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Supplementary Figure 1. Examples of cross-validated promoter models. Examples of promoter models that passed one or both cross-validation tests: (A-B) 

passed both binary and level tests (C-D) passed only the activity level test and (E-F) passed only the binary test. For each promoter, the left panel shows the 

correlation between observed and predicted promoter activities using OLS without cross-validation; the middle panel shows the results of the activity level 

validation test. Namely, the correlation between observed activities and activities that were predicted on left-out samples (LCTO CV procedure). In this test, 

correlation is calculated only over positive samples. The right panel shows the results of the binary test. Note in E and F left panel, the sensitivity of R2 (and, 

equally, of Pearson correlation) to outliers.      

 

 

 

 

 

 

 

 

 

 

 

 



 



Supplementary Figure 2. E-P distance distribution. E-P distance distribution for: (A). All 10 enhancers in the models that passed cross validation. (B). The 

10th enhancer (ranked by distance to promoter) in the models that passed cross validation. (C). Enhancer inclusion frequency in the optimally reduced 

models. Blue dots denote the total number of enhancers (right y-axis) in each distance bin before the shrinkage step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



Supplementary Figure 3. Performance of three alternative regression methods for inferring E-P models. Same as Figure 2A-B, but here analysis was 

applied to Roadmap Epigenomics (A), FANTOM5 (B) and the GRO-seq (C) datasets. Results of the binary (left panel) and activity level (right panel) validation 

tests are shown. OLS performed better on the Roadmap Epigenomics and GRO-seq datasets (in addition to the ENCODE data (Fig. 2A-B)), while GLM.NB and 

ZINB performed better on the FANTOM5 dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 



Supplementary Figure 4. Number of validated promoter models. Number of promoters whose OLS models passed (at q-value<0.1) each of the validation 

tests (right panel) and the distribution of the number of positive samples in each category. (A). Roadmap Epigenomics; (B) FANTOM5 and (C) GRO-seq 

datasets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



Supplementary Figure 5. Comparison between the    values with and without cross-validation (CV). (A). Roadmap Epigenomics; (B) FANTOM5 and (C) 

GRO-seq datasets. Each dot is a promoter model. Blue dots denote models with        and    
      . Red dots denote models with and        and 

   
      . The high rate of red dots (Roadmap (16%), FANTOM5 (20%) and GRO-seq (22%)) indicates that training the models on all samples suffer from 

overfitting. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



Supplementary Figure 6. Configuration of promoter regulation by enhancers. (A). The proportional contribution of the 10 most proximal enhancers (within 

a distance of ±500kb from the target promoter; for FANTOM5 the distance was ±250kb from the target promoter) to the regression model, in each dataset 

(Roadmap Epigenomics, FANTOM5 and GRO-seq). The X axis indicates the order of the enhancers by their relative distance from the promoter, with 1 being 

the closest. (B)    values of the models that passed one or both CV tests, in each dataset.  

 

 

 

 

 

 

 

 

 

 

 

 

 



 



Supplementary Figure 7. Configuration of shrunken promoter models. (A) Distribution of the number of enhancers included in the validated, optimally-

reduced models (i.e. after elastic net shrinkage). (B) Inclusion frequency of enhancers in the reduced models as a function of their proximity ranking to the 

target promoter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



Supplementary Figure 8. Inclusion frequency of enhancers as function of E-P distance. Inclusion frequency  of enhancers in the reduced models as a 

function of their distance from the target promoter for (A) Roadmap Epigenomics, (B) FANTOM5 and (C) GRO-seq datasets. Blue dots denote the number of 

enhancers (right y-axis) in each bin before the shrinkage step. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



Supplementary Figure 9. Comparison of the performance of different methods for predicting E-P links using ChIA-PET, YY1-HiChIP and eQTL data as 

external validation. As in Fig. 4, but for Roadmap Epigenomics (A), FANTOM5 (B) and GRO-seq (C) datasets.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



Supplementary Figure 10. Enhancers are frequently linked to genes more distal to the nearest one. The number (A) and proportion (B) of enhancers that 

are linked to nearest/more distal promoter as a function of their distance to the nearest promoter.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 



Supplementary Figure 11. House-keeping genes show simpler pattern of E-P interactions. (A). Ubiquitous vs. cell-type specific expression pattern is 

quantified by Shannon Entropy. In all datasets, housekeeping (HK) genes show significantly higher Shannon Entropy than the rest of genes, reflecting their 

more uniform activity pattern over the examined cell panel. (B). Promoters of HK genes are involved in significantly lower number of E-P interactions than 

other genes (in all cases, p-value << 0.001;  calculated by one-sided Wilcoxon rank-sum test). 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Supplementary Figure 12. Opposite relationship between breadth of promoter activity over cell types and complexity of transcriptional regulation. Same 

analysis as shown in Fig. 6, but here applied to FANTOM5 CAGE data.  



