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Supplementary Note 1: Definitions

ROBUST PERFECT ADAPTATION (RPA): In this work, the term perfect adaptation is understood to describe
a response of a "connected and transmissive" network (as defined below) in which a designated output
node always returns to the same steady state (its "set point", or reference/baseline level) regardless of
the level of stimulus delivered to a designated input node. Moreover, ‘robust perfect adaptation’ (RPA) is
taken to describe perfect adaptation that is (a) not dependent on particular parameter choices (cf. tunable
perfect adaptation), and (b) is able to be implemented over a wide range of stimulus strengths, failing
only when abundances of one or more network components become limiting. We also consider that the
perfectly-adaptive steady-state of the output node should not be limited to trivial steady-states alone, eg.
the steady-state activation necessarily returns to zero in response to a change in stimulus at the input node.
We comment on the notion of RPA in the special case of trivial steady states only (eg. "state-dependent
inactivation", as identified by [8]) in Supplementary Note 6.

DEFINITION OF A NETWORK FOR THE RPA PROBLEM: We consider a network to be formed by the interac-
tions of collection of p ∈Z+ interacting molecules (eg. proteins, RNA transcripts, genes, or a combination
of these entities). These nature of these interactions will give rise to a number (say, n ∈Z+) of entities which
have the status of nodes.

A node is taken to be any entity that can encode and/or transmit a biochemical signal; most com-
monly a node corresponds to a molecule (its concentration or a particular activation state), a complex of
molecules, or even a mathematical function of multiple biomolecular entities (see example discussed in
Supplementary Note 5 (Supplementary Figure 17) for instance). Moreover, a node has the distinguishing
feature of undergoing changes in its activity due to the influences of other nodes in the network. The
concept of activity is to be understood in a very general sense here: in many contexts, protein activity
may be governed by the status of its post-translational modifications; in contexts such as transcription
networks or other gene regulatory networks, on the other hand, activity could simply refer to the expression
level (abundance/concentration) of the molecule. Protein nodes, in particular, may assume the form
of covalent modification cycles where the node undergoes interconversion among multiple activation
states (commonly two, but sometimes more) via enzyme-catalysed reactions. In these cases, the node
itself is represented by the active form of the protein; if more than one active form exists, all activation
states are to be considered separate nodes. In cases where a node represents a mathematical function of
certain signaling molecules (a ratio of pro- and anti-antiapoptotic factors, say, or a product of molecular
concentrations (see Supplementary Note 5), the activity of the node is simply the numerical value of the
quantity in question.

The nodes of a network thus form the essential structure or ‘backbone’ of the network and are the
only quantities that require explicit consideration as variables in the mathematical formulation of the RPA
problem. The remaining "non-nodal" network components play other ancillary roles in the transmission
of biochemical signal through the network, and could include such elements as scaffolds, adaptor proteins,
second messengers, say; the presence of such molecules need only be considered implicitly via their
contribution to network parameters.

Moreover, in the study of robust perfect adaptation, we are interested in the question of how a particular
node responds to the influence of a perturbation at some other specific location in the network. For this
reason, of the n network nodes P1, . . . ,Pn , two nodes are accorded a special status: (1) an input node, which
is subjected to a signal or perturbation from outside the network, and (2) an output node, which is the
‘endpoint’ of interest. The input node and output node may be separate nodes, but can in principle be one
and the same node. In the context of RPA, a network is considered ‘robustly perfectly adaptive’, or an RPA
network, if and only if the output node always returns to the same activity level following any persistent
alteration to the incoming signal received at the input node. While in many RPA networks, nodes other
than the output node may also exhibit the RPA property (ie a perfectly adaptive response), only the output
node is required to exhibit the RPA property in order for the network as a whole to be considered an RPA
network. We emphasise also that RPA is a qualitative behaviour and independent of the magnitude of the
steady-states of any of the network nodes.
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CONNECTED AND TRANSMISSIVE NETWORKS: To play a role in RPA, a network node must be both connected
and transmissive according to the following definitions.

Any node other than the input/output node(s) is connected if it influences the activation/deactivation
rate of at least one other node in the network and is itself influenced by at least one other node. An input
node is connected if its activation/deactivation rate is influenced by some signal or perturbation from
outside the network (the ‘input’, I ) and itself influences the activation/deactivation of one or more other
nodes. An output node is connected if its activation/deactivation is influenced by at least one other node.
Optionally, each of the n nodes may also influence their own activation/deactivation (‘autoregulation’), the
input node may also be activated/deactivated by one or more other nodes, and the output node may also
activate/deactivate one or more other nodes.

Moreover, a node is considered transmissive if there exists at least one direct or indirect chain of node-
node interactions linking the node to the input node, and at least one direct or indirect chain of node-node
interactions linking it to the output node.

Thus, for the purposes of the RPA problem, a network is restricted to those nodes that are both
connected and transmissive for a given choice of input and output nodes, permitting a mathematical
analysis of the transmission of biochemical signal from input to output in response to alterations in the
system input.

TIMESCALE OF RPA AND NETWORK FIXITY: We consider the RPA problem in the context of a network that
has the property of fixity on the timescale of adaptation. That is, nodes are not created or destroyed on the
timescale of adaptation, nor are interconnections between the nodes or their fundamental nature (ie. the
characteristic of being activating or inhibitory) created or destroyed on this timescale.

REACTION-KINETIC AXIOMS: In the interests of generality, we wish to make no a priori assumptions
as to the qualitative or quantitative aspects of chemical reaction rates (and their dependencies on the
activities/abundances of individual reactants) involved in the transmission of biochemical signal among
nodes. In particular, we do not appeal to any established reaction law or kinetic model, such as Mass Action
kinetics, Michaelis-Menten kinetics, or cooperative kinetics. Indeed, it is one of the objectives of this work
to identify the constraints on reaction kinetics that are required for a network to exhibit RPA.

On the other hand, we do insist that all network reactions conform to the following general properties
of biomolecular interactions and enzyme-catalysed reactions:

1. The activities (or abundances) of all nodes must always be non-negative;

2. The input signal (or perturbation) to the network, I , may be either positive or negative, depending
on the nature of the input. Positive values reflect an activating influence on the input node, while
negative values correspond to an inhibitory influence;

3. Under conditions of network fixity (see definition in the previous section), the influence of a node on
any particular reaction in the network must be either always activating in nature, or always inhibitory
in nature, or zero (no influence). In other words, a node cannot alternate between activating and
inhibitory roles in a particular reaction for different regions of the network’s state space;

4. The reaction rate of each node should be a smooth function of the activities of each of the reactant
nodes;

5. In studying the problem of RPA in generality, we restrict attention to networks that have the ability,
at least in principle, to possess a non-trivial steady-state. This could be achieved, for instance, by
reactions comprising two independent opposing reactions (eg. in a covalent modification cycle such
as phosphorylation/dephosphorylation, or in the synthesis/degradation of a gene product.)
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Supplementary Note 2: The Mathematical Theory of Robust Perfect
Adaptation (RPA)

SN2.1 Mathematical Basis of RPA

Although ‘asymptotic tracking’ problems (of which the RPA problem is a special case) have been extensively
studied in engineering control systems [9, 10, 21], we wish to develop a mathematical framework for which
topological information may readily be established for the self-organising, self-regulating, evolvable RPA
networks that occur in biology.

To this end, we consider a signaling network comprising n nodes, P1,P2, . . . ,Pn , as defined in Supple-
mentary Note 1, with a designated input node, PI , I ∈ {1, . . . ,n}, which receives the input, I , to the network.
The activity of such a network may be encoded by a set of n equations with general forms:

dPI

d t
= f I (P1, . . . ,Pn ,I )

dPi

d t
= fi (P1, . . . ,Pn), i ∈ {1, . . . ,n}, i 6= I ,

(1)

where f I :Rn+1 →R and fi :Rn →R denote the net activation rates at the respective nodes.
The differential of f = [ f1, . . . , fn]T is then

df = Jn dP+ ∂ f I

∂I
eIdI , (2)

where df = [d f1, . . . ,d fn]T , dP = [dP1, . . . ,dPn]T , Jn = ∂( f1,..., fn )
∂(P1,...,Pn ) is the n ×n Jacobian matrix of f, and eI is

the unit vector along the coordinate axis associated with the variable PI (ie. the designated input node).
For a given value of I , a steady-state of the network, assuming at least one exists, will be denoted by

πn = {P∗
1 , . . . ,P∗

n }. Hereafter, a superscript asterisk always denotes the steady-state activity of the associated
node. Viewing I as a continuous parameter, the network steady-states defined by f = 0 form a one-
dimensional manifold embedded in Rn – a steady-state trajectory. In general, multiple steady-states could
exist for some or all values of I . In Supplementary Note 8, we note the conditions for the topological
conjugacy of the linearized network to the corresponding non-linear network.

The fundamental question we address in the present work may now be expressed as follows: what are
the characteristics of any n-node network, topologically and chemically (in terms of reaction-kinetics), that
constrain that network to a steady-state trajectory that is embedded entirely within an (n −1)-dimensional
affine subspace of Rn , defined by P∗

O = K , where P∗
O is the steady-state activity of the designated output

node, and K is some ‘constant’ that depends only on network parameters (kinetic rate constants, say). Now,
from Equation (2), the steady-state trajectory satisfies

dP∗

dI
=−J−1∗

n

∂ f ∗
I

∂I
eI

=−adj(J∗n )

det(J∗n )

∂ f ∗
I

∂I
eI.

For the purposes of clarity, the superscript asterixes will hereafter be omitted from the Jacobian deter-
minants and their component partial derivatives. From here onwards, these terms will always be taken to
be evaluated at the network’s steady-state, unless specified otherwise.

Then, the sensitivity of the designated output node (PO)’s steady-state to the input is expressed by

dPO

dI
=−∂ f I

∂I

det(MIO)

det(Jn)
, (3)

where MIO is the (n −1)× (n −1) ‘input-output minor’ of Jn , ie. the matrix obtained by removing the ‘input
row’ and the ‘output column’ from Jn .
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Now, robust perfect adaptation of the network, as defined earlier, requires dPO
dI = 0 for all I and all πn .

Therefore, RPA is implemented exactly when det(MIO)/det(Jn) = 0, which requires

det(MIO) = 0, and (4)

det(Jn) 6= 0, (5)

for all I and allπn . Hereafter, we refer to the condition (4) as the RPA equation, and (5) as the RPA constraint.

We note in passing here that Equation (3) suggests a special case of RPA that occurs when ∂ fI
∂I = 0. We

consider this special case in Supplementary Note 6.
We also observe that the RPA equation is a potentially huge equation in general, comprising some

subset of the (n − 1)! terms corresponding to a "fully-connected" network of n nodes. A fifteen node
network, for instance, results in an RPA equation of up to 8.7 x 1010 terms. Doubling the network size to
thirty nodes produces an RPA equation of up to 8.8 x 1030 terms (see Supplementary Table 1 below).

Hence, our goal is to identify the set of all topological and chemical/reaction-kinetic constraints (ie. the
set of arguments, and the functional form, for each fk (k ∈ {1, . . . ,n}) in Equations (1)) imposed by (4) and
(5) together.

SN2.2 Mathematical Form of the Reaction-Kinetic Axioms

The set of reaction-kinetic axioms outlined in Supplementary Note 1 may now be restated in mathematical
terms:

1. Pk ∈R+ for all k ∈ {1, . . . ,n};

2. I ∈R;

3. Each reaction fk (P1, . . . ,Pn) must be a monotone function with respect to each of its arguments

Pm individually. That is, ∂ fk
∂Pm

must be either always non-negative or always non-positive for any
k,m ∈ {1, . . . ,n}; it cannot change sign;

4. ∇ fk (for all k ∈ {1, . . . ,n}) must exist for all I ;

5. Each fk (k ∈ {1, . . . ,n}) must be expressible in a form fk = f (+)
k − f (−)

k , where f (+)
k represents the activat-

ing/synthesizing contribution to the overall reaction and f (−)
k represents the deactivating/degrading

contribution.

Supplementary Table 1: Network Complexity Grows Factorially with the Number of Network Nodes

Number of Network Nodes, n Maximum Number of Terms in the RPA Equation = (n −1)!

3 2
4 6
6 120

10 362,880
15 8.7 x 1010

20 1.2 x 1017

30 8.8 x 1030
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SN2.3 Topological Interpretation of the RPA Equations

Before developing a mathematical solution to the RPA problem, it is expedient to make explicit the rela-
tionship of the mathematical terms det(Jn) and det(MIO), which appear in the RPA conditions (4) and (5),
to the network’s topology and reaction kinetics.

Consider that each factor in each term of Jn is an element of the form ∂ fa
∂Pb

, evaluated at the network’s
steady-state. When a 6= b, we can consider such an element to represent a link, since it reflects the
sensitivity, at steady-state, of the reaction rate at node Pa to the activity of node Pb - in a sense, the ‘strength’
of the network interaction from node Pb to node Pa , ie. Pb → Pa . Moreover, a positive value for such a
quantity reflects an activating influence of Pb on Pa , while a negative value indicates an inhibitory influence.
Quantities of this form, in encoding the strength and nature of the interactions among network nodes,
are fundamentally topological quantities; together, they establish the interconnectedness of the network.

When ∂ fa
∂Pb

= 0, either node Pb does not regulate the activity of node Pa , or the reaction is "saturated" with
respect to Pb ; either way, we consider the link Pb → Pa to be absent.

On the other hand, the terms residing on the Jacobian diagonal, where a = b, are not related to the
interconnectivity of nodes and are thus not topological quantities. Rather, these terms reflect the sensitivity
of a node’s reaction kinetics at steady-state to the node’s own activity, and are thus node-specific reaction-
kinetic terms. We may consider these terms to be 1-node cycles (or simply ‘1-cycles’). It follows from our
stated requirement for individual nodes to be able to possess a non-trivial steady state that the numerical
value of these 1-cycles will always be non-positive. Importantly, these reaction-kinetic quantities may be
identically zero under certain circumstances (to be discussed in Supplementary Note 3) - a property that
does not affect the topology of the network. In other words, these are the only factors within the terms of
det(Jn) and det(MIO) that can assume a zero value without removing any links from the network. Because
of this special property, it is convenient to give these quantities a special name - kinetic multipliers - for
reasons that will become clear as the analysis proceeds.

Definition 1. The kinetic multiplier for the node Pk , k ∈ {1, . . . ,n}, is the quantity ∂ fk
∂Pk

evaluated at the
network steady-state.

We now employ these ideas to formulate a network interpretation of det(Jn). It follows from the
properties of the determinant that each of the n! terms in the expansion is a unique product of n links
and 1-cycles (kinetic multipliers) in which each of the n network nodes appears exactly once as ‘the node’
and exactly once as ‘the regulator’. Thus, from a topological point of view, each term represents a unique
combination of network circuits - either a single network circuit comprising all n nodes (hereafter, an

‘n-cycle’), or the product of m pi -cycles (
m∑

i=1
pi = n) in which each network node participates in exactly one

cycle; the m cycles are thus disjoint. We further note that each such ‘cycle product’ is sign adjusted, being
prefixed by either a positive or negative sign. Thus, det(Jn) represents the sum of all possible sign-adjusted
cycle-products for an n-node network.

Now, we further note that det(MIO) is the cofactor of the element ∂ fI
∂PO

(the link from the output node
to the input node, PO → PI ) in the expansion for det(Jn). It follows that det(MIO) may be extracted from

det(Jn) by: (i) first eliminating every term in det(Jn) that do not contain ∂ fI
∂PO

among its factors, then (ii)

for the terms that remain, canceling the common ∂ fI
∂PO

link. Since each term of det(Jn) is a product of
disjoint network cycles, removing the link PO → PI from its circuit in corresponds to ‘breaking open’ the
circuit to yield a ‘route’ through the network from PI to PO . Thus, each term in the expansion for det(MIO)
comprises a particular route through the network from input node to output node, along with a cycle-
product comprising all network nodes that are disjoint from that route. The term retains the sign prefix of
the parent-term in the det(Jn) expansion; the full det(MIO) expansion thus comprises all (n −1)! possible
sign-adjusted route-cycle combinations for an n−node network.

For explanatory convenience in the analysis to follow, it is helpful to make explicit the distinction
between cycles involving a single node (kinetic multipliers, which do not play a topological role in the
solution to the RPA problem) and cycles involving multiple nodes (which do play a topological role in the
problem).
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Definition 2. For an n-node network, a k-cycle in its RPA equation, for 2 ≤ k ≤ n is a circuit.

We now consider the signs of the various terms of det(Jn) and det(MIO). For later explanatory conve-
nience, we introduce the following definitions:

Definition 3. The native sign is the sign which prefixes the term in the original determinant expansion.

Definition 4. In a particular concrete realisation of a network, the individual factors within each term will
take on a sign that reflects whether the node-node interaction encoded by that factor is an activating one
(positive sign) or an inhibitory one (negative sign). We refer to the product of all such signs, over all factors
for the individual term in question, as the term’s influence sign.

Definition 5. The net sign for each term of the RPA equation is the product of its native sign and its influence
sign.

At this point in our exposition, we note that the native sign is a reflection of the number of cycles
present in that term. We make this notion precise by the following Proposition:

Proposition 1. The native sign of each term of the RPA equation is given by (−1)z+n+1, where n is the number
of nodes in the network and z is the number of distinct cycles present in the term.

Proof. First we consider the signs associated to each term in detJn , noting that, by definition

detJn =Σ(−1)k ∂ f1

∂Pb1

∂ f2

∂Pb2
. . .

∂ fn

∂Pbn
, (6)

where the denominator subscripts b1,b2, . . . ,bn are equal to 1,2, . . . ,n, taken in some order - there being
n! such orderings and thus n! such terms in the summation. The exponent k represents the number of
pairwise interchanges of elements in order for these denominator subscripts to be placed in the order
1,2, . . . ,n.

