Supplementary information for

The AFF-1 exoplasmic fusogen is required for endocytic scission and seamless tube elongation

Authors

Fabien Soulavie¹, David H. Hall² and Meera V. Sundaram¹*

¹Dept. of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America

²Department of Neuroscience, Albert Einstein College of Medicine, Bronx, New

York, United States of America

*Author for correspondence

446a Clinical Research Building

415 Curie Blvd.

Philadelphia PA 19104

sundaram@mail.med.upenn.edu

(215) 573-4527

Supplementary Figure 1: EGF-Ras signaling promotes excretory duct fate, auto-fusion and shaping (a and b) Confocal Z-projections of duct and pore cells in early L1 larvae. (a) EGF-RAS-ERK signaling promotes auto-fusion. In magenta the duct (d) and pore (p) cell bodies with dct-5pro::mCherry, and in green the junction marker ajm-1::GFP. Arrows show cell auto-junctions, arrow-heads show duct-canal junctions. (b) EGF-RAS-ERK signaling promotes lumen elongation. In magenta the duct cell body with lin-48pro::mRFP, and in green the apical domain marker rdy-2::GFP. Brackets show duct lumen position. * = cell with altered fate. In Wild type, the duct lacks an auto-junction and has an elongated lumen. In the Ras pathway mutant sos-1(cs41ts) grown at restrictive temperature and in lin-1(n304) eor-1(cs28) double mutants, the two cells adopt a pore-like fate with auto-junctions and a short lumen. The duct cell body marker *lin-48pro::mCherry* is not expressed in *sos-1(cs41ts)* (**b**) at restrictive temperature and very weakly in *lin-1(n304) eor-1(cs28)* double mutant. In the constitutively active Ras mutant *let-60(n1046gf*), the two cells fuse to make a binucleate duct-like cell without an auto-junction and with an elongated lumen. (c) schematics of phenotypes observed. (d) The canonical EGF-Ras-ERK signaling pathway leading to duct cell fate. (e) Confocal microscopy of two 1.5-fold stage embryos showing the cell junction marker ajm-1::GFP. Dorsal side up, anterior left in these and all subsequent images. At this stage, 10/17 embryos had a remaining duct auto-junction (upper panel) and 7/17 embryos showed no duct auto-junction (lower panel). Boxed regions are magnified in right panels. The arrow-head shows duct auto-junction. Scale bar = 5 μ m.

Supplementary Figure 2: Ras signaling promotes aff-1 expression and auto-fusion through LIN-1 and EOR-1 Nuclear Factors. (a) Quantification of duct and pore auto-fusion in designated mutants. In WT, only the duct auto-fuses. In aff-1(tm2214) mutants, neither cell fuses. When AFF-1 is expressed in both cells with grl-2pro, both cells fuse, including in aff-1(tm2214) or the Ras signaling mutant sos-*I(cs41ts)*. The *aff-1(tm2214)* auto-fusion phenotype is rescued by expression of *aff-1* cDNA with a 5.4kb aff-1 promoter. Later expression of aff-1 with lin-48pro is not sufficient to rescue duct auto-fusion, suggesting there is a discrete window of time when auto-fusion can occur. Most Ras pathway mutants have cell fate transformations ¹; in these cases, duct and pore refer to the dorsal and ventral cells, respectively. Both cell fuse in the *let-60/Ras(n1046)* gain of function mutant, but the auto-fusions are abolished in the double mutant aff-1(tm2214); let-60(n1046), showing that AFF-1 acts downstream of the Ras signaling pathway. For each cell, comparisons between genotypes were made by a one-tailed Fisher's Exact test and all relevant comparisons were p value < 0.0001. (b) 3-fold stage embryos of designated mutants expressing aff-1pro::NLS-GFP, showing the most common phenotype quantified in (c). d=duct cell; p=pore cell; * =cell with altered fate. (d) Model for aff-1 transcriptional regulation by Ras signaling and the nuclear factors LIN-1 and EOR-1. P-LIN-1 is the ERK-phosphorylated form of LIN-1². Dashed arrow represents potential Ras-ERK-dependent regulation of EOR-1^{3,4}. Scale bar = 5 μ m.