 



Supplementary Figure 13. Examples for promoter models that include negatively correlated enhancers. (see legend of Fig. 5). In the heatmap, negatively 

correlated enhancers (indication of a repressor function) are indicated by an arrow.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 14. Correlation between promoter DHS signal and gene expression. We examined the correlation between DHS signal at promoters 

and gene expression levels using ENCODE cell lines for which both DHS and RNA-seq dataset were available (this included 11 cell-lines with polyA RNA-seq 

and 6 cell lines with total RNA-seq). In all cases, we observed high Spearman but low Pearson correlation indicating strong monotonic, non-linear 

relationship.  



Supplementary Tables 

Table S1. Number of promoter models in each regression method 
Method Data Both Activity level 

only 
Binary only None 

OLS (FDR≤  1) ENCODE 52,658 17,807 15,437 7,007 
GLM.NB(FDR≤  1) ENCODE 33,286 20,233 17,950 21,440 
ZINB(FDR≤  1) ENCODE 41,336 19,919 12,672 18,982 
OLS (FDR≤   ) ENCODE 55,975 17,083 14,036 5,815 
GLM.NB(FDR≤   ) ENCODE 37,094 19,879 17,549 18,387 
ZINB(FDR≤   ) ENCODE 44,240 19,742 12,384 16,543 

OLS (FDR≤  1) Roadmap 12,315 9,526 5,242 5,546 
GLM.NB(FDR≤  1) Roadmap 6,752 7,493 5,369 13,045 
ZINB(FDR≤  1) Roadmap 8,728 7,646 4,550 11,705 
OLS (FDR≤   ) Roadmap 13,124 9,530 5,053 4,922 
GLM.NB(FDR≤   ) Roadmap 7,570 7,929 5,428 11,702 
ZINB(FDR≤   ) Roadmap 9,520 8,064 4,566 10,479 

OLS (FDR≤  1) FANTOM5 9,943 5,081 11,043 30,223 
GLM.NB(FDR≤  1) FANTOM5 14,197 3,221 13,758 25,114 
ZINB(FDR≤  1) FANTOM5 13,640 3,377 13,461 25,812 
OLS (FDR≤   ) FANTOM5 11,072 5,127 11,503 28,588 
GLM.NB(FDR≤   ) FANTOM5 15,396 3,210 13,530 24,154 
ZINB(FDR≤   ) FANTOM5 14,719 3,308 13,429 24,834 

OLS (FDR≤  1) GRO-seq 3,507 236 2,580 2,037 
GLM.NB(FDR≤  1) GRO-seq 606 377 2,659 4,718 
ZINB(FDR≤  1) GRO-seq 1,334 657 2,844 3,525 
OLS (FDR≤   ) GRO-seq 3,745 249 2,509 1,857 
GLM.NB(FDR≤   ) GRO-seq 798 453 2,830 4,279 
ZINB(FDR≤   ) GRO-seq 1,566 681 2,907 3,206 
Each promoter model contained 10 enhancers as features. The number of E-P links is      
links where   is the number of promoter models in each category 

 

 

 

 

 

 

 

 

 



Table S2. Number of statistically validated promoter models and E-P links predicted 
by FOCS on four genomic resources 
Data type #promoter 

models 
#E-P links #Unique 

enhancers 
% intronic E-P 
links * 

# known 
genes** 

ENCODE - DHS 70,465 167,988 92,603 74 12,256 
Roadmap - 
DHS 

21,841 69,619 49,327 67 10,668 

FANTOM5 - 
eRNA  

15,024 41,836 18,656 55 8,666 

GRO-seq - 
eRNA  

6,323 22,607 20,650 79 6,323 

(*) E-P links whose E is located within an intron of a gene (not necessarily the target gene) 

(**) Number of Entrez genes associated with promoters 

 

Table S3. Summary of inferred E-P links 

Method type Data # promoter models #Links to enhancers #Unique enhancers 
Pair-wise ENCODE 92,080 2,396,287 326,184 

