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SUPPLEMENTAL MATERIAL Description and Growth of Gordonia rubripertincta CWB2 The strain CWB2 belongs to the genus Gordonia which exists in various native biotopes but also in artificial habitats as well as the human body (1). These actinomycetes are of interest for biotechnological applications and organic synthesis as they are able to degrade various pollutants and xenobiotic compounds (2). 16S rRNA phylogenetic analysis (Fig. S1) and in silico DNA-DNA-hybridization (> 80% similarity with G. rubripertincta NBRC 101908; Fig. S7) classifies strain CWB2 within the species Gordonia rubripertincta. The complete closed genome of strain CWB2 consists of a chromosome with a size of 5.23 Mbp and a GC content of 67.2%, which is in accordance with the species strain. Further, strain CWB2 harbours one plasmid (pGCWB2) with a size of about 100 kbp and a GC content of 64.2% (Table S3). G. rubripertincta CWB2 is Gram-positive, catalase positive and able to produce siderophores under iron-limitation but does not synthesize surfactants. The mycolic acid composition is: C53: 6%, C54: 7%, C55: 18%, C56: 17%, C57: 25%, C58: 12%, C59: 10%, C60: 4%, C61: 1%. The fatty acid profile is shown in Table S2. Most abundant fatty acids are palmitic acid, oleic acid, palmitoleic acid/2-hydroxy-14-methylpentadecanoic acid and tuberculostearic acid. Strain CWB2 is resistant or not affected by nalidixic acid, slightly sensitive to ampicillin, gentamycin and tetracycline and highly sensitive to chloramphenicol and kanamycin (no growth). Further, strain CWB2 seems to be able to develop a resistance mechanism against streptomycin. It produces a rose pigment and forms aggregates during growth. However, the colour intensity and size of the agglomerates can differ depending on the substrate. G. rubripertincta CWB2 is able utilize a variety of carbon and energy sources like sugars, amino acids, organic acids, aromatic acids and other xenobiotics for growth 
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(Table S1). Thus, strain CWB2 has a broad substrate spectrum even if compared to other Gordonia species (3, 4). However, G. rubripertincta CWB2 is the second reported representative of this genus that is able to degrade and withstand high amounts of the hazardous chemical styrene (5–7). Initial studies showed that it is able to metabolize about 0.2 mgstyrene h-1mgcdw-1. Under these conditions strain CWB2 forms rod shaped cells with a length between 817 – 1940 nm and a diameter of 218 – 520 nm. When grown on fructose, its cells form cocci with an average length between 946 – 1290 nm and a diameter of 620 – 671 nm (Fig. S3). It inclines to form aggregates on both substrates that can reach up to 65 µm. In particular, strain CWB2 was cultivated on different substrates that are in relation with the styrene degradation pathways, isoprene degradation, metabolites that are part of the TCA cycle and fructose as reference (Table 1). Strain CWB2 shows good growth on all of the metabolites from the upper styrene degradation pathway. However, a comparable growth to fructose is only seen with phenylacetic acid. No growth was observed when strain CWB2 is exposed to isoprene or mandelic acid as sole carbon source. Microbial strategies for degradation of styrene.  Natural sources of styrene as well as anthropogenic emission into the environment make it available for microorganisms as source for carbon and energy. The capability to degrade styrene has been described for many microorganisms. Therefore, they have evolved different strategies to attack the molecule. Direct ring cleavage is proposed to occur unspecifically via enzymes that are relevant for degradation of analogous aromatic substrates like benzene, toluene and catechol (8–10).  Attack at the vinyl side chain is the only styrene specific degradation pathway and seems to be favoured by microorganisms (11). Styrene is initially converted to 
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styrene oxide. Aside from the SMO, other monooxygenases are known to be able to epoxidize styrene (e.g. binuclear iron monooxygenases (BIMO) and CYP450MOs) (12–17). Thereby, especially the binuclear iron monooxygenase might play a role. These enzymes are known to be able to oxidize a variety of organic compounds and in particular to epoxidize alkenes (18). The respective cluster contains a chaperone, which is necessary for successful synthesis of the monooxygenase complex (19). It was recently shown that expression of a homologous BIMO in Gordonia sp. i37 is (co-)induced by isoprene (20). Although no evidence was found there, that the BIMO is involved in isoprene epoxidation, several studies support that styrene can serve as a substrate for these monooxygenases (12, 15, 21).  