
Fig. S1 The motif analysis of the coding region of NR.

Fig. S2 The expression of the NR gene in randomly selected NR-silenced transformants.

The wild-type and NR-silenced strains were cultured on PDA plates for 5 days and then exposed to 42°C for 20 min. The expression levels of the *NR* genes were measured immediately after HS. The values are the means \pm SD of three independent experiments. Asterisks indicate significant differences compared to untreated strains (Student's t-test: **P < 0.01).

Fig. S3 The expression of the CaM gene in randomly selected CaM-silenced transformants.

The wild-type and CaM-silenced strains were cultured on PDA plates for 5 days and then exposed to 42°C for 20 min. The expression levels of the *CaM* genes were measured immediately after HS. The values are the means \pm SD of three independent experiments. Asterisks indicate significant differences compared to the untreated strains (Student's t-test: **P < 0.01).

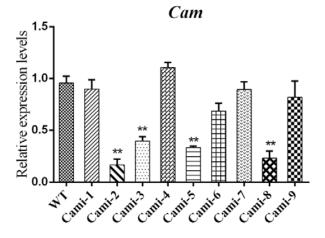


Table S1 Oligonucleotide primers used

Primer	Sequence (5' to 3')	Description	
NRi-F	ATCGGGATCCATGATCACCCCTACCAAATT	Amplify the ORF of NR	
NRi-R	ATCGTCTAGACTAGAAGATGAATAGGTCGT		
NRRT-F	TCCGCAACCACGGGAATGTC	Detects the NR expression	
NRRT-R	CGGTTTCCGTCGCAGCCTAA		
CaMi-F	ATCGGGTACCGGCGTTCTCCCTGTTCGA	Amplify the ORF of <i>CaM</i>	
CaMi-R	ATCGACTAGTCTCGCCGAGGTTGGTCAT		
CaMRT-F	CCCCGAGTTCCTGACGATG	Detects the CaM expression	
CaMRT-R	AGCTTCTCGCCGAGGTTGG		

Table S2 The interplays between NO and Ca²⁺ during different abiotic stresses.

Materials	Abiotic stress	The relationship between NO and Ca ²⁺	related phenotype	Reference
Animal cells	Without stress	NO to impact the release of Ca^{2+}	physiological processes	(1, 2)
Animal cells	Without stress	Promoting effects on each other	cell homeostasis	(3)
Arabidopsis	A high extracellular calcium treatment	Promoting effects on each other	Stomatal closure	(4)
Ulva compressa	Copper stress	Promoting effects on each other	Antioxidant protein gene expression	(5)
Animal cells	Without stress	Promoting effects on each other	muscular dystrophy	(6)
Ganoderma lucidum	Heat stress	Promoting effects on each other	Ganoderic acid biosynthesis	In present study

References

- 1. Stamler JS, Lamas S, Fang FC. 2001. Nitrosylation. the prototypic redox-based signaling mechanism. Cell 106:675-683.
- 2. Takata T, Kimura J, Tsuchiya Y, Naito Y, Watanabe Y. 2011. Calcium/calmodulin-dependent protein kinases as potential targets of nitric oxide. Nitric Oxide 25:145-152.
- 3. Clementi E, Meldolesi J. 1997. The cross-talk between nitric oxide and Ca²⁺: a story with a complex past and a promising future. Trends Pharmacol Sci 18:266-269.
- Wang WH, Yi XQ, Han AD, Liu TW, Chen J, Wu FH, Dong XJ, He JX, Pei ZM, Zheng HL. 2012. Calcium-sensing receptor regulates stomatal closure through hydrogen peroxide and nitric oxide in response to extracellular calcium in *Arabidopsis*. J Exp Bot 63:177-190.
- Gonzalez A, Cabrera Mde L, Henriquez MJ, Contreras RA, Morales B, Moenne A. 2012. Cross talk among calcium, hydrogen peroxide, and nitric oxide and activation of gene expression involving calmodulins and calcium-dependent protein kinases in *Ulva compressa* exposed to copper excess. Plant Physiol 158:1451-1462.
- 6. Tidball JG, Wehling-Henricks M. 2014. Nitric oxide synthase deficiency and the pathophysiology of muscular dystrophy. J Physiol 592:4627-4638.