Pair-wise-      ENCODE 39,372 139,170 53,950 

OLS-LASSO1 ENCODE 39,368 122,064 74,104 

OLS-enet1 ENCODE 39,407 150,158 85,926 

FOCS* ENCODE 70,465 167,988 92,603 
Pair-wise Roadmap 32,000 1,023,409 106,231 

Pair-wise-      Roadmap 8,606 33,598 24,657 

OLS-LASSO2 Roadmap 6,783 27,414 21,062 

OLS-enet2 Roadmap 6,788 31,923 24,167 

FOCS* Roadmap 21,841 69,619 49,327 
Pair-wise FANTOM5 42,234 228,908 45,936 

Pair-wise-      FANTOM5 2,224 4,681 2,449 

OLS-LASSO3 FANTOM5 1,680 3,970 2,219 

OLS-enet3 FANTOM5 1,684 5,239 2,771 

FOCS* FANTOM5 15,024 41,836 18,656 

Pair-wise GRO-seq 7,825 113,817 81,040 
Pair-wise-      GRO-seq 4,347 26,827 24,247 
OLS-LASSO4 GRO-seq 4,570 17,141 16,121 
OLS-enet4 GRO-seq 4,580 21,379 19,796 

FOCS** GRO-seq 6,323 22,607 20,650 
FOCS-randCV GRO-seq 7,004 23,960 21,679 

(1) The number of OLS promoter models (      ) was 39,892 before model selection 
(2) The number of OLS promoter models (      ) was 6,807 before model selection 
(3) The number of OLS promoter models (      ) was 1,951 before model selection 
(4) The number of OLS promoter models (      ) was 4,851 before model selection 
(*) Selected promoter models passed either both validation tests or the activity level test only 
(**) Selected promoter models passed either binary test and/or the activity level test 

 

 



Supplemental  Methods 

GRO-seq data preprocessing 

We downloaded raw sequence data of 245 GRO-seq samples from the Gene Expression 

Omnibus (GEO) database (Additional file 3: Table S5). First, we applied read quality control on 

each profile using the Trimmomatic tool (default parameters) [1]. From each read we trimmed 

(1) bases from Illumina Tru-seq adapters, and (2) bases with low base quality scores from both 

ends. We excluded reads with net length <30 bases. Finally, we cropped each read to the first 30 

bases from the 5’ end.   Second, we aligned the trimmed read to a set of known ribosomal RNA 

(rRNA) genes (FASTA sequences taken from NCBI: RN18S1, RN28S1, RN5, and RN5S17) using 

bowtie2 [2] (default parameters), and discarded reads aligned to rRNA genes. Third, we aligned 

the rest of the reads to hg19 reference genome using bowtie2 (default parameters). For 

subsequent analyses we used only reads that had a MAPQ score greater than 10. Fourth, we 

merged aligned reads from multiple profiles with the same sample id (via GEO GSM id) into a 

single sample. In total, our collected GRO-Seq database covered 40 studies encompassing 245 

samples from 23 cell lines, each assayed under control and stress conditions (Additional file 3: 

Table S5).  

We quantified gene transcription activity by counting the number of reads mapped 

within each (unspliced) gene. As gene models we used a single transcript per gene, constructed 

using groHMM's makeConsensusAnnotations function [3] and hg19 UCSC refGene table, 

producing 22,891 consensus genes. We only used reads mapped to the gene's transcript body in 

the range 0.5kb to 20kb downstream of the TSS. If the transcript's length was less than 20kb 

then we used only the region up to the transcript termination site (TTS). 

 To identify active enhancers in each sample, we applied dREG [4] on the aligned reads. 

dREG detects "transcriptional regulation elements" (TREs) based on symmetric forward and 

reverse read coverage relative to their center position. This symmetry is a known mark of short 

putative enhancers [5]. We merged overlapping TREs (taking the union of their locations) 

detected in different samples to create merged TREs (mTREs). We defined as enhancers mTREs 

that are either: (1) intergenic: mTREs whose center is located at least 5kb from the closest 

gene's TSS and does not overlap any gene's transcript body, or (2) intronic: mTREs that are not 

exonic and have overlap with an intron of a gene. We counted the number of reads in each 

intergenic enhancer (in both strands) and intronic enhancer (only in antisense strand) in each 

sample using BEDTools [6]. 