Now, we note that a particular term produced by this ordering is ∂ f1
∂P1

∂ f2
∂P2

. . . ∂ fn
∂Pn

, which represents n
1-cycles (being the maximum number of cycles in a term for the determinant of Jn). We further observe

that the pairwise interchange of denominator subscripts for any two component factors ∂ fi
∂Pi

∂ f j

∂P j
of this

term will effectively join the two associated 1-cycles into a single 2-cycle, ∂ fi
∂P j

∂ f j

∂Pi
.

Indeed, each factor is a component of a cycle. Interchanging two denominator subscripts from factors
contributing to separate cycles joins the associated two separate cycles into a single one; by contrast,
interchanging two denominator subscripts from factors in the same cycle separates that circuit into two

individual cycles. For example, considering the 4-node cycle represented by ∂ f2
∂P1

∂ f3
∂P2

∂ f4
∂P3

∂ f1
∂P4

, exchange of

the denominator subscripts 2 and 3 yields ∂ f2
∂P1

∂ f3
∂P3

∂ f4
∂P2

∂ f1
∂P4

, which represents a 1-cycle (node 3) and a 3-cycle
(involving nodes 1, 2 and 4).

Thus, each interchange increases OR decreases the number of cycles contained in a term by exactly
1. Now, the term representing n 1-cycles (being the identity permutation of denominator subscripts) is
necessarily prefixed by a positive sign. Thus, from the above argument, it is clear that if n is even, all terms
containing an even total number of cycles will also be prefixed by a positive sign , and all terms with an
odd total number of cycles will be prefixed by a negative sign. Similarly, if n is odd, all terms containing
an odd number of cycles will be prefixed by a positive sign and all terms with an even number of cycles
will be prefixed by a negative sign. Thus, for all n, the native sign of each term is given by (−1)z+n , where z
(1 ≤ z ≤ n) is the number of distinct cycles present in the term.

Having established the native sign for any term of detJn , we observe that the terms of detMIO may
be obtained from the set of terms of detJn , and thus inherit their native signs from the parent terms in
detJn . In particular, we recall here that detMIO may be obtained from detJn in the following manner: First,

all terms that do not contain the factor ∂ fI
∂PO

are discarded from detJn . (For those terms that now remain -

those that do contain ∂ fI
∂PO

- the native sign is as described above.) Second, the factor ∂ fI
∂PO

is cancelled from

term, ‘breaking open’ the cycle to which ∂ fI
∂PO

contributes, and thereby forming a route from PI to PO . In
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this way, the number of cycles in each term is reduced by exactly one. It follows that the native sign of each
term of the RPA equation is given by (−1)z+n+1.

Corollary 1. For a given network, if all cycles have a negative influence sign, then the net sign of each term
of the RPA equation is determined solely by the influence sign of the route component of that term. That is,
for a given network, terms with a negative route will have the opposite sign from terms with a positive route.

We remark in closing that for any particular network, a route or a circuit will be absent from the
expansions for det(MIO) and det(Jn) (and from the associated network) if at least one of its links is absent.
Thus, in general, det(Jn) for a particular network will comprise η cycle-products, with 1 ≤ η ≤ n!, and
det (MIO) will comprise µ route-cycle combinations, with 1 ≤µ≤ (n −1)!.

SN2.4 Networks where a Single Node Acts as Both Input Node and Output Node

We must consider also the possibility of a special case where the input node and the output node are one
and the same node. Denoting this single node by PI , we can examine the topological interpretation of
det(MI I ). To this end, we note that det(MI I ) may be obtained from det(Jn) by (i) first, eliminating all terms

that do not involve the kinetic multiplier ∂ fI
∂PI

in that expansion, then (ii) cancelling this kinetic multiplier
∂ fI
∂PI

from each remaining term. Taking account of the topological interpretations of terms described in
the preceding section, along with the notions of sign-adjustment presented there, it follows that det(MI I )
represents the set of all (sign-adjusted) disjoint cycle combinations that do not involve the node PI (the
input/output node). There are thus no routes present in a network in which the input and output nodes
are a single node; only circuits and kinetic multipliers exist in such a network.
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Supplementary Note 3: General Solution to the RPA Problem and the
Mechanisms of Robust Perfect Adaptation

SN3.1 General Principles

Our goal is to identify all the possible network topologies whose RPA equation (4) admits a solution,
subject to the RPA constraint (5). In other words, we want to consider the RPA problem topologically, and
in complete generality - for networks of any size (number of nodes), any complexity (interconnectivities
among nodes) and any types of chemical reaction mechanisms governing the interactions among nodes.

As noted in Supplementary Note 2, a network with n nodes has an RPA equation with up to (n −1)!
terms, and an RPA constraint with up to n! terms, both of which must be satisfied for all inputs I ∈ R
and all network steady-states, πn . Thus, for a network comprising just ten nodes, the RPA equation could
contain as many as 362,880 terms, with an RPA constraint of as many as 3,628,800 terms - an enormous,
and consequently complex, equation to solve in full generality.

We proceed as follows: Let R be the set of all (signed) terms in the RPA equation for an n-node network.
The central idea in arriving at a general solution to the RPA problem is the concept of a ‘minimally adaptive’
(MA)-subset, and the partition of R into a collection of disjoint MA-subsets which cover R.

Definition 6. A minimally adaptive subset of R (hereafter, an MA-subset) is a non-empty set that satisfies
the following two conditions:

1. The sum of its constituent terms is identically zero for all I and all πn , making it an ‘adaptive’ set.

2. The set cannot be further subdivided into smaller subsets whose elements sum to zero independently.
In other words, the set cannot be expressed as the union of disjoint adaptive sets. It is thus a ‘minimally’
adaptive set, because all its terms are strictly required for it to be adaptive.

From this definition, it is immediately apparent that there are two fundamentally different types of
MA-subsets: S-sets and M-sets.

Definition 7. An S-set is a singleton MA-subset. In an S-set, the single constituent term is identically zero for
all I and all πn .

Definition 8. An M-set is a multi-term MA-subset. In an M-set, constituent terms are strictly non-zero for all
I and all πn .

Now, consider the conditions under which an arbitrary collection of terms selected from R has the
potential to form an MA-subset. To this end, we note that to any such subset we can associate two
equations:

1. A local adaptation equation (LAQ). The LAQ is formed by equating the sum of the terms to zero, such
that all terms are required to solve the equation (thereby making it an MA-subset).

2. A complementary adaptation equation (CAQ). The CAQ is formed by equating the terms of the
complement in R of the MA-subset to zero, not necessarily minimally.

Definition 9. An internally valid MA-subset is one for which a solution exists to its LAQ for all I and all πn .

Definition 10. A relatively valid MA-subset is one for which a solution exists to its CAQ for all I and all πn .

Definition 11. An MA-subset that is both internally and relatively valid is a valid MA-subset.

Where a valid MA-subset can be identified, the problem reduces to an analysis of its complement in R

which is either (i) itself minimally adaptive, or (ii) can be further partitioned into multiple valid MA-subsets.
A partition of R into simultaneously valid MA-subsets thus represents a solution to the RPA equation for
the associated n-node network.
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SN3.2 Internally Valid MA Subsets

We now begin our consideration of the circumstances under which an arbitrary subset of R may form an
internally valid MA subset. We consider the creation of S-sets and M-sets separately in turn.

SN3.2.1 Internally Valid S-sets

We recall from Supplementary Note 2 that kinetic multipliers are the only factors within the elements of R

(ie. the terms of the RPA equation (4)) that can assume a zero value without altering the topology of the
associated network. Thus, an S-set is formed when an element of R contains a cycle product with at least

one kinetic multiplier whose steady-state value is identically zero for all I . That is, we require ∂ fo
∂Po

= 0 for
some node Po ; such a condition creates an S-set from each element of R in which Po appears neither as a
route-node nor as a circuit-node. We refer to this particular constraint on the reaction kinetics of node Po

hereafter as opposer kinetics, and to the node Po as an opposer node.

Definition 12. An opposer node is any node, Po ∈ {P1, . . . ,Pn} for which ∂ fo
∂Po

= 0 for all I and all πn .

Under what circumstances (in terms of network configuration) can a node Po ∈ {P1, . . . ,Pn} act as an
opposer node?

Theorem 1. A node Po can adopt the special ‘opposer’ kinetics, ∂ fo
∂Po

= 0, only if it participates in a network
circuit.

Proof. For every term in det(Jn), every node appears either in a circuit or as a kinetic multiplier (never
both). Therefore, if a node Po does not act as a participant in at least one circuit in the network, then it

must appear as a kinetic multiplier in every term in det(Jn). Under these circumstances, if ∂ fo
∂Po

= 0, then
det(Jn) = 0, thus violating the RPA constraint (5).

Thus, for a node to adopt reaction kinetics where ∂ fo
∂Po

= 0 for all I at the network’s steady-state, and
thus act as an opposer node, it must contribute to at least one network circuit. An opposer node will oppose
any route, at least partially, if it is disjoint from that route - that is, it will create an S-set for any instance of
a route in which it appears as a kinetic multiplier in that route’s cycle component.

SN3.2.2 Creation of S-sets in the Network

It is instructive at this point in the exposition to determine the topological characteristics of a node, or set
of nodes, that can oppose a route fully - that is, such that all instances of the route are assigned to S-sets; no
M-set in the partition contains an instance of that route. A consideration of this problem yields Theorems
2 and 3:

Theorem 2. A single opposer node fully opposes a route if and only if the node:
(a) is disjoint from that route, and
(b) participates only in circuits that are contiguous with the route.

Proof. A node, Po , fully opposes a route exactly when it appears in the form ∂ fo
∂Po

in the cycle component
of every instance of the route in the RPA equation. Now, appearing anywhere in the cycle component of
the term necessarily requires Po to be disjoint from the route (condition (a)). Moreover, we know from

Theorem 1 that ∂ fo
∂Po

must participate in a circuit in order to adopt the opposer kinetics, ∂ fo
∂Po

= 0, required for
creating S-sets from all such terms. If Po participates in at least one circuit that is disjoint from the route,
then that circuit containing Po must appear in the cycle component of at least one of the instances of that

route; for that/these terms, ∂ fo
∂Po

cannot appear in the cycle component (ie. Po , being a circuit node, cannot
also appear as a kinetic multiplier in that/these instance(s)). All circuits containing Po must therefore be
contiguous with the route in order for Po to appear as a kinetic multiplier in all instances of the route, and
thereby fully oppose the route (condition (b)).

10



Conversely, suppose a node is disjoint from a route and all circuits in which it participates are contiguous
with the route. Since it is disjoint from the route (condition (a)), it will be contained in the cycle component
of all instances of that route in the RPA equation. Moreover, since all circuits in which it participates are
contiguous with the route, such circuits cannot appear in the cycle component of any instance of the

route. Thus, every instance of the route has a cycle component containing ∂ fo
∂Po

. Thus Po fully opposes the
route.

Now, we learn from Theorem 2 that no node can fully oppose a route by itself if it contributes to (at least)
one circuit in the network that is disjoint from the route in question. Nevertheless, the logical possibility
remains that a collection of nodes, each of which is unable to fully oppose a route by itself (by virtue of its
participation in a disjoint circuit), can cooperate with the other members of the collection to fully oppose
the route. With this possibility in mind, we define an "opposing set" as follows:

Definition 13. An Opposing Set for a route is a set of opposer nodes which, together, are necessary and
sufficient to fully oppose a route.

We now consider the requirements for a collection of nodes, each of which participates in at least one
disjoint circuit with respect to a particular route, to constitute an opposing set for that route. We first note
that to any such collection of nodes we may associate a larger set of nodes (the "master set") comprising
all members of all disjoint circuits (with respect to the route in question) in which the members of the
proposed opposing set participate. The following theorem can now be stated and proved:

Theorem 3. A set of nodes, {Po1, . . . ,Pom}, constitutes an opposing set for a particular route if and only if,
for each Po ∈ {Po1, . . . ,Pom}, (a) Po is disjoint from the route, (b) the complement of Po (in the master set)
contains either a single circuit, or a collection of mutually disjoint circuits, containing all other members of
the opposing set, and (c) for each disjoint circuit in which Po participates, the complement of that disjoint
circuit in the master set does not contain any circuit, or collection of mutually disjoint circuits, containing
all other members of the opposing set.

Proof. Suppose the set {Po1, . . . ,Pom} is an opposing set for a particular route. From the definition of the
opposing set, all m nodes are required to fully oppose the route; no proper subset of {Po1, . . . ,Pom} is
sufficient to oppose the set, and no node that is not in the set is required for the route to be fully opposed.
First, this requires that each member of {Po1, . . . ,Pom} be in the cycle component of each instance of the
route in the RPA equation, which in turn requires each member to be disjoint from the route (property (a)).

In addition, for each Po in {Po1, . . . ,Pom} to be required (necessary) to fully oppose the route, there must
exist at least one instance of the route in the RPA equation in which Po is the only member of the opposing
set to appear in the form of a kinetic multiplier (otherwise that node is not strictly required to fully oppose
the route). This requires that the complement of Po in the master set contain mutually disjoint circuits (or
a single circuit) that contain all other members of the opposing set (property (b)).

Now, for the set {Po1, . . . ,Pom} to be sufficient to oppose the route, every instance of the route in the
RPA equation must have at least one of the members of {Po1, . . . ,Pom} appearing in the form of a kinetic
multiplier. (There cannot exist any instance of the route in which all members of Po appear as a member of
a circuit). This requires that, for every Po , the complement in the master set of each of its disjoint circuits
(with respect to the route) does not contain mutually disjoint circuits (or a single circuit) that contain all
other members of the opposing set (property (c)).

Thus, each member of an opposing set has the properties (a), (b) and (c).
Conversely, suppose each member of a set of nodes {Po1, . . . ,Pom} has all properties (a)-(c). Property

(a) implies that, in each instance of the route in question, each member of {Po1, . . . ,Pom} is present either
as a kinetic multiplier or as a circuit, which in turn implies that each member of {Po1, . . . ,Pom}, taken
individually, partially opposes the route. Now, condition (c) implies that, for each Po ∈ {Po1, . . . ,Pom}, for
every instance of the route in which Po appears as a cycle, at least one other member of {Po1, . . . ,Pom} must
appear in the form of a kinetic multiplier. Thus, properties (a) and (c) together imply that the members of
{Po1, . . . ,Pom} are sufficient to fully oppose the route.
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Property (b), on the other hand, implies that for each Po ∈ {Po1, . . . ,Pom}, there exists at least one
instance of the route in which Po is the only member of {Po1, . . . ,Pom} appearing in the form of a kinetic
multiplier. Thus, each member of {Po1, . . . ,Pom} is required (necessary) to oppose the route.

The set of nodes {Po1, . . . ,Pom} is thus an opposing set for a route.

Now, it follows from the properties of the members of an opposing set (Theorem 3, properties (b) and
(c)) , that the family of disjoint circuits defining the "master set" is connected (ie. each disjoint circuit
must be contiguous with at least one other disjoint set in the family). In Supplementary Note 4 to follow,
after considering the chemical reaction laws that are actually required to create opposer nodes, we shall
elaborate further on the topological structures within a network (implied by Theorem 3) that correspond to
the activities of an opposing set.

Although Theorem 2 highlights the topological conditions, in terms of participation in circuits and
relationship to route, under which a single opposer node may fully oppose a route by itself, we observe
that a single opposer node - participating in no disjoint circuits with respect to the route in question -
vacuously satisfies the conditions of Theorem 3. Single opposer nodes are topologically significant since,
as we explain in the main Article all instances of integral feedback control reported in the literature to date
use what we refer to here as a single opposer node. But here we see that single opposer nodes are simply
special cases of a more general topological phenomenon that we refer to as an opposing set. Hereafter, we
will consider a single opposer node to be a trivial opposing set.

SN3.2.3 Internally Valid M-sets

What properties must a collection of m non-zero elements of R possess in order to be able to form an
internally valid M-set?

First, it is clear that an M-set must contain at least one positive term and one negative term in order for
a solution to its LAQ to exist. Second, considering that every element of R has a route component and a
cycle component (the latter being unity in the event that the associated route component contains all n
nodes, and the former being unity if a single node acts as both input and output), there are two distinct
logical possibilities for any multi-term subset of R:

1. A single route (or no route) is represented in the subset. In this case, each term contains the same
route (or no route at all) with a different cycle-product. Note that a particular cycle may be common
to two or more cycle products, but each cycle-product taken as a whole must be unique to each term.

2. Multiple routes are represented.

From a consideration of these two possibilities arises the following theorem:

Theorem 4. An internally valid M-set must contain more than one route.

Proof. Suppose we have an internally valid M-set with either no route, or only one route. The associated
LAQ can now be considered. From this LAQ, all common factors (being non-zero by hypothesis for an
M-set) may be cancelled; in the case of a single route, this necessarily appears in every term, and the
route therefore cancels from every term. Hence, each term of the LAQ, thus reduced, contains a unique
combination of cycle products.

Now, consider every instance of a 1-cycle (ie. a factor of the form ∂ fi
∂Pi

- a kinetic multiplier) in the
reduced LAQ. From the k different 1-cycles appearing in the reduced LAQ (0 ≤ k ≤ n), we form the product

Γ=∏
A

∂ fi
∂Pi

, where A ⊂ {1, . . . ,n} indicates the subset of nodes whose kinetic multipliers appear in the reduced

LAQ; when there are no 1-cycles in the reduced LAQ (k = 0), Γ= 1.
We now divide every term of the reduced LAQ by Γ, to obtain a ‘modified’ LAQ which comprises only

circuit links, each scaled by the kinetic multiplier of the terminal node for the link. Now observe that (1)
the reaction kinetics governing any link are independent of the reaction kinetics governing any other link,
and (2) that each term in the reduced and modified LAQ corresponds to a unique circuit combination.
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Supplementary Figure 1: Schematic diagram for the simple 7-node network used for Example 1.