Supplementary Figure 3: AFF-1 is not sufficient to promote lumen elongation in Ras signaling mutants. (a and b) Confocal Z-projections of L1 stage larvae. Duct cell is labeled with *lin-48pro::mRFP* (*grl-2pro::AFF-1* and *aff-1(lf)*; *grl-2pro::AFF-1*), *dct-5pro::mCherry* (*sos-1(ts*)) or *grl-2pro::mCherry* (*sos-1(ts*); *grl-2pro::AFF-1*) (magenta). In green, cell junctions are labeled with *ajm-1::GFP* in "a", or apical domains are labeled with *let-653::SfGFP* (*grl-2pro::AFF-1* and *aff-1(lf)*; *grl-2pro::AFF-1*) or *rdy-2::GFP* (*sos-1(ts*) and *sos-1(ts)*; *grl-2pro::AFF-1* or *aff-1(tm2214)*; *grl-2pro::AFF-1*, but are shorter in *sos-1(cs41ts)* and *sos-1(cs41ts)*; *grl-2pro::AFF-1*. (c) Measurements of duct cell length tracing from the pore-duct junction to the duct-canal junction, as indicated with dotted line in panel "a" *grl-2::pro::AFF-1*. (d) Measurements of duct cell length, tracing as indicated with dotted line in panel "b" *grl-2::pro::AFF-1*. (d) Measurements of duct cell length, tracing as indicated with dotted line in panel "b" *grl-2::pro::AFF-1*. (d) Measurements of duct cell length, tracing as indicated with dotted line in panel "b" *grl-2::pro::AFF-1*. (d) Measurements of duct cell length. *= *p-value* < 0.05, Mann-Whitney test.

Supplementary Figure 4: Early conditional knock-down of *aff-1* in the duct and pore prevents excretory duct auto-fusion and tube elongation. (a) Confocal Z-projections of L1 stage larvae, d, duct; p, pore. The cell junctions are labeled in green with *ajm-1::GFP* (upper panels) or apical domains are labeled in green with *rdy-2::GFP* (lower panels) and the ZIF-1::mCherry expression pattern is labeled in magenta. The fusion protein AFF-1::ZF1 expressed by the CRISPR-Cas9 gene edited allele *aff-1(cs232, [aff-1::zf1])* is able to drive excretory duct auto-fusion and lumen elongation (left panels) and can be targeted for early degradation by the protease ZIF-1 expressed with *grl-2pro::zif-1::mCherry* (right panels) to prevent autofusion and lumen elongation. b shows quantification of the duct fusion phenotype in *aff-1 (cs232, [aff-1::zf1])* animals with various ZIF-1-expressing transgenes, including heat-shock promoter (hsp)-driven expression before (comma stage) and after (1.5-fold stage) the normal time of duct auto-fusion. Comparisons were made by one-tailed Fisher's Exact test, and all the relevant comparisons were p value < 0.0001. c and d show quantification of duct lumen length and apical domain width respectively. ****= *p*-*value* < 0.0001. Mann-Whitney test. Error bars = \pm SD. Scale bar = 5 μ m.

Supplementary Figure 5: *aff-1* mutants accumulate membrane inclusions connected to the basal plasma membrane. (a) Serial TEM sections of the *aff-1(tm2214)* L1 larva shown in Figure 5a. The upper panels show a 40,000X magnification (with duct cell post-colored in yellow), and the middle and lower panels show the boxed region at 120,000X magnification. A large membrane inclusion (*) can be observed adjacent to the cell edge. In the middle panels, the dotted lines show the position of the basal plasma membrane, and the arrowheads show three positions where the basal plasma membrane invaginates into the large membrane inclusion. The lower panels are identical to the middle panels without membrane indication. (b) TEM transverse slices of normal (*him-5(e1490)*) or *aff-1(tm2214)* L1 duct (post-colored in yellow). Asterisks indicate membrane inclusions in hypodermal cells.