Interestingly, SOIs which catalyze the next step of styrene degradation, the isomerization of styrene oxide to phenylacetaldehyde, seem to be less abundant in nature. This phenomenon was observed in a screening of the non-redundant protein database as well as of the strain collection of the Institute of Biosciences at the TU Bergakademie Freiberg (6). Herein, only 14 out of 87 selected styrene degraders showed SOI activity. As a consequence, several other metabolites than the SOI product phenylacetaldehyde were consistently detected during growth on styrene (e.g. 2-phenylethanol). This implies that other enzymes are involved in styrene degradation (22–25) and it is likely that side-chain attack without SOI is more common as assumed. It was shown for Pseudomonas sp. Y2 that the upper and lower pathway can be connected via regulatory elements (26). The complete regulatory, uptake and metabolization machinery has only been described in detail for pseudomonads so far (reviewed by (11) but cluster analysis indicate deviating regulation in other phyla. Besides the key elements for styrene degradation (StyABCD), regulators and 
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transporters are not conserved and the genetic organization differs among organisms (6, 27–31). Remarks on Unspecific Styrene Degradation Pathways In humans and mammals, styrene is epoxidized to styrene oxide by cytochrome P450 monooxygenases (CYP450MO) (32). This reactive intermediate forms glutathione conjugates by the activity of a glutathione S-transferase (GST) or is converted to styrene glycol by an epoxide hydrolase (EH) (33, 34). The glycol can be further metabolized to mandelic acid and phenylglyoxylic acid. The metabolites are subsequently excreted (32, 35). Similar to this route, some white-rot fungi are able to further catabolize glycol to benzoic acid and minor amounts of 2-phenylethanol (36). 2-Phenylethanol can emerge as a side product of styrene degradation routes (25, 36) but is also proposed to be a central metabolite in several cases (22–24, 37, 38). Several unspecific routes for styrene degradation are employed by microorganisms. These routes are supposed to reflect altered utilization of benzene-, toluene- and ethylbenzene degradation pathways (8, 39–41). Herein the aromatic nucleus is attacked by a styrene 2,3-dioxygenase (SDO) and a styrene 2,3-dihydrodiol dehydrogenase (SDD) to yield 3-vinylcatechol. The 3-vinylcatechol can undergo ortho- or meta-cleavage as found in Rhodococcus rhodochrous NCIMB 13259 (8, 42). Though, ortho-cleavage by the activity of a vinylcatechol-1,2-dioxygenase (VC12DO) leads to a dead-end product. On the other hand, complete metabolization of styrene by meta-cleavage is reported. A vinylcatechol-2,3-dioxygenase produces 2-hydroxy-6-oxo-octa-2,4,7-trienoic acid which is further converted into acrylic acid, acetaldehyde and pyruvate (8, 10, 40). A variation of this pathway was found in Pseudomonas sp. Y2 (24). 
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Additional information to the situation in strain CWB2.  Degradation pathways via direct ring cleavage might also be possible in strain CWB2 as related genes were also found within the genome. A vinylcatechol 1,2-dioxygenase can be found twice on the genome (GCWB2_07645; GCWB2_20650). The latter one is part of a cluster including enzymes for benzoate and catechol degradation at the ortho position. However, the activity of the dioxygenase leads to a dead-end product and no further metabolization via the ortho-cleavage pathway is known for styrene so far. Further, a styrene dioxygenase (SDO) or biphenyl 2,3-dioxygenase is not encoded on the genome and thus, the initial step for the ring attack is lacking (10). Absence of a vinylcatechol 2,3-dioxygenase prevents degradation via the meta-cleavage pathway. It is known for some organisms that styrene oxide can be further metabolized by an epoxide hydrolase (EH) to styrene glycol, which is further degraded by other enzymes to mandelic acid and benzoic acid. An EH, which is similar to that of Sphingomonas sp. HXN-200 (ANJ44372), can be found in strain CWB2 (GCWB2_06100 – 48%) (43). Four other putative EHs are encoded and one of them lies close to the styrene degradation cluster on the plasmid (GCWB2_24135). However, none of the above mentioned genes are upregulated on transcriptome level and none of the respective proteins were detected under styrene exposure. Therefore, it is unlikely that these are involved in styrene degradation. Proteome data of the upregulated clusters show that most of the proteins were detected in the cytosolic and the membrane fraction. However, the difference between both fractions can be an indication for the subcellular localization. Especially proteins that are supposed to be membrane bound are more abundant in the membrane fraction. Further, it might be reasonable that some of the cytosolic 
