
Reviewers' comments:  

 

Reviewer #1 (Remarks to the Author):  

I have mixed feeling about the manuscript “Only five classes of embedded motifs engender robust 

perfect adaptation in any network regardless of its size”. On the positive side the authors made 

reasonable assumptions on the network regulation rules and based on which derived relationship 

between network topology and an important behavior called perfect adaptation. Relying on 

mathematical derivation instead of numerical method, the authors could explore a network that is 

much larger than people have been working on before. Based on Jacobian analysis the authors 

successfully derived several classes of networks that’s capable of perfect adaptation. The authors 

described some interesting structure like multi-opposer control mechanism. from this perspective, I 

feel the author’s efforts is very valuable. It expands our capability to deal with large regulatory 

networks.  

But this manuscript is not without its problems. The general problems include: 1. Figures are not 

organized. Some of the main text figures don’t show a conclusion by itself but works more like 

supplement figures to show examples instead. 2. There are many terms in different fields that the 

authors mixed together makes the article hard to read. 3. The main text is following a mathematical 

logic instead of a question driven logic line. This way the authors could lose many potential readers. 

4. The authors also want to correct the color scheme of the time courses in figures, different colors 

are used on the output/input nodes which makes the figure hard to read.  

The major problem of the manuscript is the classification of 5 classes of adaptation networks. The 

title is very attractive, but when I look through the main text and the supplement it is hard to find 

how the classification standard is chosen and why the way of classification is reasonable. Because 

this is the central point of the manuscript I would expect at least one figure to list all the five classes 

of motifs and explain the key features. There is also no such figure. Although figure 1 listed four of 

them but I have to go back and forth several time to realize figure 4 is the other one. When we really 

look into the 5 classes I am not sure it’s the right way to categories all the networks. Generally, 

networks in figure one are all feedback loop controlled networks while figure 4 feedforward loops. 

For feedback controlled networks the author further divide them into 4 classes. I find this extremely 

confusion. First single-opposer classes could be special cases of multi-opposer classes. I think there 

should be at most two classes for S-set. These many classes just confuse people. Second all the 

opposer sets should use integral control as the mechanism which makes the feedforward loop 

dispensable. This means only one class is absolutely necessary to represent all the networks in the S-

set. But actually if there are feedforward loops and feedback loops co-existing in one network the 

adaptation could due to either feedback control (S-set control) or feedforward control (M-set 

control), based on different parameters. The authors seem to totally neglect the importance of 

control parameters. All in all, I am not convinced the conclusion in this manuscript is sound and 

helpful to the field although I think the way the authors approach the problem is valuable.  

 

 



Details of review for NCOMMS-17-05100 

This paper aims to expand and refine the concept of Robust Perfect Adaptation (RPA) as it arises in cell 
biology.  The aims are interesting and even important, but I think the paper as written falls short.  
However, if the details were corrected and improved, the author’s aims would be strengthened.  So this 
review is critical of the technical details, but I’m sympathetic to the aims and would like to see a paper 
like this succeed.  I’ll sketch what the main aims are and then go into selected details that I think are the 
best opportunities for improvement.  As I’m sympathetic to the aims of the paper, and the authors have 
clearly done a lot of work, I spent a lot (too much in retrospect) time going through the details in the 
supplement for anything that would justify the proliferation of definitions and mitigate the main 
problems focused on below.  Unfortunately, I was unsuccessful, but the supplement is so long and 
involved it is hard to be certain.  The highlights: 

Necessary conditions for RPA: 

“… in stark contrast to previous work on the RPA problem (see (3,18) for recent reviews), we present a 
global and ‘top-down’ methodology that allows us to identify the necessary conditions for achieving RPA 
in arbitrarily large and complex networks.”  (see line 57) The “previous work” cited is all recent papers in 
biology, where the literature is admittedly a bit of a mess.  What is overlooked is a much bigger and 
older (>40 years) literature in engineering and math in control theory.  One centerpiece of this paper, 
the “RPA equation” is actually a special case of a special case of the Internal Model Principle (by Francis 
and Wonhom, 1977).  A very brief primer with this and additional reference is in 

Yi, Huang, Simon, Doyle: (2000) Robust perfect adaptation in bacterial chemotaxis through integral 
feedback control.  Proc. Natl. Acad. Sci. 2000: Apr 25 97(9): 4649-53 

Yi etal appears to be the only biology paper like this, but it uses only the most trivial parts of control 
theory that was already decades old in 2000.  The RPA equation is trivially equivalent to the RPA 
conditions given in Yi et al.  I’ll expand on this in more detail below.   

Five and only five classes 

Beyond the RPA equation, a central claim in this paper is that (line 86) “…five and only five distinct 
classes of network modules represent a basis for the solution to the RPA problem in any size network.”  
The aim here is interesting but the claim appears not to be correct.  The 5 classes are in fact only 2 in 
disguise, though the disguises are quite clever.  I’ll work through the details of this below, and the 
required machinery is vastly simpler than what is in the paper. 