Thus, the sum of the terms of the reduced/modified LAQ (and consequently of the original LAQ) cannot be
identically zero for all I and all πn , and the M-set is not internally valid - a contradiction.

Thus, an internally valid M-set must contain more than one route.

Corollary 2. For networks in which the input node and the output node are one and the same node, an
M-set cannot feature in the partition of R into MA-subsets.

The following simple example provides a concrete illustration of the essential principles underlying
Theorem 4.

Example 1. Supplementary Figure 1 depicts a schematic diagram for a simple 7-node network.
The RPA equation for this network is given by
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We consider taking the first three terms of this equation as a possible M-set; we note that all three of these
terms have the same route. The LAQ for this potential M-set is thus

∂ f7

∂P1

∂ f2

∂P6

∂ f6

∂P2

∂ f3

∂P3

∂ f4

∂P4

∂ f5

∂P5
+ ∂ f7

∂P1

∂ f2

∂P6

∂ f6

∂P2

∂ f3

∂P5

∂ f4

∂P3

∂ f5

∂P4
− ∂ f7

∂P1

∂ f2

∂P2

∂ f6

∂P6

∂ f3

∂P5

∂ f4

∂P3

∂ f5

∂P4
= 0 (7)

Let us assume that all kinetic multipliers are negative for this network, and that the links are activating or
inhibitory in nature as indicated in the diagram. The signs preceding each of the three terms in Equation 7
are native signs. The influence sign of the first term will be positive since there are a total of four negative
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cycles - three (negative) kinetic multipliers along with the negative circuit between nodes 2 and 6. The
influence sign of the second term will be negative, since it contains one negative cycle - the circuit between
nodes 2 and 6. The influence sign of the third term will be positive since it contains two negative kinetic
multipliers and the positive cycle among nodes 3, 4 and 5. With these overall signs taken into account, the
terms may be distributed to the two sides of the equation as follows:∣∣∣∣ ∂ f7

∂P1

∂ f2
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Now, each term may be divided through by the common (route) factor, ∂ f7
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We thus see that each term constitutes a unique set of circuits, with each component nodal reaction (link)
scaled by its own kinetic multiplier. Since each such nodal reaction rate is a function that is independent of
all other nodal reaction rates, involving independent parameters, the two sides of the equation cannot be
identified for all I and all πn , except in the special case of tuned parameters. RPA is, by definition, perfect
adaptation to a stimulus, I , that does not require special tuning of parameters.

Thus, the problem at hand reduces to determining the characteristics of a multi-route multi-term
subset of R with a solvable LAQ of the form

|ΣS+| = |ΣS−|,

where |ΣS+| represents the sum of all positive terms in the set, and |ΣS−| represents the absolute value of
the sum of all negative terms in the set.

Now, in general, the terms of the LAQ will contain common factors - route links, circuit links and
kinetic multipliers - that may be cancelled from the LAQ (provided they are non-zero1 in the case of kinetic
multipliers) to produced a ‘reduced’ LAQ (hereafter, an rLAQ), of the form

|ΣŜ+| = |ΣŜ−|. (10)

To determine which factors are common to a particular collection of terms, and their topological
role in the associated network, consider first the following argument: Each of the terms in the subset
contains a route component, such that ρ routes (2 ≤ ρ ≤ m) are represented in the subset. All ρ routes
necessarily share at least the input node Pi and the output node P j . Thus, there will exist two nodes of
special topological significance to any candidate M-set:

1. A ‘diverter’ node (hereafter, the ‘D-node’ for the subset in question), being the most downstream
node common to all routes in the subset, having the property that all nodes upstream of it are also
common to all routes in the subset; and

2. A ‘connector’ node (hereafter, the ‘C-node’ for the subset in question), being the most upstream node
common to all routes, having the property that all nodes downstream of it are also common to all
routes.

Thus, to any collection of terms (representing a proposed M-set) may be associated a unique pair of nodes,
a D-node and a C-node, ie. a D-C node pair.

1Note that zero-valued kinetic multipliers form S-sets, thereby removing the associated terms from the proposed M-set; the terms
of an M-set are non-zero by definition.
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We remark in passing that in general, if the proposed M-set is sufficiently large, there could be additional
node(s), at intermediate location(s) between the D-node and the C-node, that are also common to all routes
in the M-set; in cases such as these, we will see in Supplementary Note 5 that such a set is not technically
minimally adaptive since it can be subdivided into smaller subsets that can satisfy a LAQ independently of
the remaining terms. For this reason, we initially assume a priori that the otherwise arbitrary M-set under
consideration contains no nodes between the D-node and the C-node that are common to all routes in the
set.

In addition, for clarity of exposition, we consider in the first instance that any route present in the
proposed M-set is fully represented in that M-set; that is, all instances of the given route (with the various
possible cycle combinations that exist for that route) will also be absorbed into the M-set. (In Supplemen-
tary Note 5, the possibilities and consequences of having instances of a particular route distributed to
multiple MA-subsets (ie. to both the M-set and its complement in R) will be clarified through the notion of
the union of M-sets to form "RPA basis elements".)

Now, we observe that the D-C node pair delineates which factors are common to all m terms in the
proposed M-set, and which are contained in only a subset of the m terms. In particular:

1. All links above D and below C are common to all m terms;

2. Network circuits that incorporate any node(s) above and including D, or below and including C, will
not appear in any of the m terms, since they are not disjoint from any route included in the subset;

3. For any network circuit that is disjoint from all of the routes in the subset, the nodes comprising
the circuit will appear within the cycle component of all m terms. If the network circuit contains an
opposer node, then the circuit itself will be common to all m terms; otherwise, if the circuit does not
contain an opposer, each term is duplicated with the product of the kinetic multipliers of the circuit
nodes appearing instead of the circuit itself containing those same nodes. Either way, the factors
containing the circuit nodes will cancel from the LAQ.

4. Kinetic multipliers for non-circuit nodes that are disjoint from all of the routes in the subset are
common to all m terms.

It follows from these four properties taken together that the terms of the rLAQ represent chains of
network links commencing at the D-node and terminating at the C-node, together with cycle-products
comprising combinations of: (a) kinetic multipliers for all nodes participating in route-portions connecting
D and C (not inclusive, since D and C are common to the routes in question), and (b) circuits that are
entirely embedded in these chains of links (that is, not containing D or anything upstream of it, or C or
anything downstream of it).

We thus conclude that the only nodes whose ‘regulations’ appear in the rLAQ are those located interior
to the D-C node pair, (hereafter referred to as the ‘interior nodes’ for the subset in question), along with
the C-node itself. Note that ‘interior nodes’ are those included in the portions of the routes contained
between D and C (exclusive of D but inclusive of C), as well as those that are members of network circuits
that are fully embedded in these route-portions. These considerations imply a well-defined network
module associated with M-sets, which we refer to hereafter as a Balancer Module and which we depict in
Supplementary Figure 2.

SN3.2.4 Creation of M-sets in the Network

We now consider under what circumstances, biochemically speaking (in terms of constraints on reaction
kinetics), Equation (10) has a solution, such that the associated terms from the RPA equation "balance" to
form an internally-valid M-set.

We note that the terms are distributed to the two sides of Equation (10) according to the sign of each
term. We do note in Supplementary Note 8 that the influence signs of the cycles in the terms of the RPA
equation play a role in the stability of the (perfectly-adaptive) steady-state. In particular, while we show
that it theoretically possible under very special (parametric) circumstances for a network to contain a
positive cycle and achieve a (locally) asymptotically stable steady-state, we see that the presence of even
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Supplementary Figure 2: General form of a Balancer Module, characterised by a D-C node pair (indicated
in green), and an arbitrary number of interior nodes, at least one, indicated in blue. The elements SN

indicate that any arbitrary sub-network or module may be fully embedded in the indicated positions.
Dashed regulations from the outside indicate that the indicated network elements may, in principle, be
regulated by nodes outside the module. We will see in Section that these outside regulations are only valid
if they are "adapted nodes", due to the activities of other modules in the wider network. The three dots
on either side of the interior SN elements indicate that a module may contain any arbitrary number of
route-segments between the D-node and the C-node; three overarching route segments are indicated for
illustrative purposes.
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one positive cycle is highly conducive to steady-state instability, and is thus not a generic property of
solutions to the RPA problem.

We note, moreover, that if all network cycles are negative (which will generically be true of stable
solutions to the RPA problem), Corollary 1 in Supplementary Note 2 indicates that all copies of a given
route in a proposed M-set will appear on the same side of Equation (10). For clarity of exposition, then, we
will hereafter consider expressions for rLAQs in which instances of a given route will not be distributed
to both sides of the equation; we thus require that at least one route in the M-set be negative (containing
an odd number of inhibitory links), and at least one route be positive (with an even number of inhibitory
links), in order to have the potential to form an internally-valid M-set. (We emphasise, however, that in
special cases involving positive cycle(s), where instances of a route do appear on both sides of the equation,
this does not - in and of itself - prevent the formation of a valid M-set. While such a situation is highly
conducive to an unstable (perfectly-adaptive) steady-state, this scenario may theoretically produce a valid
solution to the RPA problem; in such a case, the positivity of a cycle may allow routes in the proposed M-set
to be either all negative or all positive).

With these considerations in mind, we now examine in more detail the contents of the rLAQ for a
proposed M-set. We begin by proposing the following definitions:

Definition 14. Interior nodes: In the context of M-sets, and their associated Balancer Modules, an interior
node is any node that is either included strictly within the route segment between the D-node and the C-node
associated to the M-set, or a member of a network circuit that is fully embedded in such a route segment. All
interior nodes are thus necessarily connected and transmissive with respect to the D-node/C-node pair of the
Balancer module.

Definition 15. Terminal link: In the context of M-sets, and their associated Balancer Modules, a terminal

link is any regulation expressed by the factor ∂ fC
∂Pi

, where PC is the C-node for the M-set, and Pi is an interior
node immediately upstream of the C-node.

We must now consider how (or if) a proposed M-set can create an internally-valid MA-subset - that is,
how (or if) Equation (10) has a solution for the selected set of terms. Now, we can see that each term of the
rLAQ associated to an M-set is a product of a route segment (from D-node to C-node) and a cycle product.
Each such route segment is comprised of a succession of links involving interior nodes and culminates
in a terminal link (consisting of the regulation of the C-node by the immediately upstream interior node
for that route segment). Each cycle product appended to the route segment is a unique combination of
cycles involving all interior nodes - kinetic multipliers and circuits involving (only) interior nodes. Kinetic
multipliers for nodes other than interior nodes will not appear in the rLAQ: kinetic multipliers for nodes
that are disjoint from all routes contained that in the M-set will have cancelled in obtaining the rLAQ from
the LAQ; kinetic multipliers for nodes that are upstream of the D-node (inclusive of the D-node itself)
or downstream of the C-node (inclusive of the C-node itself) will not appear in the terms of the M-set,
since they are ’route nodes’ whose kinetic multipliers can therefore not appear in the cycle components of
the terms. Similarly, network circuits that are disjoint from all routes of the M-set cannot appear in the
rLAQ since they will have ‘cancelled’; in addition, any circuit that is contiguous with all routes (ie. circuits
containing any node upstream of the D-node, inclusive, or downstream of the C-node, inclusive) will not
appear in the cycle components of the terms of the M-set.

Now, a taking account of the uniqueness of these route-segment/cycle products, along with the fact
that the regulation of any given node fa is independent of the regulation of any other node fb , a 6= b, yields
the following theorem:

Theorem 5. For an internally valid M-set, every interior node must have a steady-state value that is linearly
related to the steady-state value of every other interior node, as well as that of the D-node. That is, the
projection of the network’s steady-state trajectory onto the b-dimensional subspace of Rn associated with the
b interior nodes is a straight line parametrized by the steady-state value of the D-node.

Proof. We have established that each term of the rLAQ is a unique route-segment/cycle-product combina-
tion comprising only interior nodes for the M-set under consideration.
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We consider the product, Γ=∏
A

∂ fi
∂Pi

, where A ⊂ {1, . . . ,n} indicates the set of all interior nodes for the

M-set. (In other words, Γ represents the product of all kinetic multipliers for the set of all interior nodes in
the M-set).

We now divide every term of the rLAQ by Γ, to obtain a ‘modified’ rLAQ; each term of this modified
rLAQ thus comprises the product of a terminal link with a unique set of (interior) nodal regulations (links);
moreover, each such interior nodal regulation is scaled by its own kinetic multiplier. That is, each internal

node, Pi will now appear in the modified rLAQ in the form
∂ fi
∂Pk
∂ fi
∂Pi

, where Pk is the node regulating Pi in the

circuit or route-segment in question.
Moreover, the nodal reaction rate for every node is a function that is independent of any other nodal

reaction rate, involving independent parameters (and generally, different reactants); thus, the reaction
kinetics at each node are necessarily independent of the kinetics at every other node. In other words, the
functions, fi , corresponding to each internal node are independent functions. The possibility of satisfying
the rLAQ (10), and hence the LAQ, for all I and all πn thus requires

∂ fi
∂Pk

∂ fi
∂Pi

= Ki j , (11)

for each interior node, Pi , and each of its interior (or D-node) regulators, Pk , where Ki j ∈R is a ‘constant’
(a parameter, which may be positive or negative according to the nature of the regulations involved in the
quotient on the left-hand side of (11)) that is independent of the steady-state values of all interior nodes.
Ki j could vary with the steady-state values of other network nodes, outside the Balancer Module, however,
should interior node(s) have regulators from amongst those other nodes. (This, of course, would require
those outside regulators to have a "fixed" steady-state value (independent of I ); in other words, they must
exhibit the RPA property due to the influence of modules generated by the complement in R of the M-set).

Now, Equation (11) implies that
∂P∗

i

∂P∗
k

=−Ki j , (12)

for all I and all πn , where the superposed asterixes indicate steady-state values (recalling that the partial
derivatives appearing in the RPA equation, and all relations and equations derived from it, are to be
evaluated at the system steady states). Since Equation (12) must hold for the regulation of each interior
node of the M-set, Pi , by each interior (or D-node) regulator in the M-set, and since interior nodes are
both connected and transmissive with respect to their associated D-node/C-node pair, it follows that the
steady-states of all interior nodes (as well as that of the D-node) are all linearly dependent (with ‘constants’,
Ki j , which could in principle be affected by the steady-states of nodes outside the balancer module in
question).

Thus, every interior node must have a steady-state value that is linearly related to the steady-state value
of every other interior node, as well as that of the D-node, for that M-set.

For this reason, we refer to the internal nodes of an M-set hereafter as balancer nodes on account of the
constraints on their reaction kinetics in order to create the linear relationships among nodal steady-states
prescribed by Theorem 5. These requisite reaction kinetics, elaborated in Supplementary Note 4, will be
referred to hereafter as balancer kinetics. Moreover, Theorem 5 implies that Equation (10) must assume the
following general form: ∑

i
K̂i
∂ fC

∂Pi
=∑

j
K̂ j

∂ fC

∂P j
, (13)

where the indices i and j represent pre-terminal nodes (ie. immediately upstream of the C-node) for the
positive and negative route segments, respectively. (We note again that for clarity of illustration, we have
presented the general form that corresponds to the scenario where all cycles are negative; existence of a
positive cycle may distribute terms associated with a single terminal link to both sides of the equation.)
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Supplementary Figure 3: Network schematic for the simple 7-node network analysed in Example 2. The
D-C node pair is indicated in green; the interior nodes are indicated in blue.

Now, satisfying Equation (13) for all I and all πn , requires

P∗
C = K̂ , (14)

where K̂ is a constant of the M-set, being independent of the steady-states of its internal nodes. This, in
turn, places constraints on the reaction kinetics at the C-node, PC . We will refer to the requisite reaction
kinetics at the C-node hereafter as connector kinetics. The mechanisms underlying connector kinetics will
be elaborated in Section .

By way of a simple concrete example to illustrate the essential principles underlying Theorem 5, we
consider once again the simple 7-node network considered in Example 1. Unlike that example, however,
we now consider the link from P5 to P3 to be an inhibitory one, enabling the cycleP3-P4-P5-P3 to be a
stability-promoting negative one . (Recall that in the previous example (Example 1) we required a positive
cycle P3-P4-P5-P3 in order to be able to distribute instances of the single route P1-P7 to both sides of the
associated LAQ for that case).

Example 2. Supplementary Figure 3 above presents the schematic diagram for this 7-node network.

We saw in Example 1 that the RPA equation for this network is given by:

∂ f7

∂P1

∂ f2

∂P6

∂ f6

∂P2

∂ f3

∂P3

∂ f4

∂P4

∂ f5

∂P5
+ ∂ f7

∂P1

∂ f2

∂P6

∂ f6

∂P2

∂ f3

∂P5

∂ f4

∂P3

∂ f5

∂P4
− ∂ f7

∂P1

∂ f2

∂P2

∂ f6

∂P6

∂ f3

∂P5

∂ f4

∂P3

∂ f5

∂P4

− ∂ f7

∂P1

∂ f2

∂P2

∂ f6

∂P6

∂ f3

∂P3

∂ f4

∂P4

∂ f5

∂P5
+ ∂ f2

∂P1

∂ f7

∂P2

∂ f6

∂P6

∂ f3

∂P3

∂ f4

∂P4

∂ f5

∂P5
+ ∂ f2

∂P1

∂ f7

∂P2

∂ f6

∂P6

∂ f3

∂P5

∂ f4

∂P3

∂ f5

∂P4

− ∂ f3

∂P1

∂ f4

∂P3

∂ f7

∂P4

∂ f2

∂P2

∂ f5

∂P5

∂ f6

∂P6
+ ∂ f3

∂P1

∂ f4

∂P3

∂ f7

∂P4

∂ f5

∂P5

∂ f2

∂P6

∂ f6

∂P2
= 0.