Supplementary Figure 6: The duct cell accumulate lipid binding dyes. a. L1 larvae. c. L4 larvae. a and c. Confocal Z-projections. In magenta the duct (d) and pore (p) cell bodies with *grl-2pro::YFP*, and in green FM4-64 dye. (a and b) *Wild-type* L1s have little or no dye penetration after a 30 minute exposure + 30 minute recovery and a moderate penetration after a 150 minute exposure + 30 minute recovery, demonstrating endocytic activity in these cells. Scale bar = 5 μ m. (c and d) *Wild-Type* L4s have little or no dye penetration after a 30 minute exposure + 30 minute recovery, but significant penetration is observed in *aff-1(tm2214)* mutants or in the duct and pore-specific *aff-1* knock down [*aff-1(cs232, [aff-1::zf1]); grl-2pro::zif-1*. Scale bar = 10 μ m. b and d show quantification of dye fluorescence intensity in the duct, or in both the duct and pore, respectively. Note logarithmic scale. Some data points were "0" could not be shown on this scale. ***= *p-value* < 0.001, Mann and Whitney test. (e) Time lapse of Fluorescence Recovery After Photo-bleaching as shown in Figure 5d, showing the fluorescence recovery of FM4-64 in *aff-1(tm2214)* mutants. The left panel shows the complete set of data on 10 L1 larvae. The right panel shows the average and the standard deviation of the same set of data. Error bars = ± SD.

Supplementary Table 1.

C. elegans strains used in this work

strain name	full genotype		
AD281	him-5(e1490) V		
BP601	aff-1(tm2214)/mIn1 II		
SU93	jcls1(ajm-1::gfp,rol-6) IV		
UP2030	let-60, jcls1(ajm-1::gfp,rol-6) IV		
UP2042	jcls1(ajm-1::gfp,rol-6) IV;csEx256(lin-48::mRFP,unc-119)		
UP2118	unc-119 III;jcis-1(ajm-1::gfp, rol-6) IV;qnEx-59(dct-5p::mRFP), unc-119+		
UP2314	mcEx337(VHA-5::GFP, rol-6d)		
UP2369	jcls1(ajm-1::gfp,rol-6) IV;sos-1(cs41) V;qnEx59(dct-5p::mRFP)		
UP2369	jcls1(ajm-1::gfp,rol-6) IV;sos-1(cs41) V;qnEx59(dct-5p::mRFP)		
UP2594	aff-1(tm2214)/mIn1 II;jcls1(ajm-1::gfp,rol-6) IV;CsEx256(lin-48::mRFP)		
UP2595	aff-1(tm2214)/mIn1 II;jcls1(ajm-1::gfp,rol-6)IV		
UP2659	aff-1(tm2214)/mIn1 II;jcIs1(ajm-1::gfp,rol-6)IV;CsEx419(lin-48::aff-1)		
UP2684	csEx444 (let-653p::LET-653-sfGFP, lin-48p::mRFP)		
UP2726	aff-1(tm2214)/mIn1 II; jcIs1(ajm-1::gfp,rol-6)IV; csEx451 (grl-2p::aff-1, myo- 2::mRFP)		
UP2834	aff-1(tm2214)/mIn1 II; csEx444 (let-653p::LET-653-SF-GFP, lin-48p::mRFP)		
UP2874	aff-1(tm2214)/mInI II; jcIsI(ajm-1::gfp,rol-6) IV; csEx539 (aff-1p::AFF-1, myo- 2p::mRFP)		
UP2883	csIs62 (aff-1p::4*SV40::GFP, grl-2p::mRFP)		
UP2907	csls62 (aff-1p::4*SV40::GFP, grl-2p::mRFP); lin-1 (n304)/nT1g[qls51] IV		
UP2908	csIs62 (aff-1p::4*SV40::GFP, grl-2p::mRFP)/+; lin-1 (n304), eor-1(cs28)/nT1g[qls51] IV		
UP2909	csIs62 (aff-1p::4*SV40::GFP, grl-2p::mRFP); lin-1 (n1761)/nT1g[qIs51] IV		
UP2925	csIs61(RDY-2::GFP, lin-48pro::mRFP)		
UP2931	jcls1(ajm-1::gfp,rol-6) IV; sos-1(cs41,ts) V; csEx453 (grl-2p::aff-1, myo-2p::mRFP)		
UP2963	csIs62 (aff-1p::4*SV40::GFP, grl-2p::mRFP); jcis1, eor-1(cs28) IV		
UP2964	sos-1(cs41) V; csls62 (aff-1p::4*SV40::GFP, grl-2p::mRFP)		
UP3008	aff-1(tm2214) II;csEx585(aff-1p::AFF-1, lin-48p::mRFP, lin-48p::LET-653::sfGFP)		
UP3024	csEx587(grl-2p::AFF-1, lin-48p::mRFP, lin-48p::LET-653::sfGFP)		
UP3053	aff-1(tm2214)/mln1 II; jcls1(ajm-1::gfp,rol-6) IV; csEx585(aff-1p::AFF-1, lin- 48p::mRFP, lin-48p::LET-653::sfGFP)		
UP3078	aff-1(tm2214)/mIn1 II; let-60(n1046), jcIs1(ajm-1::gfp,rol-6) IV		
UP3120	lin-1(n304) IV; sos-1(cs41) V; csls62(aff-1p::4*SV40::GFP, grl-2p::mRFP)		
UP3161	lin-1(n304) eor-1/nT1[qls51] IV; csls61 (RDY-2::GFP, lin-48pro::mCherry)		
UP3176	jcls1(ajm-1::gfp,rol-6) IV;sos-1(cs41) V;CsEx677(grl-2pro::mRFP, grl-2pro::AFF-1))		
UP3177	lin-1(n304), eor-1(cs28)/nT1[qls51] IV;wls78 X; qnEx59(dct-5pro::mRFP)		