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proteins are also situated at the membrane boundary as styrene might also accumulate at there. Some of the proteins (e.g. PaaD and PaaI) were not detected in the fructose reference and therefore no ratio can be calculated (Table 2 and Dataset S1). Interestingly, genes of cluster S3 and S4 are also expressed to some extend when strain CWB2 is cultivated under fructose as well as other conditions, what indicates for constitutive expression of these genes (unpublished data). Beyond the styrene degradation cluster on pGCWB2, several other clusters are upregulated on RNA and/or protein level (Fig. S5 and S6, Dataset S1). This is true for the gene cluster containing the BIMO-like enzyme as well as the alkyl hydroperoxide reductase cluster. Two CYP450MO clusters are upregulated on protein level but not on RNA level. Therefore, strain CWB2 might employ a BIMO and two CYP450-like monooxygenases that are upregulated on protein level, to support the formation of styrene oxide (See SI for further information) (12, 13, 15, 16, 44–46). In contrast, the CYP450-like monooxygenases are downregulated on RNA and further investigations are needed to reveal if they play a functional role in styrene metabolization in strain CWB2. Styrene is supposed to be a stressor for bacterial cells (47). Additionally, reactive oxygen species are continuously produced during aerobic metabolism. To prevent oxidative stress, strain CWB2 express and synthesises an alkyl hydroperoxide reductase (AHR, GCWB2_14195 - GCWB2_14185) to detoxify hydrogen peroxide, which is produced during aerobic metabolism of styrene (48–51). Furthermore, AHR might act as a glutathione peroxidase to reduce organic hydroperoxides to the corresponding alcohol and oxidized glutathione (52, 53). A cluster which contains a coniferyl alcohol dehydrogenase and an aldehyde 
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dehydrogenase is somewhat downregulated in the transcriptome but clearly upregulated on protein level. Coniferyl alcohol can be metabolized via an aldehyde to cinnamic acid. As these have distinct structural resemblance with metabolites of the upper styrene degradation pathway, this cluster might be co-induced by these metabolites. As already mentioned, pigment formation in strain CWB2 is substrate dependent. In accordance with that, the cluster for biosynthesis of ζ-carotene is downregulated under styrene exposure.  Remark on the isolation of G. rubripertincta CWB2 and other styrene degraders. As previously described, strain CWB2 was obtained from a soil sample (BioProject Accession: PRJNA394617; sampling location: 50°55'30.0"N 13°19'60.0"E) taken from potting soil of banana plant at the organic chemistry institute of the TU Bergakademie Freiberg (Saxony, Germany). It was designated according the Clemens-Winkler-Building, separated via styrene-enrichment culture and repeated platting on minimal medium with styrene as sole source of carbon and energy (6, 7, 54). The strain was deposited at DSMZ (Braunschweig, DSM 46758, (6, 7). All further strains were available at the Institute of Biosciences (TU Bergakademie Freiberg) or isolated and cultivated as described previously (6).   
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FIGURES 

 Fig. S1. Phylogenetic tree of selected strains of the genus Gordonia. 16S rRNA based neighbor-joining tree was calculated by using the MEGA7 software and a sequence alignment that was generated by ClustalW. Corynebacterium glutamicum served as outgroup. Bootstraps values were calculated by 1000 replicates and are given ad the nodes of the branches. 
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 Fig. S2. Phylogenetic analysis of styrene monooxygenases (SMOs) with focus on ones used in this study. The active and upregulated SMO of Gordonia rubripertincta CWB2 is shaded grey. Amino acid sequences were aligned by using the ClustalW algorithm and the maximum likelihood tree was constructed by applying the MEGA7 software (55).  

 Fig. S3. Scanning electron microscopy (SEM) pictures of G. rubripertincta CWB2 cells after growth on fructose (left) or styrene (right). 
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 Fig. S4. Genomic island plot of the genome of G. rubripertincta CWB2. Analysis was done by IslandViewer 4 and genomic island predictions are represented as blocks (integrated results in red, SIGI-HMM in orange and IslandPath-DIMOB in blue). The genome of strain CWB2 was aligned against a reference Gordonia sp. KTR9. Aligned regions are indicated in green at the outer circle, while the unaligned region is shaded in grey and refers to the plasmid pGCWB2. The styrene degradation cluster is highlighted below. GC content is visualized within the genome plot. 
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 Fig. S5. Ratio/intensity (m/a) plot of the gene expression of styrene and fructose grown cultures of Gordonia rubripertincta CWB2. CDS with m-values of higher/equal than +1.5 or lower/equal than −1.5 were considered to be differentially transcribed. 

