = 0

a11 + a31 − 2λσ2
YB

(a21 + a41) = 0

a32 − 2λσ2
YB

(a22 + a42) = 0

∂L
∂a43

= a33 − 2λσ2
YB
a43 = 0

∂L
∂a44

= 2λσ2
YB
a44 = 0

Dividing out λσ2
YB

, we obtain:

2λσ2
YB

=
a11 + a31

a21 + a41
=

a32

a22 + a42
=
a33

a43
(4)

With a44 = 0. This implies ρXB ,YB = ±1. This solution will only be feasible if the variance changes in both regions are
adequate to equalise ratios. The calculation in the all-active constraints case below identifies when variance is adequate for
perfect correlation. When variance changes are adequate, additional variance can be accounted for by appropriate increases in
a33 and a43 to maintain the above ratios.

Case 2: All active constraints
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Here we have:

a21 + a41 − 2λσ2
XB

(a11 + a31) + 2λaddXa11 = 0 (5)

a22 + a42 − 2λσ2
XB
a32 = 0 (6)

a43 − 2λσ2
XB
a33 = 0 (7)

a11 + a31 − 2λσ2
YB

(a21 + a41) + 2λaddY a21 = 0 (8)

a32 − 2λσ2
YB

(a22 + a42) + 2λaddY a22 = 0 (9)

a33 − 2λσ2
YB
a43 = 0 (10)

2λσ2
YB
a44 = 0

Combining Eqns. (7) and (10) suggests that σ2
λYB

= 1
σ2
λXB

. Combining this with Eqns. (5) and (8), and (6) and (9), we find

2λaddY = 0 and 2λaddX = 0. This produces the same formulation as case 1, which only applies with appropriate variance
change.

An alternative scenario satisfying Eqns. (7) and (10) has a33, a43, and a44 equal to zero. This restricts solutions to scenarios
where the additive signals do not include any signal uncorrelated with existing signals. These solutions can produce the maximum
possible correlation change, by adding (or subtracting) signal associated with the other node. The inequality constraints become:

2a11a31 = (σ2
XB − σ

2
XA)− |σ2

XB − σ
2
XA | (11)

2a21a41 + 2a22a42 = (σ2
YB − σ

2
YA)− |σ2

YB − σ
2
YA | (12)

We assess cases when variances a greater in state A or B separately.

Variance is greater in stateB. Here, the right hand side of these constraints is zero. This implies that we haveXN is uncorrelated
with XA (a31 = 0), and YN uncorrelated with YA (a21a41 + a22a42 = 0). With the these results, we have:

a2
32 = σ2

XB − σ
2
XA

a2
41 + a2

42 = σ2
YB − σ

2
YA

Eqn. (12), with the right side equal to 0 shows a42 = −a41
a21
a22

, we therefore have:

a2
41(1− a2

21

a2
22

) = σ2
YB − σ

2
YA

a2
41 =

a2
22

a2
22 − a2

21

(σ2
YB − σ

2
YA)

These results permit the calculation of maximum covariance and correlation:

σXB ,YB = a11a21 + a11a41 + a22a32 + a32a42

This solution will identify maximum (minimum) correlation if the variance changes are not adequate to achieve maximum
correlation of 1 (-1) (Case 1). It is necessary to determine if the variance changes are adequate to achieve maximum correlation,
as in these cases present solution provides non-optimal solutions. We can do this by assessing the ratios examined in Eqn. (4) for
Case 1. If variance changes are not enough for Eqn. (4) to hold (i.e. a41 and a32 are small), and we have, instead of the equality
of Eqn. (4):

a2
11

(a21 + a41)2
≥ a2

32

a2
22

If this equality holds, Case 2 identifies the maximum possible correlation. We may also find that:

a2
11

(a21 + a41)2
≤ a2

32

a2
22

In this scenario, a correlation of 1 can be achieved with smaller values of a41 and a32, offset by appropriate addition of other
signal components (a31, a42) to achieve the observed variance changes to achieve Eqn. (4) (Case 1).