 The gene and enhancer expression matrices were further filtered to include only 

genes/enhancers (rows) with at least one sample (columns) with RPKM  1, in order to preserve 

only expressed genes/enhancers. Next, to focus of the analysis on differential genes, we 

calculated for each the coefficient of variation (CoV) (the ratio between the gene’s standard 

deviation   to the mean  ), and selected the most variable ones as follows: (1) we partitioned 

the genes according to their mean RPKM expression into 20 bins. (2) In each bin we retained the 



genes with CoV above the bin's median level. These two steps also reduce preference to highly 

or lowly expressed genes. The final gene matrix contained 8,360 genes, and the final enhancer 

matrix contained 255,925 enhancers. 

We defined for each gene the set of k=10 candidate enhancers located within a window 

of ±500Kb from its TSS.  

FOCS Model Implementation 

The input to FOCS is two activity matrices, one for enhancers (  ) and the other for promoters 

(  ), measured across the same samples. Activity is measured by DHS signal in ENCODE and 

Roadmap data, and by expression level in FANTOM5 and GRO-seq data. Samples were labeled 

with a cell-type label out of   cell-types. The output of FOCS is predicted E-P links.  

First, FOCS builds for each promoter an OLS regression model based on the k enhancers 

whose center positions are closest to the promoter’s center position (in ENCODE, Roadmap, and 

FANTOM5) or TSS (in GRO-seq). Formally, let    be the promoter   normalized activity pattern 

(measured in CPM - counts per million;    is a row from   ) and let    be the normalized 

activity matrix of the corresponding k enhancers (CPM; k rows from   ). We build an OLS linear 

regression model           , where    is a vector that denotes the errors of the model 

and    is the (  1)   1 vector of coefficients (including the intercept) to be estimated.  

Second, FOCS performs leave-cell-type-out cross validation (LCTO CV) by training the 

promoter model based on samples from   1 cell types and testing the predicted promoter 

activity of the samples from the left out cell type. This step is repeated   times. The result is a 

vector of predicted activity values   
      for all samples. 

FOCS tests the predicted activity values using two validation tests: (1) The binary test.  

This test examines whether   
      discriminates between the samples in which   was active 

(observed activity    1 RPKM) and the samples in which   was inactive (   1 RPKM). (2) 

The activity level test. This test calculates, for the active samples, the significance of the 

Spearman correlation between   
      and   . Spearman correlation compares the ranks of the 

original and predicted activities. We obtain two vectors of p-values, one for each test, of length 

  (the number of promoter models).  

Third, to correct for multiple testing, FOCS applies on each p-value vector the Benjamini 

- Yekutieli (BY) FDR procedure [7]. Promoter models with q-value≤   1 in either both tests or in 

the activity level test were included in further analyses. In GRO-seq analysis, we also included 

models that passed only the binary test (m=2,580) since 57% of them had        (Fig. S6B). 

For promoters that passed these CV tests final models are trained again using all samples.  

FOCS next selects informative enhancers for each final promoter model. First, to control 

the FDR due to multiple hypotheses we used the BY correction. We call this process enhancer BY 

FDR filtering (eBY). The OLS results provide for each model P-values for the coefficients of its 10 



closest enhancers. FOCS applies BY correction on the P-values produced by all models together 

and selects enhancers with q-value ≤    1. To identify the most important ones out of the 

selected (≤ 1 ) enhancers for each promoter model, FOCS applies elastic-net model shrinkage 

(enet) with a regularization parameter  , using the glmnet R function [8] with mixing parameter 

 =0.5, giving equal weights for Lasso and Ridge regularizations. We require that all the 

enhancers that survived eBY filtering will be included in the shrunken model. To achieve this we 

take the maximum   satisfying this property. For models in which no enhancer survived the eBY 

filtering, we took the maximum   yielding a shrunken model with at least one enhancer. This 

ensures that every promoter that passes the CV tests also has a model following the enet step. 

 

 

Alternative regression methods 

We compared the performance of OLS method with GLM.NB and ZINB regression methods. We 

repeated the FOCS steps but in the first step, instead of OLS we applied the GLM.NB or the ZINB 

methods. In GLM.NB/ZINB we used for    and    the raw count values instead of CPM. To 

correct the model according to differences in samples library sizes, we provided these sizes as an 

offset vector to GLM.NB and ZINB methods. 