Supplementary Table 1. (Continued)

strain name	full genotype		
UP3183	aff-1(tm2214)/mIn1 II; jcls1(ajm-1::gfp,rol-6), let-60(n1046) IV; csEx444 (let- 653p::LET-653-SF-GFP, lin-48p::mRFP)		
UP3186	jcls1(ajm-1::gfp,rol-6) IV; csEx672(grl-2pro::AFF-1, lin-48p::mRFP)		
UP3187	let-60(n1046) IV; csEx444(let-653p::LET-653-SF-GFP, lin-48p::mRFP)		
UP3188	let-60(n1046) IV; csls62 (aff-1p::4*SV40::GFP, grl-2p::mRFP)		
UP3196	let-60(n1046), jcls1(ajm-1::gfp,rol-6) IV; csEx256(lin-48pro::mCherry)		
UP3199	sos-1(cs41) V; csEx680(grl-2pro::AFF-1, grl-2pro::mRFP; RDY-2::GFP)		
UP3206	aff-1(tm2214)/mIn1 II; mcEx337(vha-5::GFP, rol-6)		
UP3207	aff-1(tm2214)/mIn1 II; jcIs1(ajm-1::gfp,rol-6), let-60(n1046) IV; csEx256 (lin- 48p::mRFP)		
UP3430	csEx813(grl-2pro::YFP)		
UP3431	csEx814 (aff-1pro::aff-1::mCherry, grl-2pro::YFP)		
UP3476	aff-1(cs232, [aff-1::ZF1, sqt-1(d), hs::cre, hygroR]) II; jcls1(ajm-1::gfp,rol-6) IV; csEx749 (grl-2pro ::zif-1, CC ::GFP)		
UP3486	aff-1(cs232, [aff-1::ZF1, sqt-1(d), hs::cre, hygroR]) II; rdy-2 (cs233,[rdy-2::GFP]); csEx749 (grl-2pro ::zif-1, CC ::GFP) V		
UP3488	aff-1(cs232, [aff-1::ZF1, sqt-1(d), hs::cre, hygroR]) II; rdy-2 (cs233,[rdy-2::GFP]) V		
UP3521	aff-1(cs232, [aff-1::ZF1, sqt-1(d), hs::cre, hygroR]) II; rdy-2 (cs233,[rdy-2::GFP]) V; csEx847(hsp::zif-1::mCherry, ajm-1::mCherry)		
UP3532	let-60(n1046) IV; csIs61(RDY-2::GFP, lin-48pro::mRFP)		
UP3538	rab-11(tm2063)		
UP3558	dyn-1(ky51ts) X; rdy-2 (cs233,[rdy-2::GFP]) V		
UP3564	chc-1(b1025ts) III/hT2[bli-4(e937) let-?(q782) qls48]; rdy-2 (cs233,[rdy-2::GFP]) V		
UP3563	rab-5 (ok2605) l/hT2[bli-4(e937) let-?(q782) qls48]; rdy-2 (cs233,[rdy-2::GFP]) V		