We consider all eight terms in the RPA equation to be non-zero (no kinetic multipliers identically zero
at steady-state), and for simplicity, consider the possibility of forming a single M-set from all eight terms.
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The D-node for the M-set is thus the input node, P1, and the C-node is the output node, P7. We further
assume that all kinetic multipliers are negative, and we note from the diagram that the two circuits in the
network are negative; thus, for this example, all cycles are negative.

With the net sign for each term thus determined, the LAQ for this proposed M-set is:∣∣∣ ∂ f7

∂P1

∂ f2

∂P6

∂ f6

∂P2

∂ f3

∂P3

∂ f4

∂P4

∂ f5

∂P5

∣∣∣+ ∣∣∣ ∂ f7

∂P1

∂ f2

∂P6

∂ f6

∂P2

∂ f3

∂P5

∂ f4

∂P3

∂ f5

∂P4

∣∣∣+ ∣∣∣ ∂ f7

∂P1

∂ f2

∂P2

∂ f6

∂P6

∂ f3

∂P5

∂ f4

∂P3

∂ f5

∂P4

∣∣∣
+

∣∣∣ ∂ f7

∂P1

∂ f2

∂P2

∂ f6

∂P6

∂ f3

∂P3

∂ f4

∂P4

∂ f5

∂P5

∣∣∣+ ∣∣∣ ∂ f3

∂P1

∂ f4

∂P3

∂ f7

∂P4

∂ f2

∂P2

∂ f5

∂P5

∂ f6

∂P6

∣∣∣+ ∣∣∣ ∂ f3

∂P1

∂ f4

∂P3

∂ f7

∂P4

∂ f5

∂P5

∂ f2

∂P6

∂ f6

∂P2

∣∣∣
=

∣∣∣ ∂ f2

∂P1

∂ f7

∂P2

∂ f6

∂P6

∂ f3

∂P3

∂ f4

∂P4

∂ f5

∂P5

∣∣∣+ ∣∣∣ ∂ f2

∂P1

∂ f7

∂P2

∂ f6

∂P6

∂ f3

∂P5

∂ f4

∂P3

∂ f5

∂P4

∣∣∣.
Moreover, we can produce from this LAQ a ‘modified’ rLAQ of the following form:∣∣∣∣∣∣

∂ f2
∂P6

∂ f2
∂P2

∂ f6
∂P2

∂ f6
∂P6

∣∣∣∣∣∣+
∣∣∣∣∣∣
∂ f2
∂P6

∂ f2
∂P2

∂ f6
∂P2

∂ f6
∂P6

∂ f3
∂P5

∂ f3
∂P3

∂ f4
∂P3

∂ f4
∂P4

∂ f5
∂P4

∂ f5
∂P5

∣∣∣∣∣∣+
∣∣∣∣∣∣
∂ f3
∂P5

∂ f3
∂P3

∂ f4
∂P3

∂ f4
∂P4

∂ f5
∂P4

∂ f5
∂P5

∣∣∣∣∣∣+1

 ∂ f7

∂P1
+

∣∣∣∣∣∣
∂ f3
∂P1

∂ f3
∂P3

∂ f4
∂P3

∂ f4
∂P4

∣∣∣∣∣∣+
∣∣∣∣∣∣
∂ f3
∂P1

∂ f3
∂P3

∂ f4
∂P3

∂ f4
∂P4

∂ f2
∂P6

∂ f2
∂P2

∂ f6
∂P2

∂ f6
∂P6

∣∣∣∣∣∣
 ∂ f7

∂P4

=
∣∣∣∣∣∣

∂ f2
∂P1

∂ f2
∂P2

∣∣∣∣∣∣+
∣∣∣∣∣∣
∂ f2
∂P1

∂ f2
∂P2

∂ f3
∂P5

∂ f3
∂P3

∂ f4
∂P3

∂ f4
∂P4

∂ f5
∂P4

∂ f5
∂P5

∣∣∣∣∣∣
∣∣∣∣ ∂ f7

∂P2

∣∣∣∣ .

We thus see that each term comprises the product of a terminal link with a unique combination of regula-
tions of a subset of the interior nodes, {P2,P3,P4,P5,P6}, each regulation (link) being scaled by the kinetic
multiplier of the regulated node. In addition, the functions f2, f3, f4, f5 and f6 are independent functions,
encoding the regulations of independent nodes, so we require each ‘scaled regulation’ in the above rLAQ to

be of the form,

∂ fi
∂P j
∂ fi
∂Pi

= Ki j ∈R (i 6= j , i ∈ {2,3,4,5,6}, j ∈ {1,2,3,4,5,6}; this in turn requires reaction kinetics

for fi , i ∈ 2,3,4,5,6 such that
∂P∗

i
∂P∗

j
=−Ki j . Thus, the rLAQ will reduce to the general form

κa
∂ f7

∂P1
+κb

∂ f7

∂P4
= κc

∣∣∣∣ ∂ f7

∂P2

∣∣∣∣ , (15)

where the various constants, Ki j have now been absorbed into the general constants κa ,κb ,κc . Satisfying
Equation (15) for all I and all πn , thus requires a suitable form for f7, giving

P∗
7 = κ̂.

By way of illustration, we propose a simple example forms for the reaction kinetics of each node in this
7-node network, and simulate the time-dependent behaviour of several nodes as the input to the network
gradually increases in a step-fashion. See Supplementary Figure 4. From the above argument, we see that
there are no constraints on the functional form of f1, the input node and D-node of the single M-set. For
the interior nodes, and the C-node, we see that the following simple functional forms meet the criteria
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Supplementary Figure 4: Time-dependent simulations for the simple 7-node network depicted in Supple-
mentary Figure 3. Equations are as given in Eqs (16) through (22). Input, I is indicated by the black step
function: its value begins at 0.2, and increases in increments of 0.2 until a value of 1. The time-dependent
response of the input node (D-node), P1, as well as interior nodes P2 and P4 are depicted, and shown not to
adapt to the varying input; similarly the other interior nodes, P3, P5 and P6 (not shown), do not adapt to the
input. The output node (C-node), P7, depicted in green, does adapt to the varying input. Parameters are:
k1 = 0.8; k2 = k3 = k4 = k5 = k6 = k7 = k8 = k9 = k11 = k12 = k13 = k14 = k15 = 1;k10 = 0.1;k16 = 0.5;k17 = 2.

above for balancer kinetics and connector kinetics:

f1 = dP1

d t
= k1I −k2P1, (16)

f2 = dP2

d t
= k3P1 −k4P6 −k5P2, (17)

f3 = dP3

d t
= k6P1 −k7P5 −k8P3, (18)

f4 = dP4

d t
= k9P3 −k10P4, (19)

f5 = dP5

d t
= k11P4 −k12P5, (20)

f6 = dP6

d t
= k14P2 −k15P6, (21)

f7 = dP7

d t
= k16P1P4 −k17P 2

2 P7. (22)
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Supplementary Note 4: The Chemical Basis of Robust Perfect
Adaptation - Constraints on Reaction Kinetics

Here we examine the three types of ‘special’ nodes that underpin RPA: “opposer nodes”, which arise in
Opposer Modules, and “balancer nodes” and “connector nodes”, which arise in Balancer Modules. As
we shall see, the reaction kinetics required for each of these three node types are distinct (ie. mutually
exclusive). This will form the governing principle for the creation of relatively valid MA-subsets, since a
node that plays one role in a proposed MA-subset (say, an opposer node) cannot then play a different role
(say, a balancer node) in the complement (in R) of that subset.

SN4.1 S-sets: The Reaction Kinetics of Opposer Nodes

The reaction kinetics required for some node, Po , to act as an opposer node are fully described by the

constraint, ∂ fo
∂Po

= 0. We now consider the general principles by which this constraint is implemented at a
node.

Consider a candidate opposer node, Po , whose activity is upregulated by some set of network nodes,
{Pu}, and downregulated by some (other) set of network nodes, {Pd }. In principle, one of the sets could also
contain Po itself, if Po were to play an active auto-regulatory role.

Now the existence of a non-trivial steady state for each node is predicated upon a positive (activat-
ing/synthesizing) and negative (inhibitory/deactivating/degrading) component to its overall reaction rate.
Thus, in this instance we require the reaction rate, fo , for Po to assume the general form,

fo = f +
o (Po , {Pu})− f −

o (Po , {Pd }). (23)

At the steady state,
f +

o (Po , {Pu}) = f −
o (Po , {Pd }), (24)

and, additionally,
∂ f +

o

∂Po
= ∂ f −

o

∂Po
, (25)

in order to permit RPA, where both sides of (25) are evaluated at the steady-state defined by (24).
Analytically, combining (24) and (25) yields:

1

f +
o

∂ f +
o

∂Po
= 1

f −
o

∂ f −
o

∂Po
, (26)

where here and after, all quantities (ie. all reaction rates and all derivatives) are taken to be evaluated at the
steady state, unless noted otherwise. Now, (26) implies that

∂

∂Po
ln f +

o (Po , {Pu}) = ∂

∂Po
ln f −

o (Po , {Pd }).

Integrating now yields

ln f +
o = ln f −

o + g ({Pu}, {Pd }),

or, equivalently,

f +
o

f −
o

= eg ({Pu },{Pd }) = ĝ ({Pu}, {Pd }). (27)

Thus, to satisfy the opposer kinetics at (all) steady-states, πn , the ratio of the positive and negative contri-
butions to the overall reaction rate must be independent of Po . This in turn requires that the functional
form of the reaction rate, fo , be separable in Po , such that

fo = ho(Po)g+
o ({Pu})−ho(Po)g−

o ({Pd }). (28)
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In other words, the Po-dependencies on the forward ( f +
o ) and reverse ( f −

o ) sides of the fo equation
must be commensurable. This principle imposes strict constraints on the types of reaction kinetics at Po

that can enable the node to function as an opposer.
Examples of appropriate reaction kinetics for an opposer node, could be, for example:

fo = k1Pu −k2, (29)

or
fo = k1 −k2Pd , (30)

or
fo = k1PuPo −k2Po , (31)

or
fo = k1(POtot −Po)−k2Pd (POtot −Po). (32)

Equations (29) and (30) represent zero-order (in the substrate, Po) regulations; Equation (31) encodes
positive autoregulation by Po , while Equation (32) encodes autoregulation of the reverse reaction by the
inactive form (POtot −Po), with POtot representing the (fixed) sum of the active (Po) and inactive forms - a
mass conservation constraint.

But how might these reaction forms actually be implemented by well-established rate laws for chemical
reactions? Using Michaelis-Menten reaction kinetics as an example, Equations (29) to (32) could be
approximated, respectively, by:

fo = k1Pu(POtot −Po)

Km1 + (POtot −Po)
− k2Po

Km2 +Po
, (33)

subject to the parameter constraints Km1 << (POtot −Po) and Km2 << Po ;

fo = k1(POtot −Po)

Km1 + (POtot −Po)
− k2Pd Po

Km2 +Po
, (34)

subject, likewise, to the parameter constraints Km1 << (POtot −Po) and Km2 << Po ;

fo = k1PuPo(POtot −Po)

Km1 + (POtot −Po)
− k̂2Po

Km2 +Po
, (35)

subject to the parameter constraints Km1 << (POtot −Po) and Km2 >> Po , and where k̂2 = k2Km2; and

fo = k̂1(POtot −Po)

Km1 + (POtot −Po)
− k2Pd Po(POtot −Po)

Km2 +Po
, (36)

subject to the parameter constraints Km1 >> (POtot −Po) and Km2 << Po , and where k̂1 = k1Km1. In all
these scenarios, a parameter constraint of the form Kmi << Pi , where Pi is the substrate in the associated
enzyme-catalyzed reaction, corresponds to the enzyme being saturated, or close to saturation. A parameter
constraint of the form Kmi >> Pi , on the other hand, corresponds to the enzyme being far from saturation.

Now, satisfying Equation (28) at the steady-state requires

g+
o ({P∗

u }) = g−
o ({P∗

d }), (37)

which in turn requires that the union of the sets {Pu} and {Pu} contain only one independent node, PR ∈
{Pu}∪ {Pd } ; all other members of the sets must be strictly dependent on the one independent member, PR .

From this, it follows that the independent regulator, PR , adapts to the network stimulus I (that is, it
exhibits RPA), with its (fixed) steady-state value satisfying

g+
o (P∗

R ) = g−
o (P∗

R ). (38)
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From this observation, it further follows that the opposer node itself, Po , cannot adapt. Indeed, it is readily
seen that the opposer node computes a time-integral of the "error" in its single independent regulator
(relative to its prescribed "adaptive" steady-state value). Considering example (29) above, for instance, the
steady state-value of the single upregulator, Pu , is given by

P∗
u = k2

k1
,

which means that

fo = dPo

d t
= k1(Pu −P∗

u ),

so that

Po = k1

∫ to+t

to

(Pu(τ)−P∗
u )dτ.

Similarly, using example (31) as an additional illustration, we obtain the form

lnPo = k1

∫ to+t

to

(Pu(τ)−P∗
u )dτ,

or
Po = e

∫ to+t
to

k1(Pu (τ)−P∗
u )dτ.

Importantly, the "fixed" value of PR is determined by the fo-reaction; it is, however, also specified by
its "own" reaction, fR (since PR cannot adopt opposer kinetics, being an adaptive node). Therefore, the
reaction fR must be (at least indirectly) influenced by Po in order to for PR to actually achieve the value
specified by the fo reaction (thereby allowing the opposer kinetics to be implemented). This requires both
PR and its associated opposer node Po to participate in a common circuit.

In Supplementary Note 3, we explored the topological requirements for opposing sets, and found that
their opposer nodes are distributed to a collection of interlinked circuits that are disjoint from the route
they collectively oppose. Now, we combine this with the requirement for each opposer node to have a single
independent regulator, and we conclude that at least one of the opposers in the set must also participate
in a circuit that is contiguous with the route they collectively oppose. In other words, an opposing set
consists of a collection of disjoint circuits that are embedded into the feedback component of a circuit that
is contiguous with the opposed route. In the special case that the opposing set consists of a single opposer
node, this corresponds to a topology where the opposer participates in the feedback component of a circuit
that is contiguous with the opposed route (with no participation in any disjoint circuits). These well-defined
topological features imply a well-defined Module associated with the opposition mechanism. We depict
the general structure of the Opposer Module, along with two particular concrete examples of opposing sets,
in Supplementary Figures 5 and 6; one for the special case of a single opposer node (Supplementary Figure
5), and the other for another special case of a two-node opposing set (Supplementary Figure 6), being the
smallest non-trivial case of an opposing set. A more general representation of the topology of an opposing
set is given in the main paper (Figure 4).

SN4.2 M-sets: The Reaction Kinetics of Balancer Nodes

In Supplementary Note 3 we established that for any proposed M-set, we require steady-states of all
balancer nodes of the associated balancer module to be linearly related to one another (Theorem 5).
We now examine the reaction kinetics of a generic balancer node, PB , to determine how this ‘linearity
constraint’ may generally be satisfied.

As in the examination of opposer nodes in the preceding section, here again two sets of regulatory
nodes are considered, at least one of which must be non-empty: {PU } is the set of nodes which upregulates
PB , and {PD } is the set which downregulates PB . Thus, in general, the reaction rate, fB , will assume the
form

fB = f +
B (PB , {PU })− f −

B (PB , {PD }),
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Supplementary Figure 5: General form of the Opposer Module generated by a single opposer node: As
shown, the nodes "C" and "D" (both indicated in blue) delineate the feedback architecture of the module.
The single opposer node is indicated by "O" in yellow. The red superposed asterisk indicates that the
associated node(s) exhibit RPA due to the "opposing" influence of the single opposer node. The network
element SN indicates that any arbitrary subnetwork/motif/module may be fully embedded in these
positions, without altering the RPA-generating function of the single opposer node; in other words the
node upstream of SN can influence the node downstream of SN via any arbitrarily large and arbitrarily
interconnected embedded (sub-)network of interactions. Interactions are indicated using a solid dot, rather
than an arrow or a "T", in order to indicate that the noted interactions may be either inhibitory or activating
in nature. As we discuss in Supplementary Note 8, circuits should generally be negative (comprising an
odd number of inhibitory interactions) in order to promote a stable steady-state. Any node could also,
optionally, be regulated by node(s) from outside the module as long as those regulating nodes are "blind"
regulations due to the RPA-generating activities of other parts of the network. We discuss the concept of
"blind", vs "live", regulations in greater detail in Supplementary Note 5. We also note several additional
optional "live" regulations in feint: any route that is contiguous with the opposer node’s circuit(s) will
automatically be fully opposed. Those routes may therefore also be considered part of the Module. In this
context, the nodes "C" and "D" demarcate the longest route segment that is contiguous with the circuit
into which the opposer node is embedded.
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Supplementary Figure 6: General form of the Opposer Module, featuring a two-node opposing set for
illustration. In common with the Opposer Module using a single opposer node (Supplementary Figure 5),
the nodes "C" and "D" (both indicated in blue) delineate the feedback architecture of the module. Once
again, the red superposed asterisk indicates that the associated node(s) exhibit RPA due to the "opposing"
influence of the opposing set. The elements SN once again indicate the possibility for fully embedded
sub-networks at the indicated locations. The opposing set is {O1,O2}, while the "master set" is {O1,O2, X };
The family of interlinked disjoint circuits for this opposing set comprises the two circuits, (O1, X ) and
(O2, X ). The complement of O1 in the master set, for example, is the cycle (O2, X ). The complement of
the cycle (O1, X ) in the master set, however, is the single node O2, which does not represent a circuit. We
can make a corresponding series of statements beginning with the node O2; in this manner, it is easily
seen that the opposing set {O1,O2} satisfies the conditions of Theorem 3. Once again, interactions are
indicated using a solid dot, rather than an arrow or a "T", in order to indicate that the noted interactions
may be either inhibitory or activating in nature. As we discuss in Supplementary Note 8, circuits should
generally be negative (comprising an odd number of inhibitory interactions) in order to promote a stable
steady-state. Any node could also, optionally, be regulated by node(s) from outside the module as long
as those regulating nodes are "blind" regulations due to the RPA-generating activities of other parts of
the network. We discuss the concept of "blind", vs "live", regulations in greater detail in Supplementary
Note 5. We also note several additional optional "live" regulations in feint: any route that is contiguous
with the opposer node’s circuit(s) will automatically be fully opposed. Those routes may therefore also be
considered part of the Module. In this context, the nodes "C" and "D" demarcate the longest route segment
that is contiguous with the circuit into which the opposer node is embedded.