 FANTOM5 E-P linking using OLS regression was followed by Lasso shrinkage (defined as 

OLS-LASSO) as described in [9]. Briefly, promoter models were created using OLS and models 

with        were accepted for further analyses. Next, penalized Lasso regression was used to 

reduce the number of enhancers in the models. Optimal models were selected using 100-fold 

cross validation and the largest value of lambda such that the mean square error was within one 

standard error of the minimum, using the cv.glmnet() function in R glmnet package [8].  OLS 

followed by enet (called OLS-enet) was run with mixing parameter   = 0.5 in the cv.glmnet() 

function.  OLS followed by LASSO (OLS-LASSO) was run with   1  

GO enrichment analysis 

GO enrichments were calculated using topGO R package [10] (algorithm=”classic”, 

statistic=”fisher”, minimum GO set size=10). We split the genes into target and background sets 

using their enhancer bin sets. Genes belonging to bins with 1-3/1-4/4-10/5-10 enhancers were 

considered as target set and compared to all genes from all bins as background set.  Correction 

for multiple testing was performed using BH procedure [11]. 

External validation of predicted E-P links 

We used three external data resources for validating FOCS E-P link predictions: (1) RNAPII ChIA–
PET interactions, (2) YY1-HiChIP interactions, and (3) eQTL SNPs.  
 



We downloaded 922,997 ChIA-PET interactions (assayed with RNAPІІ, on four cell lines: 
MCF7, HCT-116, K562 and HelaS3) from the chromatin–chromatin spatial interaction (CCSI) 
database [12] (GEO accession numbers of the ChIA-PET samples are provided in supplementary 
table S6). We used the liftOver tool (from Kent utils package provided by UCSC) to transform the 
genomic coordinates of the interactions from hg38 to hg19. HiChIP interactions mediated by YY1 
TF (cell types: HCT116, Jurkat, and K562) were taken from [13] (GEO accession id: GSE99521). As 
done in [13], we retained 911,190 YY1-HiChIP interactions with origami probability>0.9. Origami 
is a method that aims to find high confident interactions. For eQTL SNPs, we used the significant 
SNP-gene pairs from GTEx analysis V6 and V6p builds. 2,283,827 unique eQTL SNPs covering 44 
different tissues were downloaded from GTEx portal [14]. 

  

We used 1Kbp intervals (±500 bp upstream/downstream) for the promoters (relative to the 

center position in ENCODE/Roadmap/FNATOM5 or to the TSS position in GRO-seq) and the 

enhancers (±500 bp from the enhancer center). An E-P pair is considered supported by a 

particular capture interaction if both the promoter and enhancer intervals overlap different 

anchors of an interaction. An E-P pair is considered supported by eQTL SNP if the SNP is located 

within the enhancer’s interval and is associated with the expression of the promoter’s gene. For 

each predicted E-P pair we checked if the promoter and enhancer intervals are supported by 

capture interactions and eQTL data. We then measured the fraction of E-P pairs supported by 

these data resources.  

 

To get an empirical P-value for the significance of the fraction, we performed 100 

permutations on the data (100 permutations were sufficient as in all methods we got empirical 

P-value<0.01). In each permutation, for each promoter independently, if it had   E-P links, then   

enhancers on the same chromosome with similar distances from the gene’s TSS as the   linked 

enhancers were selected randomly. For this purpose we used the R ‘Matching’ package [15]. The 

fraction of overlap with the external data was computed on each permuted data. 

 

Statistical tests, visualization and tools used 

All computational analyses and visualizations were done in the R statistical language 

environment [16]. We used the two-sided Wilcoxon rank-sum test implemented in wilcox.test() 

function to compute the significance of the binary test. We used the cor.test() function to 

compute the significance of the Spearman correlation in the activity level test. 

Spearman/Pearson correlations were computed using the cor() function. To correct for multiple 

testing we used the p.adjust() function (method=’BY’). We used ‘GenomicRanges’ package [17] 

for finding overlaps between genomic positions. We used ‘rtracklayer’ [18] and 

‘GenomicInteractions’ [19] packages to import/export genomic positions. Counting reads in 

genomic positions was calculated using BEDTools [6]. OLS models were created using lm() 

function in ‘stat’ package[16]. GLM.NB models were created using glm.nb() function in ‘MASS’ 

package [20]. ZINB models were created using zeroinfl() function in ‘pscl’ package [21]. Graphs 

were made using graphics[16], ggplot2 [22], gplots [23], and the UCSC genome browser 

(https://genome.ucsc.edu/). 

https://genome.ucsc.edu/
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