Supplementary Table 2.

Transgenes used in this work

r			
Name	Description	Туре	Construction
csEx527	aff-1p::4*SV40::GFP, grl-	multi-copy external	Injection of pFS115 (30 ng μL^{-1})
	2pro::mCherry	chromosomal array	and pFS107 (30 ng µL-1)
	aff-1p::4*SV40::GFP, grl-	manifi a a manifica a mia al	Insertion of csEx527
CSIS62	2pro::mCherry	multi-copy inserted	
csEx680	grl-2pro::AFF-1, grl-	multi-copy external	Injection of pFS108 (30 ng µL-1)
	2pro::mRFP; RDY-2::GFP	chromosomal array	and pCFJ90 (2 ng µL-1)
csEx539	aff-1pro::AFF-1, myo-	multi-copy external	Injection of pFS122 (30 ng µL-1)
	2p::RFP	chromosomal array	and pCFJ90 (2 ng µL-1)
00Ev410	lin-48pro::AFF-1, myo-	multi-copy external	Injection of pFS102 (30 ng µL-1)
CSEX419	2p::RFP	chromosomal array	and pCFJ90 (2 ng µL-1)
00 Ev 451	grl-2pro::aff-1, myo-	multi-copy external	Injection of pFS108 (30 ng µL-1)
CSEX401	2p::RFP	chromosomal array	and pCFJ90 (2 ng µL-1)
	aff-1pro::AFF-1, lin-	multi conv ovtornal	Injection of pFS122 (30 ng µL-1),
csEx585	48p::mCherry, lin-	nulli-copy external	pJAF2 (5 ng/µl) and pHS4 (50 ng
	48p::LET-653::sfGFP	chiomosomai array	μL-1)
	grl-2p::AFF-1, lin-	multi conv oxtornal	Injection of pFS108 (30 ng µL-1)
csEx587	48p::mCherry, lin-	chromosomol orrov	and pJAF2 (5 ng µL-1) and pHS4
	48p::LET-653::sfGFP	chromosomai array	(50 ng µL-1)
00Ev742		multi-copy external	Injection of pFS107 (30 ng μ L-1)
CSEX/42	gn-zpromcherry	chromosomal array	
00Ev740	art 2pro vizif 1 CC viCED	multi-copy external	Injection of pFS133 (30 ng µL-1)
CSEX749	gn-zprozn- 1, CCGFF	chromosomal array	and CC::GFP ? (30 ng µL-1)
csEx740	hsp-16-41pro::zif-	multi-copy external	Injection of pSA120 (30ng µL-1)
	1::mCherry, myo-2::GFP	chromosomal array	and <i>myo-2::GFP</i> (4 ng µL-1)
	hsp-16-41pro::zif-	multi-copy external chromosomal array	Injection of $pSA120$ (30 pg μ L 1)
csEx847	1::mCherry, ajm-		and $pKM15$ (30 ng μ L - 1)
	1::mCherry		
csEx814	aff-1pro::aff-1::mCherry,	multi-copy external	Injection of pFS145 (5 ng µL-1) and
	grl-2pro::YFP	chromosomal array	pFSKM15 (20 ng µL-1)
cs232	aff-1(cs232, [aff-1::ZF1,	CRISPR-Cas9	See meterials and methods
	sqt-1(d), hs::cre, hygroR])	generated allele	See materials and methous
cs233	rdy 2(22) [rdy 2) rdy	CRISPR-Cas9	Saa matariala and mathada
	ray-2(CS233, [ray-2::gfp])	generated allele	See materials and methods