26



with the steady-state thus occurring when

f +
B (PB , {PU }) = f −

B (PB , {PD }).

Now, suppose that there are mu upregulators in {PU } and md downregulators in {PD }. From the requirement
of linearity among balancer steady-states, it follows that fB must be of the general form

fB = f (ku1Pu1 +ku2Pu2 + . . .+kumu Pumu +ku +kubPB )g (PB )

− f (kd1Pd1 +kd2Pd2 + . . .+kdmd
Pdmd

+kd +kdbPB )g (PB ).

Thus, the elements of the forward part of the reaction, f +
B ,involving the reaction’s dependency on PB must

be ‘paired’ with the corresponding dependency on PB on the reverse part of the reaction, f −
B (that is, via

the function g (PB )).
We also see that in order to guarantee linearity among balancer steady-states, the only allowed members

of {PU } and {PD } are (i) the D-node associated to the M-set, (ii) another balancer node for that M-set, or
(iii) an adapted node - ie. one that exhibits RPA due to the adaptive properties of other MA-subsets of the
RPA equation.

By way of simple example, consider a balancer node, PB , with a single upregulator, Pu . The most
general form for reaction rate at this node would be given by the relationship

fB = f +
B (Pu ,PB )− f −

B (PB ),

which, in order for PB to function as a balancer node, would have to assume the form

fB = f (k1Pu +k2)g (PB )− f (k3PB +k4)g (PB ).

An example of appropriate reaction kinetics could therefore be

fB = k1Pu −k2PB . (39)

Once again, we consider the question of how such a special form could be implemented, or at least closely
approximated, by established rate laws for chemical reactions. Again appealing to Michaelis-Menten
reaction kinetics, Equation (39) could be approximated by

fB = k1Pu(PB tot −PB )

Km1 + (PB tot −PB )
− k̂2PB

Km2 +PB
, (40)

where PB tot represents the (fixed) sum of the active and inactive forms of PB , and subject to the parameter
constraints Km1 << (PB tot −Po) (corresponding to the enzyme, Pu , operating at saturation, or close to
saturation), and Km2 >> PB , (corresponding to the (constant) de-activating enzyme operating far from
saturation) with k̂2 = k2Km2. We see that the reaction kinetics for each of the set of balancer nodes
associated to an M-set allow these balancer nodes to form a computational unit which constrains all
balancer steady-states to a straight line trajectory parametrized by their associated D-node (see Theorem
5).

SN4.3 The Reaction Kinetics of Connector Nodes in M-sets

We saw in Supplementary Note 3 that the connector node, PC associated to an M-set requires reaction
kinetics that satisfy an equation of the general form,

∑
i

K̂i
∂ fC

∂Pi
=∑

j
K̂ j

∂ fC

∂P j
,

for all I and all πn where the indices i and j represent pre-terminal nodes (ie. immediately upstream of the
C-node) for the positive and negative route segments, respectively, which in turn requires that

P∗
C = K̂ . (41)
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Whereas the reaction kinetics for both balancer nodes and opposer nodes required the mathematical
role of the substrate to be commensurable ("paired") on both the upregulating and downregulating sides of
the reaction, here we see that it is the mathematical role of the regulator nodes (the associated pre-terminal
balancer nodes), not the substrate, that must be matched on both sides of the reaction rate fC . Indeed,
with the steady-states of all pre-terminal balancer nodes being linearly related to that of the D-node, as
required, we see that any of the following example forms for fC are suitable, and produce a steady-state
value for P∗

C that is adaptive - dependent only on network parameters associated with the particular M-set:

fC = k1Pu1Pu2(PC tot −PC )

Km1 + (PC tot −PC )
− k2P 2

d PC

Km2 +PC
, (42)

or

fC = (k1Pu1 +k2Pu2)(PC tot −PC )

Km1 + (PC tot −PC )
− k3Pd PC

Km2 +PC
, (43)

where PC tot is the (constant) sum of the active and inactive forms of PC , and where in both cases the
connector has two upregulating pre-terminal balancers, Pu1 and Pu2, and one downregulating pre-terminal
balancer, Pd ; or

fC = k1P 2
u(PC tot −PC )

Km1 + (PC tot −PC )
− k2Pd1Pd2PC

Km2 +PC
, (44)

where the connector has one upregulator and two downregulators.
It follows that in order to implement connector kinetics, a node PC can be regulated only by balancer

nodes (associated to the same M-set(s)) or by adapted nodes created by other MA-subsets. Connector nodes
are themselves, by nature, adapted nodes (see Equation 41). With the upregulators and downregulators
subject to balancer kinetics in Equations (42) to (44), we note that connector kinetics may be implemented
by Michaelis-Menten rate laws without any constraints on parameters (eg. on the Michaelis constants Km1

and Km2). Recall that this was not the case for opposer kinetics or balancer kinetics.
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Supplementary Note 5: Independently Adapting Subsets and the
Interconnectivity of Modules

In Supplementary Notes 3 and 4, we considered the solution of the RPA problem in terms of the set of all
possible partitions into minimally-adaptive (MA) subsets.

Now having considered the basic mechanisms by which these MA-subsets are created, we must now
confront the issue of whether or not the complement of a particular MA-subset (in R - the set of terms of
the RPA equation) also admits a partition into MA-subsets - thereby allowing RPA to occur for the wider
network as a whole. In other words, we now consdier the circumstances under which an internally valid
MA-subset is also relatively valid.

To this end, we first recognise that any single mechanism (eg. the activity of an opposer node or the
combined activities of a set of balancer nodes collaborating with their associated connector node) can
simultaneously create multiple MA-subsets.

In particular, a single opposer node will simultaneously create S-sets from all terms in which the
opposer appears as a kinetic multiplier in the cycle component of the term.

A set of balancer nodes and their associated connector node can also simultaneously create multiple
M-sets. As an example of this principle, consider the simple modular configuration in Supplementary
Figure 7, where the associated set of four terms is being considered as a potential M-set. The LAQ is thus
∂ fB
∂A

∂ fC
∂B

∂ fD
∂C

∂ fE
∂D − ∂ fC

∂A
∂ fD
∂C

∂ fE
∂D

∂ fB
∂B − ∂ fB

∂A
∂ fC
∂B

∂ fE
∂C

∂ fD
∂D + ∂ fC

∂A
∂ fE
∂C

∂ fB
∂B

∂ fD
∂D = 0. While node A is the diverter node for

the M-set as a whole, and E the connector node, we observe that this selection of terms also contains an
intermediate common node, C . For this reason, with C chosen to be a connector node (paired with A)
and B operating as a balancer node, we see that the first two terms of the above LAQ sum to zero under
this action, and that the third and fourth terms together also sum to zero independently under the same
action. In this way the activity of the balancer module comprising only nodes A, B and C actually creates
two M-sets. Likewise, with C chosen as a diverter node (paired with connector node E ) and D assigned the
role of a balancer, we see that the first and third terms together form an M-set, as do the second and fourth
terms.

Thus, the ability of any given MA-subset-generating mechanism to simultaneously generate multiple
MA-subsets, suggests that from a mathematical point of view, there exists a more fundamental partition of
R than the partition into MA-subsets - namely the partition into independently adapting subsets.

For a balancing mechanism, for instance, the union of the original M-set with all other terms that are
automatically balanced by the mechanism represents the independently adapting subset of R associated
with that balancing mechanism. The general Balancer Module depicted in Figure 1c of the main paper
thus represents the class of network topologies that correspond to an independently adapting (balancing)
subset of an RPA equation.

Moreover, we note in the main paper that any route in a network that is only partially opposed must
have copies that are balanced. Since a balancing mechanism will automatically balance all copies of its
routes, such a partially opposed route is redundantly opposed. As such, the independently adapting subset
associated to any opposition mechanism (via opposing sets) comprises the union of only those terms in R

whose routes are fully opposed by the mechanism. The union of S-sets generated by partial opposition of
a particular route should thus be absorbed into the independently adapting subset associated with the
relevant balancing mechanism.

From the conditions of Theorems 2 and 3, then, the independently adapting subset associated with
an opposition mechanism contains all copies of all routes that are disjoint from the opposing set, while
contiguous with a circuit into which the opposing set is embedded - that is, all routes fully opposed by
the opposition mechanism in question. The general Opposer Module presented in Figure 1(a,b) of the
main paper then represents the class of network topologies that correspond to an independently adapting
(opposing) subset of an RPA equation.

Now, the hallmark of an RPA-capable network is the existence of a partition of its RPA equation into
independently adapting subsets. In addition, from the observation that the terms of R are distributed to
independently adapting subsets by route (that is, all instances in R of a particular route are to be grouped
together into a single such subset), it follows that these independently adapting subsets are disjoint, and
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must cover R. We have seen, moreover, that two and only two mechanisms - which we call opposition
and balancing - are able to generate the independently adapting subsets of R in an RPA capable network,
and that each such mechanism may be implemented by a rich class of sub-network topologies - opposer
modules and balancer modules, respectively. Taken together, these considerations imply that a network
can exhibit RPA only if it is decomposable into opposer and/or balancer modules - that is, each route for
the transmission of biochemical signal from input to output must be either balanced or (fully) opposed by
a single network module. These modules - Opposers and Balancers - may thus properly be called RPA Basis
Modules.

A general RPA network could contain an arbitrary number of such modules, corresponding to its RPA
equation being partitioned into (the same) arbitrary number of disjoint independently adapting subsets.

(Parenthetically, now that we have developed the concept of an independently adapting subset we note
one small subtlety on M-sets that has been deferred until now: In Section , we analysed the conditions
under which a multi-term subset of R, comprising at least two distinct routes, could represent an M-set,
and stipulated that any route present in the subset should be fully represented in that set. While it is
possible to correctly identify the constraints on balancer and connector kinetics when one or more routes
are only partially represented 2, the balancing mechanism will automatically assign all instances of those
routes to the independently adapting subset associated with the original M-set).

We must now consider how multiple RPA Basis Modules can coexist in a large multi-modular network.
Now, we saw in Supplementary Note 4 that the formation of an internally-valid MA subset imposed

certain conditions on the reactions kinetics of one or more nodes in order to satisfy the LAQ for that set.
In particular, the ability to create an S-set required at least one opposer node, Po , whose reaction kinetics

satisfy ∂ fo
∂Po

= 0 for all I and all πn . Creation of an M-set requires at least one balancer node, PB , where
∂P∗

B

∂P̂∗
B

= KB , and where P̂B is either an interior node or the D-node for that M-set; creation of an M-set also

requires a connector node, PC , whose reaction kinetics satisfy a relation of the form
∑

Ki
∂ fC
∂Pi

= ∑
K j

∂ fC
∂P j

,

which requires P∗
C = K̂ (KB and K̂ being constants/parameters associated to the module).

Now, it is clear from the analysis of these three distinct modes of reaction kinetics that opposer kinetics,
balancer kinetics and connector kinetics are three mutually exclusive classes of reaction kinetics. That is, a
node can be at most one of these three special node types.

This observation points to the central criterion for determining if an internally-valid MA subset is also
relatively valid: a node that plays one special role (opposer, balancer or connector node) in satisfying the
LAQ for the set cannot then play a different special role in order to satisfy the CAQ for the set’s complement
in R. We explain in the main paper that this requires the "active" part of each module (between the apex
node and the base node of the module) to be distinct from the "active" part of any other module. We
further explain in the paper that there are two fundamental ways for the active parts of any two modules to
be distinct from each other:

1. Modules connected in parallel. In this scenario, the respective route collections for the two modules
diverge upstream of the active parts of the modules, and then reconnect again downstream of the
active parts. The computational nodes within the active parts of one module do not "feed into" the
other module in any way.

2. Modules connected in series: In this scenario, one or more computational nodes of a module may
also participate in some network route that is not opposed or balanced by that module. In other
words, those computational nodes may "feed into" another module.

To speak about the series interconnections of RPA basis modules in precise topological terms, we
introduce the concepts of "live" and "blind" regulations in the main paper. As we explain there, "live"

2albeit with the possibility that (a) redundant constraints are introduced on circuits fully disjoint from the module (since, depending
on which instances of the routes are included in the proposed M-set, these circuit factors may not cancel as they would if all route
instances were included), and (b) constraints on reaction kinetics may not be given directly for all balancer nodes by the analysis of
the LAQ, in cases where circuit elements from any fully embedded circuits are not represented among the reduced collection of route
instances. In both these cases, these difficulties are removed once all instances of the routes in question are incorporated into the
independently adapting subset associated with the original M-set.
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Supplementary Figure 7: A simple five-node architecture considered as an M-set containing four terms
(see explanation in text). While A may be considered the diverter node, and E the connector node, for the
set as a whole, we see that C is an intermediate common node between A and E. As such, either {A,C }
OR {C ,E } can operate together as a D-C node pair for the set; either way, the LAQ will be satisfied for the
four-term set.

regulations are outgoing regulations from either an opposer node (or its downstream dependents) or
a balancer node, since these nodes do not exhibit the RPA property. "Blind" regulations, on the other
hand, come from nodes that do exhibit the RPA property, and include the independent regulator for an
opposer node (and any of its dependents), and connector nodes (and any downstream dependents). From
a mathematical point of view, in terms of the partition of R: a blind regulation from a module only adds
terms to R that are automatically added to the independently adapting subset associated to that module.
By contrast, a live outgoing regulation introduces terms into the complement of the independently adapting
subset for the module. For this reason, a live outgoing regulation creates the need for an ancillary module,
which either balances or fully opposes the terms created by the interconnection. The ancillary module is
thus in series with the original module.

In the sections to follow, we consider several concrete examples that highlight the contributions of RPA
basis modules, and their interconnections, to the topologies of larger multimodular RPA-capable networks.

SN5.1 Simple examples of RPA networks comprising multiple interconnected
modules

We now propose several simple examples of RPA networks which exemplify the principles we have out-
lined in the present study. Five different sample networks are analysed, each one comprising a different
combination of RPA basis modules, selected from the two possible classes (opposer and balancer). In the
explanations appended to each example, we propose the following simplified notation for the terms of the
RPA equation (the set R):

1. for a route or route-segment ∂ fb
∂Pa

∂ fc
∂Pb

∂ fd
∂Pc

, we write Pa → Pb → Pc → Pd ;
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2. for a cycle ∂ fb
∂Pa

∂ fc
∂Pb

∂ fa
∂Pc

, we write
(
Pa → Pb → Pc

)
; this denotation is not unique of course - the nodes

of the cycle could be written down in any cyclic permutation;

3. for a kinetic multiplier associated to a node Pa , we write
(
Pa

)
.

4. appended to any given term will be the double sign (±)(±), where the first sign is the native sign of
the term, and the second sign is the influence sign.

Thus, for a term of the RPA equation of the form ∂ f2
∂P1

∂ f7
∂P2

∂ f3
∂P5

∂ f4
∂P3

∂ f5
∂P4

∂ f6
∂P7

(taken from Example 2 in Supple-
mentary Note 3), the term will appear with positive native sign. If the route component is negative, the
single circuit among nodes P3, P4 and P5 is negative and if the kinetic multiplier (associated with node P6)
is negative, giving a negative influence sign overall, the term will be expressed by:

(+)(−)P1 → P2 → P7

(
P3 → P4 → P5

)(
P6

)
.

We now consider five different examples of RPA networks in turn.

SN5.1.1 An Opposer Module (with two-node opposing set) connected in series with another Opposer
Module (with single opposer node)

A simple eight-node network is presented in Supplementary Figure 8, in which two Opposer Modules are
connected in series: an upstream module with a two-node opposing set, and a downstream module with a
single opposer node. For this particular network, the eight terms of the RPA equation are represented by:

(+)(−)A →G → H
(
B

)(
C

)(
D

)(
E

)(
F

)
(45)

(−)(+)A →G → H
(
B →C

)(
D

)(
E

)(
F

)
(46)

(+)(−)A →G → H
(
B →C

)(
D

)(
E → F

)
(47)

(+)(−)A →G → H
(
B

)(
C → D

)(
E → F

)
(48)

(−)(+)A →G → H
(
B

)(
C

)(
D

)(
E → F

)
(49)

(−)(+)A →G → H
(
B

)(
C → D

)(
E

)(
F

)
(50)

(+)(−)A → B →C → D → E →G → H
(
F

)
. (51)

Now, we can see that nodes B and D can work together as a two-node opposing set, to fully oppose

the route A →G → H (terms 45 through 50); this requires both
(
B

)
= ∂ fB

∂PB
= 0 and

(
D

)
= ∂ fD

∂PD
= 0. Both B

and D participate in the route A → B → C → D → E → G → H , which corresponds to a "live" outgoing
regulation from the upstream module. That route (term 51) may be opposed by the node F , however, with(
F

)
= ∂ fF

∂PF
= 0. Thus, the output node, H , will exhibit RPA under the influence of varying inputs delivered

to the input node, A, since it consists of an Opposer Module (using the two-node opposing set {B , D}),
connected in series with the downstream Opposer Module (with opposer node F ). Simulations of this
network are displayed in Supplementary Figure 8, using the simple reaction equations given below (which
conform to the requisite opposer kinetics for nodes B , D and F ). Parameters are given in the caption to the
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Supplementary Figure 8: A simple eight-node network configuration in which an opposer module (with
two-node opposing set, upstream) is connected in series with another opposer module (with single opposer
node, downstream). The opposing set for the upstream Opposer Module is {B ,D}, the corresponding master
set being {B ,C ,D}; the route A →G → H is fully opposed by this opposing set. The only route that is not
opposed by the set is the route in which those opposer nodes actually participate, which in this example
is the route A → B → C → D → E → G → H . That route is fully opposed by the single opposer node, F ,
however, since this is disjoint from the route and participates in one circuit which is contiguous with the
route. Time-dependent solutions to the modeling equations (45) through (51) are shown on the right-hand
side of the figure for several nodes. The input stimulus, indicated in black begins at 0.2 and increases in
steps of 0.2 until a value of unity. As shown, the output node (H) exhibits perfect robust adaptation, as do
nodes C, E, G and A (not shown). Nodes B and D, being opposer nodes, do not adapt as shown. Node F,
which is a (single) opposer similarly does not adapt (not shown). Parameters for the modeling equations
(45) through (51) are k1 = 1,k2 = 0.2,k3 = 1,k4 = 0.5,k5 = 0.5,k6 = 1,k7 = 1,k8 = 0.2,k9 = 1,k10 = 0.5,k11 =
0.1,k12 = 0.1,k13 = 5,k14 = 1,k15 = 0.5,k16 = 1,k17 = 2,k18 = 0.5,k19 = 0.5,k20 = 2.
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figure.

f A = d A

d t
= k1I −k2 A−k3B ,

fB = dB

d t
= k4 A−k5C ,

fC = dC

d t
= k6B −k7D −k8C ,

fD = dD

d t
= k9C −k10,

fE = dE

d t
= k11D −k12E −k13F,

fF = dF

d t
= k14E −k15,

fG = dG

d t
= k16 A+k17E −k18G ,

fH = d H

d t
= k19G −k20H .