Variance is greater in state A. In this scenario we have, from Eqns. (11) and (11):

2a11a31 = 2(σ2
XB − σ

2
XA)

2a21a41 + 2a22a42 = 2(σ2
YB − σ

2
YA)
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These equalities imply that XN is uncorrelated with XB , analogous to above:

σXB ,XN = a11a31 + a2
31 + a2

32 + a2
33

= a11a31 + a2
31 + a2

32 + a2
33

= (σ2
XB − σ

2
XA)− (σ2

XB − σ
2
XA)

= 0

Similar results show YN is uncorrelated with YB . We can then obtain expressions for required terms for calculating σXB ,YB :

a31 =
σ2
XB
− σ2

XA

a11

a33 can be shown to be 0 as for the previous scenario. a32 can then be calculated:

a2
31 + a2

32 + a2
33 + 2a11a31 = σ2

XB − σ
2
XA

a2
32 = σ2

XA − σ
2
XB − a

2
31

Similarly, for a41 and a42:

2a21a41 + 2a22a42 = 2(σ2
YB − σ

2
YA)

a42 =
σ2
YB
− σ2

YA
− a21a41

a22

Calculating an expression for a41:

a2
41 + a2

42 + 2a21a41 + 2a22a42 = σ2
YB − σ

2
YA

a2
41 + a2

42 + 2σ2
YB − 2σ2

YA = σ2
YB − σ

2
YA

a2
41 + a2

42 = σ2
YA − σ

2
YB

a2
41(1 +

a2
21

a2
22

) = σ2
YA − σ

2
YB

a41(1 +
a21

a22
) =

√
σ2
YA
− σ2

YB

a41 = ± a22

a21 + a22

√
σ2
YA
− σ2

YB

The formulations for increases and decreases across states can be mixed if one node shows an increase in variance in a particular
state while the other shows a decrease.

Case 3: One active constraint (e.g. λaddX = 0, λaddY 6= 0)

With λaddX = 0 we obtain:

a21 + a41 − 2λσ2
XB

(a11 + a31) = 0

a22 + a42 − 2λσ2
XB
a32 = 0

a43 − 2λσ2
XB
a33 = 0

a11 + a31 − 2λσ2
YB

(a21 + a41) + 2λaddY a21 = 0

a32 − 2λσ2
YB

(a22 + a42) + 2λaddY a22 = 0

a33 − 2λσ2
YB
a43 = 0

2λσ2
YB
a44 = 0

As for Case 2, combining Eqns. (7) and (10) indicates that σ2
YB

= 1
σ2
XB

, leading to the same formulation as case 1, which only

applies with appropriate variance change. This implies either λσ2
YB

= 0, which obtain the same results as for Case 1 (Eqn. (4)),
or a33 = 0 and a43 = 0, implying Case 2.

1.1.2. Bounds on correlation changes produced by the addition of a common signal.

To model the range of changes that can be produced by changes in a signal that is common across both regions, we modify the
above model to have: a41 = ka31, a42 = ka32, and a43 = ka33, with sign(σXA,YA)k > 0 . This requires the additive signal to
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both regions to be perfectly correlated. The sign of k is defined to allow for anti-correlated signals, where the common signals is
defined to be of opposite sign in the two regions.

The covariance in state B is now:

σXB ,YB = a11a21 + a11ka31 + (a21a31 + a22a32) + (ka2
31 + ka2

32 + ka2
33)

This also alters the constraints, leading to the KKT equation:

L(a, λ) = a11a21 + a11ka31 + (a21a31 + a22a32) + ka2
31 + ka2

32 + ka2
33)

− λσ2
XB

(
a2

31 + a2
32 + a2

33 + 2a11a31 − (σ2
XB − σ

2
XA)

)
− λσ2

YB

(
k2a2

31 + k2a2
32 + k2a2

33 + 2a21ka31 + 2a22ka32 − (σ2
YB − σ

2
YA)
)

− λaddX
(

(σ2
XB − σ

2
XA)− |σ2

XB − σ
2
XA | − 2a11a31

)
− λaddY

(
− 2a21ka31 − 2a22ka32

)
With KKT points having to satisfy:

∂L
∂a31

= a11k + a21 + 2ka31 − 2λσ2
XB

(a11 + a31)− 2λσ2
YB

(ka21 + k2a31) + 2λaddXa11 + 2kλaddY a21 = 0

∂L
∂a32

= a22 + 2ka32 − 2λσ2
XB
a32 − 2λσ2

YB
(ka22 + k2a32) + 2kλaddY a22 = 0

∂L
∂a33

= 2ka33 − 2λσ2
XB
a33 − 2λσ2

YB
k2a33 = 0

∂L
∂k

= a11a31 + a2
31 + a2

32 + a2
33 − λσ2

YB

(
2ka2

31 + 2ka2
32 + 2ka2

33 + 2a21a31 + 2a22a32

)
+λaddY

(
2a21a31 + 2a22a32

)
= 0

with equality constraints:

a2
31 + a2

32 + a2
33 + 2a11a31 − (σ2

XB − σ
2
XA) = 0

k2a2
31 + k2a2

32 + k2a2
33 + 2a21ka31 + 2a22ka32 − (σ2

YB − σ
2
YA) = 0 (13)

and inequality constraints:

λaddX

(
(σ2
XB − σ

2
XA)− |σ2

XB − σ
2
XA | − 2a11a31

)
= 0 (14)

λaddY

(
(σ2
YB − σ

2
YA)− |σ2

YB − σ
2
YA | − 2ka21a31 − 2ka22a32

)
= 0

λaddX , λaddY , λσ2
YB
≥ 0

Case 1: No active constraints (e.g.λaddX , λaddY = 0)
We now have:

∂L
∂a31

= a11k + a21 + 2ka31 − 2λσ2
XB

(a11 + a31)− 2λσ2
YB

(ka21 + k2a31) = 0 (15)

∂L
∂a32

= a22 + 2ka32 − 2λσ2
XB
a32 − 2λσ2

YB
(ka22 + k2a32) = 0 (16)

∂L
∂a33

= 2ka33 − 2λσ2
XB
a33 − 2λσ2

YB
k2a33 = 0 (17)

∂L
∂k

= a11a31 + a2
31 + a2

32 + a2
33 − λσ2

YB

(
2ka2

31 + 2ka2
32 + 2ka2

33 + 2a21a31 + 2a22a32

)
= 0

Eqn. (17) can be rearranged to:

a33(2k − 2λσ2
XB
− 2λσ2

YB
k2) = 0 (18)

If 2k − 2λσ2
XB
− 2λσ2

YB
k2 = 0, then we have from Eqns. (15) and (16):

a11k + a21 − 2λσ2
XB
a11 − 2λσ2

YB
ka21 = 0

a22 − 2λσ2
YB
ka22 = 0
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Which implies:

σ2
YB =

1

2k

Substituting into Eqn. (18), we find:

a11a31 +
1

k
(a21a31 + a22a32) = 0 (19)

Finally, substituting this into the equation for σXB ,YB :

σXB ,YB = σXA,YA + a11ka31 + (a21a31 + a22a32) + (ka2
31 + ka2

32 + ka2
33)

= σXA,YA + a11ka31 + (a21a31 + a22a32) + k(σ2
XB − σ

2
XA − 2a11ka31)

= σXA,YA + k(σ2
XB − σ

2
XA)

k can be calculated by solving the quadratic in (13):

0 = k2a2
31 + k2a2

32 + k2a2
33 + 2a21ka31 + 2a22ka32 − (σ2

YB − σ
2
YA)

= k2((σ2
XB − σ

2
XA)− 2a11a31)− k ∗ 2(a21a31 + a22a32)− (σ2

YB − σ
2
YA)

= k2(σ2
XB − σ

2
XA)− k2(2a11a31)− k ∗ 2(a21a31 + a22a32)− (σ2

YB − σ
2
YA)

= k2(σ2
XB − σ

2
XA)− (σ2

YB − σ
2
YA)

k2 =
σ2
YB
− σ2

YA

σ2
XB
− σ2

XA

σXB ,YB =σXA,YA + k(σ2
XB − σ

2
XA)

=σXA,YA +
√

(σ2
XB
− σ2

XA
)(σ2

YB
− σ2

YA
)

Alternatively, a33 = 0. Here it is not possible to identify a unique maximum analytically, but we can express σXB ,YB in terms of
a31 and identify maximum and minimum values via a search over possible values of this term.

Case 2: Active constraints

When active, both constraints require that the new signal is uncorrelated with the existing signal. This implies a31 = 0. Eqn.
(14) then implies a32 = 0. As this implies: a11a31 + 1

k (a21a31 + a22a32) = 0, (e.g. Eqn. (19)) we obtain the same result as the
first scenario in Case 1:

σXB ,YB =σXA,YA +
√

(σ2
XB
− σ2

XA
)(σ2

YB
− σ2

YA
)

Case 3: One active constraint.