Supplementary Table 3.

PCR primers used in this work

Name	Sequence		
oFS-5	tgtaccGGTACCaaaatgcgactgtggcaatggt		
oFS-6	tgtaccGCTAGCttagtaatcagatgaattcttc		
oFS-7	tgtaccGCTAGCaaaatgcgactgtggcaatggt		
oFS-8	tgtaccGGTACCttagtaatcagatgaattcttc		
oFS-23	gggaaaGGTACCATCGAGTGCGTCAGATTAGC		
oFS-24	gggaaaGATATCGCTCAGTTGAGGCCTATCG		
oFS-45	tgtaccgtcgacGGATGAGACAAAAGAAGATTG		
oFS-46	tgtaccCCCGGGCTGAAATTAAATAATTATAGGC		
oFS-64	cgctACCGGTagctCCGCGGgtaatcagatgaattcttcttt		
oFS-69	tgtaccGCTAGCaaaATGAGTGAGTGTTCCGCGAGTACC		
oFS-70	ggacCTACTTATACAATTCATCCATGCC		
oFS-130	GttactaaaagctcattcacaGTTTTAGAGCTAGAAATAGCAAGT		
oFS-131	GAAAAATGCAGGAAAGTAAGTGTTTTAGAGCTAGAAATAGCAAGT		
oFS-140	TGCGCCGCGGATGGTCTCAAAGGGTGAAGAAG		
oFS-141	CGACACCGGTCTACTTATACAATTCATCCATGCC		
oFS-142	cggccagtcgccggcagctcaatgggtgtgtattcttccc		
oFS-143	TCGCGTTTTGTATTCTGTgtaatcagatgaattcttctttttc		
oFS-144	tgattacACAGAATACAAAACGCGACTTTG		
oFS-145	GTACAGATTCTCttaCCTCGGAACTCTCAGCTCATC		
oFS-146	GTTCCGAGGtaaGAGAATCTGTACTTTCAATCCGG		
oFS-147	gtgtgaatgagcttATAACTTCGTATAATGTATGCTATACG		
oFS-148	TACGAAGTTATaagctcattcacacggtgaatcc		
oFS-149	cagctatgaccatgttataaaatcctttaaggcacgcc		
oFS-150	ggattttataacatggtcatagctgtttcctg		
oFS-151	tgagctgccggcgactggccgtcg		
oFS-167	acgttgtaaaacgacggccagtcgccggcaGATGGGCAGTTGCGGCGg		
oFS-168	CATCGATGCTCCTGAGGCTCCCGATGCTCCAAATGAAGATCGGATGGTACG		
oFS-169	CGTGATTACAAGGATGACGATGACAAGAGATGAatgaattccaaattcccaagaaatcga		
oFS-170	ggaaacagctatgaccatgttatcgatttcTCGTCGCTACACATCATGCC		
oFS-171	ggtgagtgcacgttgtttcg		
oFS-172	gtttgatctacaggtattgcgg		
oFS-173	gatcaaacggtgagtgcacgGTTTTAGAGCTAGAAATAGCAAGT		

Supplementary Table 4.