SN5.1.2 An Opposer Module connected in series with a Balancer Module

A thirteen-node network is presented in Supplementary Figure 9, in which an Opposer Module (with a
single opposer node) is connected in series with a Balancer Module (comprising five balancer nodes). The
terms of the RPA equation for this network are:

(−)(−)P1 → P2 → P3 → P11 → P12 → P13

(
P4

)(
P5

)(
P6

)(
P7

)(
P8

)(
P9

)(
P10

)
(52)

(+)(+)P1 → P9 → P11 → P12 → P13

(
P2

)(
P3

)(
P4

)(
P5

)(
P6

)(
P7

)(
P8

)(
P10

)
(53)

(−)(−)P1 → P9 → P11 → P10 → P3 → P4 → P5 → P13

(
P2

)(
P6

)(
P7

)(
P8

)(
P12

)
(54)

(+)(−)P1 → P9 → P11 → P10 → P3 → P6 → P7 → P8 → P13

(
P2

)(
P4

)(
P5

)(
P12

)
(55)

(−)(−)P1 → P2 → P3 → P4 → P5 → P13

(
P6

)(
P7

)(
P8

)(
P9

)(
P10

)(
P11

)(
P12

)
(56)

(+)(−)P1 → P2 → P3 → P6 → P7 → P8 → P13

(
P4

)(
P5

)(
P9

)(
P10

)(
P11

)(
P12

)
(57)

We see that the single node P10 occurs in a circuit and also appears in the routes incorporating the segment
P1 → P9 → P11 → P10 → P3. For all other routes, P10’s only circuit is contiguous. It therefore fully opposes
all other such routes, and P10 creates S-sets from terms (52), (53), (56) and (57). This leaves terms (54) and
(55), containing the routes in which P10 appears, which may both be assigned to a single M-set since their
net signs are opposite, and since the associated interior nodes and C-node do not include P10. Indeed, the
rLAQ for this M-set is ∣∣∣∣ ∂ f4

∂P3

∂ f5

∂P4

∂ f13

∂P5

∂ f6

∂P6

∂ f7

∂P7

∂ f8

∂P8

∣∣∣∣= ∣∣∣∣ ∂ f6

∂P3

∂ f7

∂P6

∂ f8

∂P7

∂ f13

∂P8

∂ f4

∂P4

∂ f5

∂P5

∣∣∣∣ ,

or, dividing through by common kinetic multipliers,∣∣∣∣∣∣
∂ f4
∂P3

∂ f4
∂P4

∂ f5
∂P4

∂ f5
∂P5

∣∣∣∣∣∣ ∂ f13

∂P5
=

∣∣∣∣∣∣
∂ f6
∂P3

∂ f6
∂P6

∂ f7
∂P6

∂ f7
∂P7

∂ f8
∂P7

∂ f8
∂P8

∣∣∣∣∣∣
∣∣∣∣∂ f13

∂P8

∣∣∣∣ .
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Supplementary Figure 9: A network schematic for a thirteen-node network comprising an Opposer Module
(upstream) connected in series with a Balancer Module (downstream). The single opposer node, P10 is
indicated in yellow; the C-D node pair for the balancer module, P3 and P13, are indicated in green, with the
corresponding balancer nodes, P4, P5, P6, P7 and P8 indicated in blue.

As explained in Supplementary Note 3, this requires:

dP∗
4

dP∗
3

= K43,

dP∗
5

dP∗
4

= K54,

dP∗
6

dP∗
3

= K63,

dP∗
7

dP∗
6

= K76,

dP∗
8

dP∗
7

= K87,

where K43,K54,K63,K76 and K87 are constants that are independent of the steady-states of the nodes
appearing in the rLAQ. Then, f13 must satisfy

κ5
∂ f13

∂P5
= κ8

∣∣∣∣∂ f13

∂P8

∣∣∣∣ ,

where κ5 = |K43K54| and κ8 = |K54K76K87|.
Simulations of this network are displayed in Supplementary Figure 10, using the following equations
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Supplementary Figure 10: Time-dependent solutions for the modeling equations given in Equations (58)
through (70). Note that the only Equations in this set that must conform to a specific form are Equations
(61) through (65), which require balancer kinetics, Equation (70) which requires connector kinetics, and
Equation (67) which requires opposer kinetics. All other equations could assume any functional form that
encodes the nodal regulations noted in Supplementary Figure 9. Moreover, the specific forms for opposer,
balancer and connector kinetics chosen here are only simple examples for illustrative purposes. The input
stimulus, indicated in black, is a step function that begins at 0.1 and increases in increments of 0.3 until
a value of unity. As shown, the output node, P13, as well as P11 (which regulates the opposer node P10)
exhibit RPA in response to the varying input. Node P12 (not shown) also exhibits RPA. On the other hand,
the opposer node, P10 and the connector node, P3 do not adapt, as shown. Nodes P4,P5,P6,P7 and P8,
being balancer nodes, do not adapt (not shown), nor do nodes P1,P2,P3, or P9 (not shown). Parameters for
Equations (58) through (70) are: k1 = 0.2,k2 = 0.1,k3 = 0.2,k4 = 0.1,k5 = 0.2,k6 = 0.4,k7 = 0.2,k8 = 0.1,k9 =
0.2,k10 = 0.1,k11 = 0.3,k12 = 0.1,k13 = 0.2,k14 = 0.1,k15 = 0.3,k16 = 0.1,k17 = 0.2,k18 = 0.1,k19 = 0.2,k20 =
0.2,k21 = 0.2,k22 = 0.1,k23 = 0.1,k24 = 0.2,k25 = 0.1,k26 = 0.2,k27 = 0.1,k28 = 0.1,P1tot = P2tot = P3tot =
P4tot = P5tot = P6tot = P7tot = P8tot = P9tot = P10tot = P11tot = P12tot = P13tot = 1.

36



(with parameters as given in the figure caption):

f1 = dP1

d t
= k1I (P1tot −P1)−k2P1, (58)

f2 = dP2

d t
= k3P1(P2tot −P2)−k4P2, (59)

f3 = dP3

d t
= k5P2(P3tot −P3)−k6P3P10, (60)

f4 = dP4

d t
= k7P3 −k8P4, (61)

f5 = dP5

d t
= k9P4 −k10P5, (62)

f6 = dP6

d t
= k11P3 −k12P6, (63)

f7 = dP7

d t
= k13P6 −k14P7, (64)

f8 = dP8

d t
= k15P7 −k16P8, (65)

f9 = dP9

d t
= k17P1(P9tot −P9)−k19P9, (66)

f10 = dP10

d t
= k19P11 −k20, (67)

f11 = dP11

d t
= k21(P3 +k22P9)(P11tot −P11)−k23P11, (68)

f12 = dP12

d t
= k24P11(P12tot −P12)−k25P12, (69)

f13 = dP13

d t
= k26(P5 +k27P12)−k28P8P13. (70)

SN5.1.3 Two Different Solutions for a Single Twelve-Node Network: A single Opposer Module, or an
Opposer Module connected in series with a Balancer Module

Supplementary Figures 11 and 12 depict two different possible solutions to the RPA problem for a single
network architecture comprising twelve interacting nodes: a single Opposer Module (Supplementary Figure
11), or, alternatively, an Opposer Module connected in series with a balancer module (Supplementary
Figure 12). In either case, the RPA equation comprises five terms, being:

(+)(−)P1 → P2 → P3 → P5 → P12

(
P4

)(
P6

)(
P7

)(
P8

)(
P9

)(
P10

)(
P11

)
(71)

(+)(−)P1 → P2 → P4 → P5 → P12

(
P3

)(
P6

)(
P7

)(
P8

)(
P9

)(
P10

)(
P11

)
(72)

(−)(+)P1 → P2 → P6 → P8 → P11 → P12

(
P3

)(
P4

)(
P5

)(
P7

)(
P9

)(
P10

)
(73)

(+)(−)P1 → P2 → P6 → P8 → P10 → P11 → P12

(
P3

)(
P4

)(
P5

)(
P7

)(
P9

)
(74)

(+)(+)P1 → P2 → P6 → P8 → P9 → P11 → P12

(
P3

)(
P4

)(
P5

)(
P7

)(
P10

)
(75)

Now, it is clear that the node P7 is disjoint from all routes of the network, and participates in a circuit that
is contiguous with all routes of the network. Thus, P7 may act as a single opposer for the entire network.
Simulations for this RPA solution (corresponding to the schematic in Supplementary Figure 11) are given
in Supplementary Figure 13, using the following set of equations, where the node P7 operates with the

37



Supplementary Figure 11: A network schematic for a set of twelve interconnected nodes, showing one
possible solution to the RPA equation for this particular arrangement of nodes. In particular, the node P7

acts as an opposer node, and fully opposes all routes of this network. The network thus comprises a single
Opposer Module.

requisite opposer kinetics:

f1 = dP1

d t
= k1I (P1tot −P1)−k2P1, (76)

f2 = dP2

d t
= k3P1(P2tot −P2)−k4P2P7, (77)

f3 = dP3

d t
= k5P2(P3tot −P3)−k6P3, (78)

f4 = dP4

d t
= k7P2(P4tot −P4)−k8P4, (79)

f5 = dP5

d t
= k9(P3 +k10P4)(P5tot −P5)−k11P5, (80)

f6 = dP6

d t
= k12P2(P6tot −P6)−k13P6, (81)

f7 = dP7

d t
= k14P6 −k15, (82)

f8 = dP8

d t
= k16P6(P8tot −P8)−k17P8, (83)

f9 = dP9

d t
= k18P8 −k19P9, (84)

f10 = dP10

d t
= k20P8 −k21P10, (85)

f11 = dP11

d t
= k22(P8 +k23P10)(P11tot −P11)−k24P11P9, (86)

f12 = dP12

d t
= k25(P11 +k26P5)(P12tot −P12)−k27P12. (87)
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Supplementary Figure 12: The same interconnectivity of nodes as in Supplementary Figure 11 is displayed
here, but with a different solution to the RPA problem. Here the node P6 acts as a single opposer node,
and thus fully opposes the routes P1 → P2 → P3 → P5 → P12 and P1 → P2 → P4 → P5 → P12. The routes
that opposer P6 participates in, however, are "balanced" by the balancer module with diverter node P8,
connector node P11 and balancer nodes P9 and P10.
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Supplementary Figure 13: Time-dependent solutions to the modeling equations (76) through (87). Here,
only the opposer node, P7, has constraints on viable reaction kinetics (ie. it must assume opposer kinetics);
all other reactions are unconstrained. The input, I , indicated in black, is a step function beginning at a
value of 0.1 and increasing in increments of 0.3 until a value of 1. For this particular solution to the RPA
problem, all nodes exhibit RPA in response to the varying stimulus, except P7, the opposer node, and P1, the
input node. Nodes P2, P6, P7 (the opposer) and P13 (the output) are displayed as a representative sample.
Parameters for the modeling equations are: k1 = 0.2,k2 = 0.02,k3 = 0.2,k4 = 0.4,k5 = 0.2,k6 = 0.1,k7 =
0.2,k8 = 0.1,k9 = 0.2,k10 = 0.1,k11 = 0.1,k12 = 0.2,k13 = 0.1,k14 = 0.2,k15 = 0.1,k16 = 0.2,k17 = 0.1,k18 =
0.2,k19 = 0.1,k20 = 0.1,k21 = 0.1,k22 = 0.2,k23 = 0.1,k24 = 0.1,k25 = 0.2,k26 = 0.1,k27 = 0.1,P1tot = P2tot =
P3tot = P4tot = P5tot = P6tot = P7tot = P8tot = P9tot = P10tot = P11tot = P12tot = 1.

Alternatively, we can obtain a different solution to the RPA problem for this network by observing that the
node P6, when endowed with opposer kinetics, creates S-sets from the terms (71) and (72). The remaining
terms of the RPA equation ((73) through (75)) can then be assigned to a single M-set with rLAQ:∣∣∣∣∂ f11

∂P8

∂ f9

∂P9

∂ f10

∂P10

∣∣∣∣+ ∣∣∣∣∂ f10

∂P8

∂ f11

∂P10

∂ f9

∂P9

∣∣∣∣= ∣∣∣∣ ∂ f9

∂P8

∂ f11

∂P9

∂ f10

∂P10

∣∣∣∣ ,

or,

∂ f11

∂P8
+

∣∣∣∣∣∣
∂ f10
∂P8

∂ f10
∂P10

∣∣∣∣∣∣ ∂ f11

∂P8
=

∣∣∣∣∣∣
∂ f9
∂P8

∂ f9
∂P9

∣∣∣∣∣∣
∣∣∣∣∂ f11

∂P9

∣∣∣∣ ,

requiring

dP∗
10

dP∗
8

= K108,

dP∗
9

dP∗
8

= K98,

with f10 then assuming a form which permits

P∗
11 = K11,

where K11 is a constant depending only on kinetic parameters, and not on the steady-states of the nodes of
the M-set. We observe that in the set of modeling equations given above for the single-opposer solution to
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Supplementary Figure 14: Time-dependent solutions for the modeling equations (76) through (87), but
with Equations (88) and (89) substituted for Equations (81) and (82) in the original set. Parameters are
identical as in the previous case (see caption to Supplementary Figure 13).

this network, the reactions f9, f10 and f11 are already in the requisite forms for balancer nodes P8 and P9,
and connector node P10 (although these reactions could have assumed any form for the single-opposer
solution, as they were ‘unconstrained’ nodes in that case). It therefore only remains to modify reactions f6

and f7 to allow P6 to now act as an opposer, and P7 to no longer act as an opposer, for example

f6 = dP6

d t
= k6P2 −k13, (88)

f7 = dP7

d t
= k14P6(P7tot −P7)−k15P7. (89)

With these two equations substituted for the f6 and f7 in the original set, we show the simulations for this
alternative RPA solution in Supplementary Figure 14 (with parameters as given in the figure caption).