 Fig. S6. Ratio/intensity (log2 ratio / MS/MS count) plot of the proteome (cytosolic fraction) of styrene and fructose grown cultures of Gordonia rubripertincta CWB2.  
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  Fig. S7. In silicio genome-to-genome DNA-DNA hybridization of Gordonia rubripertincta CWB2 compared to representatives of Gordonia species. Thresholds of 70% (solid line; strains belong to the same species; 56) and 79% (dashed line; strains belong to the same subspecies; 57) are indicated.  
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TABLES Table S1. Detailed substrate spectra of G. rubripertincta CWB2. Substrate Utilization Substrate Utilization Substrate Utilization D-(+)-Glucose ++ L-Serine + Niacin + D-(-)-Fructose +++ L-Alanine ++ Isoprene - D-(+)-Galactose - Aspartate ± Styrene ++ D-(+)-Maltose + Succinate ++ Styrene oxide ++ L-(+)-Rhamnose ± Citrate ++ Phenylacetaldehyde ++ D-Ribose + Sodium gluconate +++ Phenylacetic acid +++ D-(+)-Saccharose +++ alpha-Ketoglutarate ++ 2-Phenylethanol ++ D-Turanose +++ Benzoate ++ para-Cresol ++ Trehalose ++ ortho-hydroxybenzoate + Biphenyl + Lactose - meta-hydroxybenzoate + Naphtalene + D-Arabitol ++ para-hydroxybenzoate + Phenanthrene - D-Mannitol +++ meta-aminobenzoate + Hexadecane ++ myo-Inositol + para-aminobenzoate + Dodecane +++ Glycerol +++ Anthranilate + Tetradecane ++ N-acetylglucosamine + Mandelic acid - Decanoic acid ± L-Leucine + trans-ferulate + gamma-Aminobutyrate ± L-Proline + trans-cinnamate +++ Pimelate +++ L-Valine + Vanillate + Soluble starch ± (+++) vigorous growth; (++) good growth; (+) growth; (±) marginal growth (-) no growth  Table S2. Fatty acid composition of G. rubripertincta CWB2. Fatty acid % Fatty acid % Saturated  Unsaturated  C9:0 0.09 C15:1ω8c 0.57 C12:0 0.07 C15:1ω5c 0.56 C13:0 0.09 C16:1ω9c 0.66 C14:0 2.16 C17:1ω8c 5.53 C15:0 3.43 C18:1ω9c 22.30 C16:0 28.24 Summed features  C17:0 6.10 iso-C15:0 2-OH / C16:1ω7c 12.55 10-Methyl C17:0 1.19 C19:1ω9c / C19:1ω11c 3.23 C18:0 1.04 n.d. 0.23 10-Methyl C18:0 11.82   10-Methyl C19:0 0.14   n.d. – not determined   
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Table S3. Genome statistics of Gordonia rubripertincta CWB2 Attribute Chromosome Plasmid pGCWB2 Accession CP022580 CP022581 Size (bp) 5,227,013 105,060 G + C content (%) 67.3 64.2 CDS 4,708 112 rRNAs (operons) 12 (4) 0 tRNAs 52 0 other RNAs 15    Table S4. Summary of transcript reads of Gordonia rubripertincta CWB2  Styrene Fructose Total reads 122 515 232 11 626 146 mapped reads 112 691 546 11 512 126 multiple mapped reads 3 504 830 90 879  Table S5. Activities of wild-type enzymes that are related to styrene degradation (given in U mg-1)  SMO SOR PAR PAD VC12DO GST S ST* SO* 2PE SO* PA SO* 2PE* CA SO* CE 0.19×10-3 6.21×10-5 - 0.38 - 1.10×10-2 2.18×10-2 0.12 44.23 IE 0.42×10-3 - 1.27×10-5 - 3.72×10-5 - - 0.63 - HI 6.82×10-3 - n.d. - n.d. - - 2.4 - GF - - - - - - - 3.82 - CE - crude extract, IE - ion exchange, HI - hydrophobic interaction, GF - gel filtration, S - substrate, ST - styrene, SO - styrene oxide, PA - phenylacetaldehyde, 2PE - 2-phenylethanol, CA - catechol, n.d. - not detectable; *determined by product quantification on RP-HPLC Enzyme activities are given in 1 U mg-1 representing the conversion µmol substrate per min per mg protein. 
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