DNA plasmids used in this work

Name	description	backbone	method
pFS127	<i>aff-1pro</i> empty	pPD49.26	<i>aff-1</i> promoter PCR amplified from WRM0615dE03 with primers oFS-45 and oFS-46 and cloned into pPD49.26 (Addgene) as a Sall/Xmal digestion product
pFS115	aff- 1pro::4*NLS ::GFP	pPD49.26	4*SV40::GFP was PCR amplified from pPD121.83 (Addgene) with primers oFS-130 and oFS-131, and inserted as a Blunt Ended/NheI fragment in pFS127
pFS102	lin- 48pro::aff-1	pPD49.26	<i>aff-1</i> cDNA PCR amplified from pIZT::aff-1 with primers oFS-7 and oFS-8 and cloned into pJP49 as a Nhel/KpnI digestion product
pFS108	grl-2pro::aff- 1	pPD49.26	<i>aff-1</i> cDNA PCR amplified from pIZT::aff-1 with primers oFS-7 and oFS-8 and cloned into pJC2 as a Nhel/KpnI digestion product
pFS122	aff-1pro::aff- 1	pPD49.26	<i>aff-1</i> cDNA PCR amplified from pIZT::aff-1 with primers oFS-7 and oFS-8 and cloned into pFS127 as a Nhel/KpnI digestion product
pFS145	aff- 1pro::AFF- 1::mCherry	pPD49.26	PCR amplification of <i>aff-1</i> cDNA without stop codon by oFS-7 and oFS-64 and in frame addition of <i>mCherry</i> coding sequence, PCR amplified from pSA120 (Addgene) with oFS-140 and oFS-141
pFS107	grl- 2pro::mCher ry	pPD49.26	PCR amplification of <i>grl-2pro</i> from pKM15 with oMS- 201 and oMS-203, and clone as Sph1-BamH1 fragment into pPD49.26 to obtain pJC2, and <i>mCherry</i> coding sequence was PCR amplified from pMH4 (Max Heiman) with oFS-23 and oFS-24 and was inserted as KpnI-EcoRV
pFS133	grl-2pro::zif- 1::mCherry	pPD49.26	PCR amplification of <i>zif-1::mCherry</i> from pSA120 with oFS-69 and oFS-70 and inserted into the pPD49.26 derivatives, pJC2 (<i>grl-2pro</i>)
pFS135	lin- 48pro::zif- 1::mCherry	pPD49.26	PCR amplification of <i>zif-1::mCherry</i> from pSA120 with oFS-69 and oFS-70 and inserted into the pPD49.26 derivatives, pJP49 (<i>lin-48pro</i>)
pFS144	Peft-3::Cas9 + aff-1 sgRNA	pDD162	See material and methods for full description
PRFR55	Peft-3::Cas9 + rdy-2 sgRNA	pDD162	See material and methods for full description
pFS146	AFF-1 repair templates + ZF1^SEC^S TOP	pDD282	See material and methods for full description
pRFR56	RDY-2 repair templates + GFP^SEC^3 xFlag	pDD282	See material and methods for full description

Supplementary references:

- 1. Abdus-Saboor I, *et al.* Notch and Ras promote sequential steps of excretory tube development in C. elegans. *Development* **138**, 3545-3555 (2011).
- 2. Jacobs D, Beitel GJ, Clark SG, Horvitz HR, Kornfeld K. Gain-of-function mutations in the Caenorhabditis elegans lin-1 ETS gene identify a C-terminal regulatory domain phosphorylated by ERK MAP kinase. *Genetics* **149**, 1809-1822 (1998).
- 3. Howard RM, Sundaram MV. C. elegans EOR-1/PLZF and EOR-2 positively regulate Ras and Wnt signaling and function redundantly with LIN-25 and the SUR-2 Mediator component. *Genes Dev* **16**, 1815-1827 (2002).
- 4. Howell K, Arur S, Schedl T, Sundaram MV. EOR-2 is an obligate binding partner of the BTB-zinc finger protein EOR-1 in Caenorhabditis elegans. *Genetics* **184**, 899-913 (2010).