SN5.1.4 Two Opposer Modules connected in Parallel

Supplementary Figure 15 gives a schematic of a twenty-node network architecture that comprises a large
number of routes in comparison with the previous examples. Indeed, this particular network has a twenty-
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Supplementary Figure 15: Schematic representation of an twenty-node network in which two Opposer
Modules (each using a single opposer node) are connected in parallel to allow the network to exhibit RPA.

term RPA equation represented by

(+)(−)P1 → P2 → P5 → P6 → P7 → P12 → P18

(
P3

)(
P4

)(
P8

)(
P9

)(
P10

)(
P11

)(
P13

)(
P14

)(
P15

)(
P16

)(
P17

)(
P19

)(
P20

)
(90)

(−)(+)P1 → P2 → P5 → P6 → P7 → P12 → P18

(
P3

)(
P4

)(
P8

)(
P9

)(
P10

)(
P11

)(
P13

)(
P14

)(
P15 → P17

)(
P16

)(
P19

)(
P20

)
(91)

(−)(+)P1 → P3 → P2 → P5 → P6 → P7 → P12 → P18

(
P4

)(
P8

)(
P9

)(
P10

)(
P11

)(
P13

)(
P14

)(
P15

)(
P16

)(
P17

)(
P19

)(
P20

)
(92)

(+)(−)P1 → P3 → P2 → P5 → P6 → P7 → P12 → P18

(
P4

)(
P8

)(
P9

)(
P10

)(
P11

)(
P13

)(
P14

)(
P15 → P17

)(
P16

)(
P19

)(
P20

)
(93)

(+)(−)P1 → P4 → P5 → P6 → P7 → P12 → P18

(
2
)(

P3

)(
P8

)(
P9

)(
P10

)(
P11

)(
P13

)(
P14

)(
P15

)(
P16

)(
P17

)(
P19

)(
P20

)
(94)

(−)(+)P1 → P4 → P5 → P6 → P7 → P12 → P18

(
2
)(

P3

)(
P8

)(
P9

)(
P10

)(
P11

)(
P13

)(
P14

)(
P15 → P17

)(
P16

)(
P19

)(
P20

)
(95)

(+)(+)P1 → P2 → P5 → P8 → P9 → P10 → P7 → P12 → P18

(
P3

)(
P4

)(
P6

)(
P11

)(
P13

)(
P14

)(
P15

)(
P16

)(
P17

)(
P19

)(
P20

)
(96)

(−)(−)P1 → P2 → P5 → P8 → P9 → P10 → P7 → P12 → P18

(
P3

)(
P4

)(
P6

)(
P11

)(
P13

)(
P14

)(
P15 → P17

)(
P16

)(
P19

)(
P20

)
(97)

(−)(−)P1 → P3 → P2 → P5 → P8 → P9 → P10 → P7 → P12 → P18

(
P4

)(
P6

)(
P11

)(
P13

)(
P14

)(
P15

)(
P16

)(
P17

)(
P19

)(
P20

)
(98)
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(+)(+)P1 → P3 → P2 → P5 → P8 → P9 → P10 → P7 → P12 → P18

(
P4

)(
P6

)(
P11

)(
P13

)(
P14

)(
P15 → P17

)(
P16

)(
P19

)(
P20

)
(99)

(+)(+)P1 → P4 → P5 → P8 → P9 → P10 → P7 → P12 → P18

(
P2

)(
P3

)(
P6

)(
P11

)(
P13

)(
P14

)(
P15

)(
P16

)(
P17

)(
P19

)(
P20

)
(100)

(−)(−)P1 → P4 → P5 → P8 → P9 → P10 → P7 → P12 → P18

(
P2

)(
P3

)(
P6

)(
P11

)(
P13

)(
P14

)(
P15 → P17

)(
P16

)(
P19

)(
P20

)
(101)

(+)(−)P1 → P2 → P5 → P6 → P11 → P12 → P18

(
P3

)(
P4

)(
P7

)(
P8

)(
P9

)(
P10

)(
P13

)(
P14

)(
P15

)(
P16

)(
P17

)(
P19

)(
P20

)
(102)

(−)(+)P1 → P2 → P5 → P6 → P11 → P12 → P18

(
P3

)(
P4

)(
P7

)(
P8

)(
P9

)(
P10

)(
P13

)(
P14

)(
P15 → P17

)(
P16

)(
P19

)(
P20

)
(103)

(−)(+)P1 → P3 → P2 → P5 → P6 → P11 → P12 → P18

(
P4

)(
P7

)(
P8

)(
P9

)(
P10

)(
P13

)(
P14

)(
P15

)(
P16

)(
P17

)(
P19

)(
P20

)
(104)

(+)(−)P1 → P3 → P2 → P5 → P6 → P11 → P12 → P18

(
P4

)(
P7

)(
P8

)(
P9

)(
P10

)(
P13

)(
P14

)(
P15 → P17

)(
P16

)(
P19

)(
P20

)
(105)

(+)(−)P1 → P4 → P5 → P6 → P11 → P12 → P18

(
2
)(

P3

)(
P7

)(
P8

)(
P9

)(
P10

)(
P13

)(
P14

)(
P15

)(
P16

)(
P17

)(
P19

)(
P20

)
(106)

(−)(+)P1 → P4 → P5 → P6 → P11 → P12 → P18

(
2
)(

P3

)(
P7

)(
P8

)(
P9

)(
P10

)(
P13

)(
P14

)(
P15 → P17

)(
P16

)(
P19

)(
P20

)
(107)

(+)(−)P1 → P4 → P13 → P14 → P15 → P16 → P18

(
P2

)(
P3

)(
P5

)(
P6

)(
P7

)(
P8

)(
P9

)(
P10

)(
P11

)(
P12

)(
P17

)(
P19

)(
P20

)
(108)

(−)(+)P1 → P4 → P13 → P14 → P15 → P16 → P18

(
P2

)(
P3

)(
P6

)(
P7

)(
P8

)(
P9

)(
P10

)(
P11

)(
P12

)(
P17

)(
P5 → P19 → P20

)
(109)

We thus see that several different partitions into independently adapting subsets are possible for this
partcular network configuration. We see that P17 is disjoint from all routes of the network, and participates
in a circuit that is contiguous with the route P1 → P4 → P13 → P14 → P15 → P16 → P18, so that P17 (when
equipped with the requisite reaction kinetics) is able to act as an opposer for that route, creating S-sets
from the last two terms. The remaining terms could be assigned to a single M-set, for example, assigning
P5 the role of the D-node, and P12 the role of the C-node, with interior nodes being P6,P7,P8,P9,P10 and
P11. For illustrative purposes, we depict a further possibility, noting that nodes P19 and P20 are disjoint
from all routes, and participate in a circuit that is contiguous with all routes other than P1 → P4 → P13 →
P14 → P15 → P16 → P18 (which can be opposerd by P17, as outlined above. Thus, either P19 or P20 could
create S-sets from all remaining terms when equipped with suitable opposer kinetics. Here, P19 is chosen
as the opposer node for illustrative purposes. Thus, the network as a whole may be considered as two
Opposer Modules (one using P17 as a single opposer node, and the other using P19 as a single opposer
node), connected together in parallel. Simulations of this solution to the RPA equation are presented in
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Supplementary Figure 16, using the following equations (and parameters as given in the figure caption):

f1 = dP1

d t
= k1(P1tot −P1)I −k2P1, (110)

f2 = dP2

d t
= k3(P2tot −P2)(P1 +k4P3)−k5P2, (111)

f3 = dP3

d t
= k6(P3tot −P3)P1 −k7P3, (112)

f4 = dP4

d t
= k8(P4tot −P4)P1 −k9P4, (113)

f5 = dP5

d t
= k10(P5tot −P5)(P2 +k11P4)−k12P5P20, (114)

f6 = dP6

d t
= k13(P6tot −P6)P5 −k14P6, (115)

f7 = dP7

d t
= k15(P6 +k16P10)(P7tot −P7)−k17P7, (116)

f8 = dP8

d t
= k18P5(P8tot −P8)−k19P8, (117)

f9 = dP9

d t
= k20(P9tot −P9)−k21(P9 +k21aP8), (118)

f10 = dP10

d t
= k22P9(P10tot −P10)−k23P10, (119)

f11 = dP11

d t
= k24P6(P11tot −P11)−k25P11, (120)

f12 = dP12

d t
= k26(P7 +k27P11)(P12tot −P12)−k28P12, (121)

f13 = dP13

d t
= k29P4(P13tot −P13)−k30P13, (122)

f14 = dP14

d t
= k31P13(P14tot −P14)−k32P14, (123)

f15 = dP15

d t
= k33P14(P15tot −P15)−k34P15P17, (124)

f16 = dP16

d t
= k35P15(P16tot −P16)−k36P16, (125)

f17 = dP17

d t
= k37P15 −k38, (126)

f18 = dP18

d t
= k39(P12 +k40P16)(P18tot −P18)−k41P18, (127)

f19 = dP19

d t
= k42 −k43P5, (128)

f20 = dP20

d t
= k44(P20tot −P20)−k45P20P19. (129)

SN5.1.5 A Two-Node Opposing Set in a Network with a Shared Input/Output Node

As our final illustrative example, we demonstrate the implementation of RPA in a simple network in which
the input node and the output node are one and the same node. We consider a representation of the
network discussed by Ferrell [8] (which is itself a representation of the network proposed by [6]) as antithetic
integral feedback, which we argue is an instance of a single Opposer Module that uses a two-node opposing
set. Our representation of this network in Supplementary Figure 17, adapted from Figure 5 in [8] contains
five nodes -A,B ,C ,D and P , where B is both the input node and the output node. As discussed elsewhere
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Supplementary Figure 16: Time-dependent solutions for modeling Equations (110) through (129). Nodes
P17 and P19 act as opposer nodes, and thus need to operate with opposer kinetics (of which Equations
(126) and (128) are the particular examples chosen here for illustrative purposes). The input stimulus, I, is
represented in black and is a step function beginning at a level of 0.1, increasing in increments of 0.3 until a
value of unity. As shown, the output node, P18 exhibits RPA, as does P5 (which regulates the opposer P19)
and P15 (which regulates the opposer P17, not shown). Nodes P6,P7,P8,P9,P10,P11,P12,P13,P14 and P16

also exhibit RPA (not shown). Opposer nodes P17 and P19 are necessarily unable to exhibit RPA (P17 shown
for illustrative purposes); Nodes P1,P2,P3,P4,P13,P14 as well as P20 (shown), are also unable to exhibit
RPA for this particular solution. Parameters used in the modeling equations are: k1 = 1,k2 = 0.2,k3 =
1,k4 = 1,k5 = 0.2,k6 = 1,k7 = 0.2,k8 = 1,k9 = 0.2,k10 = 0.1,k11 = 0.1,k12 = 0.2,k13 = 0.4,k14 = 0.2,k15 =
0.4,k16 = 0.1,k17 = 0.2,k18 = 0.1,k19 = 0.2,k20 = 0.1,k21 = 0.2,k21a = 0.1,k22 = 0.1,k23 = 0.2,k24 = 0.1,k25 =
0.2,k26 = 0.4,k27 = 0.1,k28 = 0.2,k29 = 0.2,k30 = 0.1,k31 = 0.2,k32 = 0.1,k33 = 0.1,k34 = 0.2,k35 = 0.2,k36 =
0.1,k37 = 0.2,k38 = 0.1,k39 = 0.4,k40 = 0.1,k41 = 0.2,k42 = 0.1,k43 = 0.2,k44 = 2,k45 = 20;P1tot = P2tot =
P3tot = P4tot = P5tot = P6tot = P7tot = P8tot = P9tot = P10tot = P11tot = P12tot = P13tot = P14tot = P15tot =
P16tot = P17tot = P18tot = P19tot = P20tot = 1.
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in this document, the RPA equation for a network with a single input/output node contains no routes, but
rather contains the set of all (disjoint) cycle combinations that do not involve the input/output node. As a
consequence, such networks only admit RPA solutions via an opposition mechanism. For this particular
network, the terms of the RPA equation are represented by

(+)(+) (A) (C ) (D) (P )

(−)(−) (A) (C ) (D → P )

(−)(−) (A) (D) (C → P )

We see that nodes C , D and P all participate in a circuit that includes (is contiguous with) B (the in-
put/output node), but also participate in at least one circuit that is disjoint from B . We see that the set
{C ,D} meets the requirements of an opposing set of B , with an associated master set {C ,D,P }. Thus, the
network will exhibit RPA when both C and D operate with opposer kinetics. We use the same modeling
equations as [8] (albeit adding an equation for the introduced node P in our representation of the network),
namely

d A

d t
= k1D −k2 A, (130)

dB

d t
= ke I A−k4B , (131)

dC

d t
= k4B −k5P, (132)

dD

d t
= k6 −k5P, (133)

dP

d t
=C

dD

d t
+D

dC

d t
⇔ P =C D, (134)

=C (k6 −k5P )+D(k4B −k5P ).

Time-course simulations of these network equations are presented in Supplementary Figure 18, using the
parameter set given in the figure caption. Input, I , indicated in black is a step function beginning at 0.2 and
increasing in increments of 0.2 until a value of 1. As expected, the output node, B exhibits RPA (as shown).
Node P also adapts (not shown). The two opposer nodes, C and D, do not adapt as shown. Node A also
does not adapt (not shown).

This particular example highlights the important point that a "node" is any quantity that plays a role
in the encoding and transmission of biochemical signal through and around a network. Thus, while a
node is generally a physical entity (ie. molecule - protein, RNA, protein activation state, etc) it could be a
mathematical entity; in this specific example, the node P is the quantity C D .

SN5.2 Small Networks That Incorporate New Topological Features

We conclude this Supplementary Note with a consideration of how large network models need to be
for computational searches to be able to discover RPA-capable topologies that use both the opposition
mechanism and the balancing mechanism together to achieve RPA. We also consider the network size
required for computational searching to identify the smallest versions of a (non-trivial) opposing set, and
to identify the phenomenon of feedforward opposition - that is, opposer nodes that appear in feedback
loops (as required) as well as in a route, thereby also playing a transmissive role within the network. Ma et
al [15] had searched extensively on three-node networks, and were able to identify the simplest versions of
the Opposer Module (which they referred to as a negative feedback loop with buffering node) and minimal
versions of the Balancer Module (which they called an incoherent feedforward loop with proportioner node).

In Figure 8 of the main paper we present six small networks that are able to incorporate one or more of
these novel topological features. Below, we provide a set of simple reaction equations for each of those
those small networks; in Supplementary Figures 19 and 20 we present numerical simulations for those
model equations (with specified parameters) to demonstrate that these particular network topologies can
indeed engender RPA.
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Supplementary Figure 17: Network schematic for a two-node feedback opposing set, with a single node
(B) acting as both input node and output node. This example was presented and discussed in [8] as
"antithetical integral feedback". The two-node opposing set, {C ,D} is indicated in yellow; the associated
master set is {C ,D,P, }

Supplementary Figure 18: Time-dependent solutions to the modeling equations 130 through 134. Parame-
ters are: k1 = 1,k2 = 3,k3 = 20,k4 = 10,k5 = 10,k6 = 1.
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Case a: Opposer module (upstream) connected in series with a balancer module (downstream)

f I = d I

d t
= k1(Input )−k2I −k3O1,

fO = dO

d t
= k4I +k5C −k6O,

fO1 =
dO1

d t
= k7I −k8,

fC = dC

d t
= k9O1 −k10BC ,

fB = dB

d t
= k11O1 +k12B.

Case b: Balancer module (upstream) connected in series with an opposer module (downstream)

f I = k1(Input )−k2I ,

fB = k3I −k4B ,

fX = k5B

O1
−k7X ,

fO1 = k8X −k9,

fO = k10I X −k11OB.

Case c: Two opposer modules connected in series

f I = k1(Input )−k2I −k3O1,

fO = k4I +k5X −k6O,

fO1 = k7I −k8,

fX = k9O1 −k10X −k11O2,

fO2 = k12X −k13.

Case d: A single opposer module (employing a two-node opposing set)

f I = k1(Input )−k2I +k3O1,

fO = k4I −k5O,

fO1 = k11X −k12,

fX = k8O2 −k9X −k10O1,

fO2 = k6O −k7X .

48



Case e: An opposer module (upstream, employing a two-node opposing set) connected in series with a
balancer module (downstream)

f I = k1(Input )−k2O1I ,

fO1 = k4I −k5X ,

fX = k6O1 −k7O2 −k8X ,

fO2 = k9X −k10,

fB = k11O2 −k12B ,

fC = k14O2 −k15BC ,

fO = k16I +k17C −k18O.

Case f: An opposer module employing a two-node opposing set, connected in series with another
opposer module (downstream, with single opposer node)

f I = k1(Input )−k2I −k3O1,

fO1 = k4I −k5X1,

fX1 = k6O1 −k7O2 −k8X1,

fO2 = k9X1 −k10,

fX2 = k11O2 −k12X2 −k13O3,

fO3 = k14X2 −k15,

fO = k16I +k17X2 −k18O.
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Supplementary Figure 19: Numerical simulations for Cases A, B and C depicted in Figure 8 of the main
paper. Model equations for each case are listed in Section above. The activity level of the output node (O)
is displayed in each case. The value of the Input is displayed in the top row: as shown, it increases from
0.2 to 1 in steps of 0.2. Parameter values used for these simulations are as follows: (a) k1 = k3 = k6 = k7 =
1;k2 = k4 = k5 = k8 = k9 = k10 = k11 = k12=0.5; (b) k1 = k2 = k3 = k4 = k7 = k8 = k10 = k11 = 1;k5 = k9 = 0.5.
(c) k1 = k3 = k6 = k7 = k12 = 1;k2 = k4 = k5 = k8 = k9 = k10 = k11 = k13 = 0.5.

Supplementary Figure 20: Numerical simulations for Cases D, E and F depicted in Figure 8 of the main
paper. Model equations for each case are listed in Section above. The activity level of the output node (O)
is displayed in each case. The value of the Input is displayed in the top row: as shown, it increases from 0.2
to 1 in steps of 0.2. Parameter values used for these simulations are as follows: (d) k1 = k2 = k3 = k9 = k12 =
0.5;k4 = k5 = k6 = k7 = k8 = k10 = k11=1; (e) k2 = k3 = k4 = k5 = k6 = k7 = k9 = k11 = k12 = k13 = k15 = k18 =
1;k1 = k10 = k14 = k16 = k17 = 0.5;k8 = 0.4. (f) k1 = k2 = k3 = k10 = k12 = k15 = k16 = k17 = 0.5;k4 = k5 = k6 =
k7 = k8 = k9 = k11 = k13 = k14 = k18 = 1.
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Supplementary Note 6: Two Special Cases of RPA - Trivial Steady-States
and "Local" (One-Node) RPA

As has been amply emphasized throughout this work, our aim is to provide a comprehensive and truly
general understanding of robust perfect adaptation in biochemical networks – one that can accommodate
arbitrarily large numbers of nodes and an arbitrarily high level of network complexity, one that is not
restricted to trivial or otherwise "special" network steady-states, and one that escapes the need for special
conditions such as particular choices of network parameters.

For the purpose of completeness, we note two such special instances of RPA - examples which, despite
the special requirements of their implementation, have nevertheless been identified in certain biological
contexts and have been shown to offer important functional utility in those particular applications. Impor-
tantly, both of these special cases are inherently local, being implemented at the level of a single network
node. As such, RPA is not a network property in these cases.

The first of these arises from the special case where ∂ fI
∂I = 0 (at the network’s steady-state), which implies

reaction kinetics at the input node of the general form

f I = g (I )h1(Pu)− g (I )h2(Pd ), (135)

where Pu and Pd represent the node(s) which upregulate and downregulate the PI reaction (nodes which
could include PI itself), respectively. Thus, the input node both upregulates and downregulates the input
node in the same way, representing the activity of a "paradoxical component" such as a bifunctional
enzyme. Bifunctional enzymes, and their "paradoxical" effects on their targets have been reported to play a
role in certain cases of signaling robustness (see, for example, [13], [14] and references therein).