Here the common signal is uncorrelated with one of the two initial signals. Taking a31 = 0, we find:

a33(2k − σ2
XA) = 0

a22 + a32(2k − σ2
XA) = 0

This requires a33 = 0, for a22 6= 0. We can now directly calculate σXB ,YB :

a32 =
√
σ2
XB
− σ2

XA

0 = k2a2
32 + k2a22a32 − (σ2

YB − σ
2
YA)

σXB ,YB = σXA,YA + a11ka31 + (a21a31 + a22a32) + (ka2
31 + ka2

32 + ka2
33)

= σXA,YA + a22a32 + k(σ2
XB − σ

2
XA)

Corresponding results can be obtained for the case where: a21a31 + a22a32 = 0.

1.1.3. Negative signal

The above calculations hold for negatively correlated signal. Anti-correlated regions and networks may exist in the brain and
many other systems. The anti-correlated signals from these regions are likely to be composed of a combination of negatively
and positively correlated signal components (e.g. positively correlated signal noise). Additional noise components will reduce
the absolute value of correlations, while more negative correlatino may be produced by increases in the amplitude of the anti-
correlated signals. For signals that are negatively correlated overall, a common signal is likely to have opposite effects in both
nodes.
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1.1.4. Monte-Carlo Inference

To sample the possible distribution of covariance matrices underlying the observations, we assume that their distribution is equal
to that of covariance matrices of normally distributed correlated variables sharing the same degrees of freedom (n) (accounting
for the autocorrelation in the FMRI data). A p × p covariance matrix Σ, of Gaussian variables with n degrees of freedom, will
have a Wishart distribution, with a pdf:

1

2
np
2 |V |

n
2 Γp(

n
2 )
|ΣX,Y |

n−p−1
2 e−

1
2 tr(V

−1ΣX,Y )

Where Γp() is the multivariate gamma function:

Γp(
n

2
) = π

p(p−1)
4 πpj=1Γ(

n

2
+

1− j
2

)

Using a flat empirical prior, we used rejection sampling to to obtain samples from the distribution of underlying covariance
matrices A and B potentially producing the observed covariances, QA, QB . For each sample, limits on the range of correlations
produced by additive, uncorrelated and common signals can calculated. Additional variability will occur in scenarios with a
low initial correlation (or low degrees of freedom), where different samples will have the underlying initial correlation between
signals vary in sign.

1.1.5. FMRI Preprocessing

Data were analysed using FSL’s FEAT [3], the FSLNets network toolbox [7], and with Python, using SciKits-Learn [4] and
the MNE package [1]. Standard FEAT preprocessing was applied, including brain extraction [6], motion correction [2], and no
spatial smoothing. To reduce noise, we used our automated denoising tool, FIX (FMRIB’s ICA-based Xnoiseifier) [5], which
removes artefactual signal components associated with head motion, physics artefacts, and non-neural physiological signals.
FIX also integrations a regression of measured head motion parameters. Checks of image quality, head motion, and registration
were performed for every scan. Data was high-pass filtered (0.005 Hz) to remove low-frequency drifts and other artefacts that
would affect variance estimates. Variance maps and variance change maps were generated using the FSL tools FSLMaths and
Randomise. Correlation maps were generated using FEAT and specialised code written in Python.

1.1.6. Modelling of localiser scans

A block-design task activation scan was acquired to identify those regions showing task-related activation to the steady-state
tasks investigated here. This involved a nine-minute scanning period that involved randomised 30-second blocks of the visual,
motor and motor-visual tasks (total of 12 blocks). The motor-visual attention task was not acquired in this scan. Due to scanner
limitations, this scan used a non-accelerated sequence, with a repetition time of 3.0s and 3mm cubic pixel resolution.

A multi-level GLM analyses of the localiser scan was used to identify regions that activated with one or more of the states, relative
to rest [3]. The block design time series of each of the three stateswas convolved with a gamma function, and included within a
model also included the temporal derivatives of these time series, and motion parameters derived from motion correction. These
analyses used temporal autocorrelation correction and outlier detection to ensure model validity (32, 33). Subject-level contrasts
were defined for each of the three task states. The resulting parameter maps were registered to standard anatomical space, via
their high-resolution structural images using the FSL linear and non-linear registration tools FLIRT and FNIRT. The parameter
maps were then combined at the group level in an F-Test to identify brain regions showing positive or negative responses to one
or more of the states The maps were transformed into Z-statistic images and thresholded (correcting for multiple comparisons)
using FSL FEAT with a cluster-based thresholding approach with cluster-level significance level of p<0.05.

1.2. Supplementary results

1.2.1. Supporting model validation and simulations

Supp Fig. 2 shows correlation changes that can be explained by additions of common and uncorrelated signal as a function of
initial correlation. Fig. 2A plots scenarios where there are changes in uncorrelated signal in both nodes. If there is no uncertainty
in observations, a change unshared signals producing a specific change in variance will produce a specific change in correlation.
The resulting correlation scales linearly with the initial level of correlation and with the combined ratios of change in standard
deviation of the signals. When observational uncertainty is taken into account, it is possible to identify a band within which
correlation would fall if there were a change in unshared signal.

Changes in a common signal component produces the opposite direction of change in correlation (Supp Fig. 2B). Here, a given
change variance may cause a range of changes in correlation, depending on the nature of the new signal, S. This range is broader
when initial correlation is near zero, as . Note that as the addition of the same signal component to negatively correlated signals
these distributions are not symmetric around zero. The range of possible changes is particularly large, including decreases, if
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there is a mismatch in the amount of new signal in the processes. Accounting for observational uncertainty broadens the range of
observed changes in covariance that can be potentially be explained by a change in a common signal component (Supp Fig. 2).

The addition of distinct signal components (that do not negate existing signal) can produce a wider range of changes in correlation,
but the possible changes are still limited by change in variance (Supp Fig. 2C). When initial correlation is near zero, a wide range
of changes in correlation can be explained by modest changes in variance. This band widens further when the uncertainty due to
limited observations is taken into account Supp Fig.. The potential band of changes in correlation has a nonlinear relationship to
the initial correlation, with reductions being greater when the initial correlation is closer to zero. When initial correlation is 0.6,
a reduction in variance of 20% in both nodes can explain a complete decorrelation of signals.

1.2.2. Inference on simulated network changes

Simulations of signals showing FC changes were generated to match the spectral properties of the empirical dataset described in
the present work. Nodes in the initial condition either had a random positive correlation between 0.3 and 0.58 or a correlation of
zero, depending on whether nodes were connected. For the second condition, additional signal was added, such that variance of
the nodes increased by 20%.

1.3. Supplementary Figures

Figure 1: (Supp.)The effects on correlation of additive signal producing certain variance changes (not accounting for observation uncertainty). The plots reflect
scenarios where both regions receive the same signal. Colour fills indicate the range of levels of correlation in the second condition that could be explained by
a specific change in standard deviation. Column a. Potential changes associated with additions of uncorrelated signal. Column b. Potential changes associated
with the addition of a common signal component. Column c. Changes associated with a mixture of signal components changing in amplitude.
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Table 1: Region label key
Cng Cingulate Cortex
Cun Cuneus Cortex
InC IntraCalcarine Sulcus
SMA SMA
LOI Lateral Occipital Cortex (Inferior)
LOS Lateral Occipital Cortex (Superior)
Lin Lingual Gyrus
OcP Occipital Pole
PCu Precuneus Cortex
TOc TempOcc
CbL CbL Cerebellum (Left)
CbR CbR Cerebellum (Right)
IPL Inferior Precentral Gyrus (Left)
IPR Inferior Precentral Gyrus (Right)
PtL PutL Putamen (Left)
PtR PutR Putamen (Right)
SMA SMA
PGL PostGL Postcentral Gyris (Left)
PGR PostGR Postcentral Gyris (Right)
PHL Premotor Cortex Hand area (Left)
PHR Premotor Cortex Hand area (Right)
LOL LatOccSL Lateral Occipital Cortex - inferior div. (Left)
LOR LatOccSR Lateral Occipital Cortex - inferior div. (Right)
LSL LatOccSL Lateral Occipital Cortex - superior div. (Left)
LSR LatOccSR Lateral Occipital Cortex - superior div. (Right)
LiL Lingual Gyrus (Left)
LiR Lingual Gyrus (Right)
OFR Occipital: Fusiform Gyrus (Right)
OFL Occipital: Fusiform Gyrus (Left)
OPL Occipital Pole (Left)
OPR Occipital Pole (Right)
TOL Temporal Occipital (Left)
TOR Temporal Occipital (Right)
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Figure 2: (Supp.) Connectivity changes between combined finger tapping and visual stimulus condition and rest, and a more attention demanding combined task
and rest. Plot organisation is described in Fig. 5
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