We note, further, that the RPA-inducing effects of such a paradoxical component could be realised
anywhere in a network, not just at the input node. If any node Pi acts as a bifunctional enzyme (say), as

encoded by an equation of the form (135), on some target node P j , then
∂ f j

∂Pi
= 0 for all I at the steady-state,

which means that any route containing the link
∂ f j

∂Pi
will be assigned to an S-set by the local (paradoxical)

activity of P j .
There is a sense in which these paradoxical regulations of a single node represent a trivial case of a

balancer module. As such, the single node is essentially a connector node, whereas the upstream signal or
regulation trivially plays the role of the balancer node(s).

The second special case concerns a recently identified phenomenon referred to as "state-dependent
inactivation". This mechanism, too, occurs at the level of a single node. While this kind of mechanism has
been reported for phenomena such as the activation and subsequent internalization of receptor tyrosine
kinases (see [12] and [18] and references therein), the adaptive steady-state itself is constrained to be the
trivial one - zero activity of the single target node. The special adaptive effects of this mechanism rely
on the existence of an intermediate activation state of the molecule, and also rely on sufficient disparity
between key reaction parameters; this allows a short-lived activation of the node before returning to the
fully "off" state.
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Supplementary Note 7: Correspondences between
previously-identified perfect adaptation networks and the two RPA

basis modules

Having shown that all networks capable of exhibiting RPA must be constructed from one or more of the
five RPA basis modules, we remark that all previously identified cases of RPA are necessarily special cases
of the general modular theory we have presented and discussed in this study.

In the Table below, we summarize the many previously reported biological examples of RPA (left-hand
column) along with their known or putative RPA mechanism (right-hand column). In each case, the
corresponding RPA module is highlighted in bold.

Supplementary Table 2: Previously-identified PA modules and their Relationships to RPA Basis Modules

BIOLOGICAL SYSTEM RPA MODULE TYPE

Bacterial Chemotaxis [2, 4] Integral Feedback Control - Single Feedback Opposer Module
Bacterial Nitrogen Assimilation [14] Trivial Case of a Balancer Module (see Supp. Note 6)

Signal Transduction in mammalian cells - Negative Feedback loops (with integral control) in the
eg. EGFR-regulated signaling case of ERK-MKP1 - Single Feedback Opposer Module

pathways [8, 17, 20]
Incoherent feedforward regulation in the case of

EGFR-Ras signaling - Balancer Module
Yeast Osmoregulation [16] Integral Feedback - Single Feedback Opposer Module

Regulation of Gene Expression - Antithetical Integral Feedback - Two-node Feedback
Prokaryotic transcription [6] and Opposing Set - See our modeling simulations in SN5.1.5

EGFR-regulated gene expression [8] of the example given by Ferrell [8]
Transcription Networks [11] Incoherent Feedforward Control - Balancer Module

Calcium Homeostasis [7] Integral Feedback - Single Feedback Opposer Module
Robustness and Scaling of Morphogen Integral Feedback (application of the Single Feedback
Gradients in Early Differentiation [3, 5] Opposer Module to a spatial signaling context)

52



Supplementary Note 8: A Note on Stability in RPA Networks

In this section we consider the conditions under which a perfectly-adaptive steady-state is a locally
asymptotically stable one.

Now, to any n-node network we may associate a characteristic polynomial, πn , given by

πn = (−1)ndet(Jn −λI) =λn +a1λ
n−1 +a2λ

n−2 + . . .+an−1λ+an , (136)

where, again, Jn is the system Jacobian matrix at the steady state, as presented in the earlier sections of
this document, and λ represents the associated eigenvalues. To ensure (linear) stability of the steady state,
we require all roots of πn to lie strictly in the left half of the complex plane. Moreover, with solutions
located strictly off the imaginary axis, such a steady state is hyperbolic; under these circumstances, the
Hartman-Grobman theorem guarantees that the flow of the nonlinear network is topologically conjugate
to that of the linearized network in some neighborhood of the steady-state [19].

By the Routh-Hurwitz theorem, all roots of πn lie strictly in the left half of the complex plane if and
only if the determinants of all n Hurwitz matrices are positive - a condition we refer to hereafter as the
Routh-Hurwitz stability criterion [1]. The Hurwitz matrices are generated by the following pattern:

H1 =
[

a1
]

,

H2 =
[

a1 1
a3 a2

]
,

H3 =
 a1 1 0

a3 a2 a1

a5 a4 a3

 ,

Hn =


a1 1 0 0 . . . 0
a3 a2 a1 1 . . . 0
a5 a4 a3 a2 . . . 0
...

...
...

...
...

...
0 0 0 0 . . . an

 ,

such that am = 0 if m > n.
A direct consequence of this criterion is that a necessary (but not sufficient) condition for the roots of

the characteristic polynomial to lie in the left half of the complex plane is that the n coefficients a1, . . . , an

all be strictly positive. This being the case, we consider the condition ai > 0 for all i ∈ {1, . . . ,n} the
primary (necessary) condition for network stability, and refer to these coefficients hereafter as the stability
coefficients.

We thus begin by elucidating the nature of the stability coefficients a1, . . . , an for a general n-node
network. Now, from a consideration of the origin of these coefficients in the matrix determinant given in
Equation (136) above, it readily follows that

am =Σ(
(−1)z m-node cycle products

)
(137)

for the n-node network, with 1 ≤ m ≤ n, and where z is the number of distinct cycles present in each term.
For n = 2, for instance, we see that

a1 =− ∂ f1

∂P1
− ∂ f2

∂P2
=−Tr(J2),

a2 = ∂ f1

∂P1

∂ f2

∂P2
− ∂ f1

∂P2

∂ f2

∂P1
= det(J2).
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For n = 3,

a1 =− ∂ f1

∂P1
− ∂ f2

∂P2
− ∂ f3

∂P3
=−Tr(J3),

a2 = ∂ f1

∂P1

∂ f2

∂P2
+ ∂ f1

∂P1

∂ f3

∂P3
+ ∂ f2

∂P2

∂ f3

∂P3
− ∂ f1

∂P2

∂ f2

∂P1
− ∂ f1

∂P3

∂ f3

∂P1
− ∂ f2

∂P3

∂ f3

∂P2
,

a3 =− ∂ f1

∂P1

∂ f2

∂P2

∂ f3

∂P3
+ ∂ f1

∂P1

∂ f2

∂P3

∂ f3

∂P2
− ∂ f1

∂P2

∂ f2

∂P3

∂ f3

∂P1
+ ∂ f1

∂P2

∂ f2

∂P1

∂ f3

∂P3
− ∂ f1

∂P3

∂ f3

∂P2

∂ f2

∂P1
+ ∂ f1

∂P3

∂ f3

∂P1

∂ f2

∂P2

=−det(J3).

It should be noted, of course, that for a particular network, circuits only appear in the expansions for the
ai coefficients if those circuits actually exist in the network in question. Moreover, since the maximum
number of terms in an for an n-node network is n!, we see that these coefficient expansions grow factorially
(ie. extremely rapidly) with network size.

For case (a) in Supplementary Figure 21, for example, taking the node P2 to be an opposer node to form
a single opposer module, the stability coefficients are

a1 =− ∂ f1

∂P1
− ∂ f3

∂P3
,

a2 = ∂ f1

∂P1

∂ f3

∂P3
,

a3 =− ∂ f1

∂P2

∂ f3

∂P1

∂ f2

∂P3
,

from which it follows that the primary stability condition is satisfied with negative kinetic multipliers for
the non-opposer nodes P1 and P3, and the negative three-node feedback loop indicated in the diagram. To
guarantee (local) stability, however, the three Hurwitz matrices must have positive determinants. In this
case, det(H1)=a1, det(H2)=a1a2 −a3, and det(H3)=det(H2)a3. Thus, in addition to positive stability coef-

ficients, we additionally require a1a2 > a3, ie.− ∂ f1
∂P1

∂ f1
∂P1

∂ f3
∂P3

− ∂ f3
∂P3

∂ f1
∂P1

∂ f1
∂P1

>− ∂ f1
∂P2

∂ f3
∂P1

∂ f2
∂P3

. Thus, it is possible
for such a network configuration to fail to meet all Routh-Hurwitz criteria (specifically, det(H2)) in some
parameter regimes.

For case (b) in Supplementary Figure 21, on the other hand, taking the node P2 to be a balancer node,
and node P3 to be a connector node, forming a simple balancer module, the stability coefficients are

a1 =− ∂ f1

∂P1
− ∂ f2

∂P2
− ∂ f3

∂P3
,

a2 = ∂ f1

∂P1

∂ f2

∂P2
+ ∂ f1

∂P1

∂ f3

∂P3
+ ∂ f2

∂P2

∂ f3

∂P3
,

a3 =− ∂ f1

∂P1

∂ f2

∂P2

∂ f3

∂P3
.

Once again, with negative kinetic multipliers, the primary stability condition is safisfied. Now, the Routh-
Hurwitz conditions additionally require a1a2 > a3, which in this case corresponds to

− ∂ f1

∂P1

∂ f1

∂P1

∂ f2

∂P2
− ∂ f1

∂P1

∂ f1

∂P1

∂ f3

∂P3
− ∂ f1

∂P1

∂ f2

∂P2

∂ f3

∂P3
− ∂ f2

∂P2

∂ f1

∂P1

∂ f2

∂P2
− ∂ f2

∂P2

∂ f1

∂P1

∂ f3

∂P3

− ∂ f2

∂P2

∂ f2

∂P2

∂ f3

∂P3
− ∂ f3

∂P3

∂ f1

∂P1

∂ f2

∂P2
− ∂ f3

∂P3

∂ f1

∂P1

∂ f3

∂P3
− ∂ f3

∂P3

∂ f2

∂P2

∂ f3

∂P3

=−3

(
∂ f1

∂P1

∂ f2

∂P2

∂ f3

∂P3

)
− ∂ f1

∂P1

∂ f1

∂P1

∂ f2

∂P2
− ∂ f1

∂P1

∂ f1

∂P1

∂ f3

∂P3
− ∂ f2

∂P2

∂ f1

∂P1

∂ f2

∂P2

− ∂ f2

∂P2

∂ f2

∂P2

∂ f3

∂P3
− ∂ f3

∂P3

∂ f1

∂P1

∂ f3

∂P3
− ∂ f3

∂P3

∂ f2

∂P2

∂ f3

∂P3

>− ∂ f1

∂P1

∂ f2

∂P2

∂ f3

∂P3
,
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which is automatically satisfied for negative kinetic multipliers (which produce positive stability coeffi-
cients) for this specific network configuration.

We note that while the primary stability conditions will be met for any network with purely negative
cycles, the Routh-Hurwitz conditions that guarantee stability become increasingly complex with increasing
network size (number of nodes), especially for networks involving many circuits (feedback loops), since
the stability coefficients that generate the Hurwitz matrices and their determinants are composed of all
combinations of the cycle products in a network. For case (c) in Supplementary Figure 21, for instance,
taking the node P2 to be an opposer node to create single opposer module from the five-node arrangement,
the stability coefficients are

a1 =− ∂ f1

∂P1
− ∂ f3

∂P3
− ∂ f4

∂P4
− ∂ f5

∂P5
,

a2 = ∂ f1

∂P1

∂ f3

∂P3
+ ∂ f1

∂P1

∂ f4

∂P4
+ ∂ f1

∂P1

∂ f5

∂P5
+ ∂ f3

∂P3

∂ f4

∂P4
+ ∂ f3

∂P3

∂ f5

∂P5
+ ∂ f4

∂P4

∂ f5

∂P5
,

a3 =− ∂ f1

∂P1

∂ f3

∂P3

∂ f4

∂P4
− ∂ f1

∂P1

∂ f3

∂P3

∂ f5

∂P5
− ∂ f1

∂P1

∂ f4

∂P4

∂ f5

∂P5
− ∂ f3

∂P3

∂ f4

∂P4

∂ f5

∂P5
,

a4 = ∂ f1

∂P1

∂ f3

∂P3

∂ f4

∂P4

∂ f5

∂P5
,

a5 = ∂ f1

∂P2

∂ f2

∂P5

∂ f5

∂P4

∂ f4

∂P3

∂ f3

∂P1
,

which, once again, are guaranteed to be positive (as required) if all kinetic multipliers are negative with the
five-node circuit negative (as depicted). An analysis of the five Hurwitz matrices shows that the following
additional two criteria must be satisfied in order to guarantee stability -

a1a2a3 > a3
2 +a1

2a4,

(a1a4 −a5)(a1a2a3 −a3
2 −a1

2a4) > a5(a1a2 −a3)2a1a5
2.

underscoring the fact that the difficulty of making a definite determination as to stability increases rapidly
with network size (number of nodes) and complexity (which in the context of stability refers to the presence
of more feedback circuits in the network).

Moreover, even when a steady-state is locally asymptotically stable, this is no guarantee that the steady-
state is globally asymptotically stable, as in principle, a network may possess multiple steady states, and
the system could be stimulated from away from the adaptive set-point to an alternative steady-state under
certain circumstances.

The main conclusion to be drawn, for the purposes of the present work, is that negative cycles (ie.
negative kinetic multipliers and negative feedback loops, in the sense of an odd number of inhibitory
interactions within the circuit) promote local asymptotic stability of the steady-state for an RPA solution.
Indeed, having only negative cycles guarantees that the primary stability conditions will be met. As such,
we consider negative cycles to be the generic property of RPA networks. Indeed, all specific RPA networks
analyzed in this work for illustrative purposes (Supplementary Note 5) were assigned purely negative cycles.
In each case time-dependent solutions were produced, and stable RPA solutions were readily obtained,
thus supporting the notion that the presence of only negative cycles in an RPA network is conducive to (if
not a guarantee of) a stable (and thus ‘true’) RPA solution.
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Supplementary Figure 21: Three simple network configurations, whose stability properties are examined in
Supplementary Note 8.

56



Supplementary References

[1] Linda JS Allen. Introduction to mathematical biology. Pearson/Prentice Hall, 2007.

[2] Uri Alon, Michael G Surette, Naama Barkai, and Stanislas Leibler. Robustness in bacterial chemotaxis.
Nature, 397(6715):168–171, 1999.

[3] Inna Averbukh, Danny Ben-Zvi, Siddhartha Mishra, and Naama Barkai. Scaling morphogen gradients
during tissue growth by a cell division rule. Development, 141(10):2150–2156, 2014.

[4] Naama Barkai and Stan Leibler. Robustness in simple biochemical networks. Nature, 387(6636):913–
917, 1997.

[5] Danny Ben-Zvi and Naama Barkai. Scaling of morphogen gradients by an expansion-repression
integral feedback control. Proceedings of the National Academy of Sciences, 107(15):6924–6929, 2010.

[6] Corentin Briat, Ankit Gupta, and Mustafa Khammash. Antithetic integral feedback ensures robust
perfect adaptation in noisy bimolecular networks. Cell systems, 2(1):15–26, 2016.

[7] H El-Samad, JP Goff, and M Khammash. Calcium homeostasis and parturient hypocalcemia: an
integral feedback perspective. Journal of Theoretical Biology, 214(1):17–29, 2002.

[8] James E Ferrell. Perfect and near-perfect adaptation in cell signaling. Cell systems, 2(2):62–67, 2016.

[9] Bruce A Francis and W Murray Wonham. The internal model principle of control theory. Automatica,
12(5):457–465, 1976.

[10] Bruce A Francis and William M Wonham. The internal model principle for linear multivariable
regulators. Applied mathematics and optimization, 2(2):170–194, 1975.

[11] Lea Goentoro, Oren Shoval, Marc W Kirschner, and Uri Alon. The incoherent feedforward loop can
provide fold-change detection in gene regulation. Molecular cell, 36(5):894–899, 2009.

[12] Lai Kuan Goh and Alexander Sorkin. Endocytosis of receptor tyrosine kinases. Cold Spring Harbor
perspectives in biology, 5(5):a017459, 2013.

[13] Yuval Hart and Uri Alon. The utility of paradoxical components in biological circuits. Molecular cell,
49(2):213–221, 2013.

[14] Yuval Hart, Daniel Madar, Jie Yuan, Anat Bren, Avraham E Mayo, Joshua D Rabinowitz, and Uri
Alon. Robust control of nitrogen assimilation by a bifunctional enzyme in e. coli. Molecular cell,
41(1):117–127, 2011.

[15] Wenzhe Ma, Ala Trusina, Hana El-Samad, Wendell A Lim, and Chao Tang. Defining network topologies
that can achieve biochemical adaptation. Cell, 138(4):760–773, 2009.

[16] Dale Muzzey, Carlos A Gómez-Uribe, Jerome T Mettetal, and Alexander van Oudenaarden. A systems-
level analysis of perfect adaptation in yeast osmoregulation. Cell, 138(1):160–171, 2009.

[17] Satoru Sasagawa, Yu-ichi Ozaki, Kazuhiro Fujita, and Shinya Kuroda. Prediction and validation of the
distinct dynamics of transient and sustained erk activation. Nature cell biology, 7(4):365–373, 2005.

[18] Alexander Sorkin and Lai Kuan Goh. Endocytosis and intracellular trafficking of erbbs. Experimental
cell research, 315(4):683–696, 2009.

[19] Steven H Strogatz. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry,
and engineering. Westview press, 2014.

57



[20] Hong Sun, Catherine H Charles, Lester F Lau, and Nicholas K Tonks. Mkp-1 (3ch134), an immediate
early gene product, is a dual specificity phosphatase that dephosphorylates map kinase in vivo. Cell,
75(3):487–493, 1993.

[21] Tau-Mu Yi, Yun Huang, Melvin I Simon, and John Doyle. Robust perfect adaptation in bacterial
chemotaxis through integral feedback control. Proceedings of the National Academy of Sciences,
97(9):4649–4653, 2000.

58