Minimal modules 

The authors also seem to have overlooked a crucial minimal solution in their list of “minimal 
modules” in S6.2 (page 47).  Below I’ll describe what I find to be the two “fundamental” motifs.  This has 
all been well-known in engineering for decades, but is no longer emphasized and would deserve some 
revival in the context of biology.  The paper would be much clearer if such minimal modules were 
corrected and emphasized more rather than devote many pages to algebra for what seem to be 
unnecessarily complex case studies.  

Reviewer #2 (Remarks to the Author): 

I'm sympathetic to the aims of this paper but it needs major revisions to achieve them.



Primer on integral feedback control theory basics: The paper mentions integral feedback control 
(IFC) but never clearly states what it is, though it is implicit in much of the supplement.  Since IFC is such 
a simple concept it is probably worth explicitly mentioning what it is.  The RPA equation, a centerpiece 
of this paper, is a simple special case of the IFC det condition below, which is a special case of the 
Internal Model Principle (IMP).  The paper incorrectly claims that the RPA equations is a “generalization 
of integral control” (191) when it is a special case of a special case of a result (IMP) that is now >40 years 
old.  For references on IMP and a brief primer on Integral Feedback Control (IFC) for biologists, see Yi 
etal above. 

I’ll quickly review below what is in Yi etal 2000 PNAS paper but note it has been “well known” (taught 
to undergrads) regarding “perfect adaptation” in engineering for at least 30 years.  The current 
submission’s main results are largely special cases, so the paper would be both more scholarly and 
clearer if it adopted these standard results.  The confusion arises on line 57 where the paper states that 
“…until now, three basic approaches have been used to understand the requirements for RPA 
(2,3,5,8,14,18,19) , and they have only provided answers for very small systems.”  The authors claim that 
“… in stark contrast to previous work on the RPA problem (see (3,18) for recent reviews), we present a 
global and ‘top-down’ methodology that allows us to identify the necessary conditions for achieving RPA 
in arbitrarily large and complex networks.”  If you ignore the Yi et al PNAS paper above, this is largely 
true in the biology literature but has emphatically not been true for >40 years in undergrad engineering 
control theory. What follows is a minimal primer on this material. 

Starting simply, consider the linear system 
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where y and w are scalar output and input, and x is a vector internal state and all vectors and matrices 
are real and of compatible dimensions. It is actually simpler to use this general case rather than the 
special case where some states are identified as inputs and/or outputs.  We’ll assume that  0c ≠  for 
nontriviality (and we are assuming d=0 as in the paper, not an important restriction). 

We’ll consider some arbitrary initial condition in x and a step input in w, both at t=0.   Then “perfect 
adaptation” (PA) is defined to be the property that 

PA:         (0) initial conditions ( )  constant (ste0 p( ) )
t

x w ty t
→∞

∀ ∀ =→  

This goes by other names in engineering (asymptotic tracking, zero steady state, …) but we’ll use the 
biologist’s PA. For Robust PA (RPA) we need to define some uncertain set [ ], ,A b c S∈  and check that 

PA holds for all [ ], ,A b c S∈ .   We’ll assume A is stable throughout. Stability is largely ignored in this 

paper, and discussed briefly in S9 (Supplement Section 9).  More on this later, but note that for any 
nontrivial uncertainty model, verifying robustness of PA is trivial compared with robustness of stability, 
and thus not surprisingly robust control theory focuses on the latter.   In biology the relative simplicity of 
testing RPA should probably be a feature. 

 
The main “integral feedback control” (IFC) theorem is 

     IFC Thm: 

det 0   &   
A b

PA k z kx z y
c d
 

⇔ = ⇔ ∃ ∋ = = 
 



 



This is easily proven with a few lines of algebra, given in the Yi et al paper.  This is arguably the simplest 
nontrivial result in control theory and is a special case of the Internal Model Principle (IMP), that PA to 
an external disturbance like a step requires an internal model.  For example, PA to steps, ramps, and 
sinusoids need, respectively, an internal single and double integrator, and an oscillator.  Let me 
underscore here that the “RPA equation” is strictly a special case of the det condition in the IFC Thm 
(easily shown by simply taking the special case in the paper and applying the Schur complement formula 
to the determinant).  In the author’s defense these simple results are perhaps not adequately 
emphasized in control theory education, and typically mentioned mostly in passing, as RPA seems to be 
such a trivial special case that it doesn’t need highlighting.  I think this attitude makes sense in 
engineering but perhaps less so in biology.  In any case, biologists are clearly interested in RPA so it 
would help them to have a rigorous and accessible account. 

The integral feedback is in the variable z kx= which has dynamics   z y= .  This is popular in 
engineering because it is easily implemented in digital controllers, and the main technical issue is called 
“integrator windup” which occurs with saturating actuators, and thus integral controllers include 
antiwindup mechanisms.  In biology, the issue is more “reverse engineer” to identify mechanisms that 
achieve PA, and the paper cites several of the standard papers in this genre.  The det condition is a 
simple algebraic test for PA and is equivalent to the existence of integral control. 

Beyond the RPA equation, a central claim in this paper is that (86) “… fundamental solutions to the 
RPA problem is limited to five: that is, five and only five distinct classes of network modules represent a 
basis for the solution to the RPA problem in any size network.”  I was unable to find a clear definition of 
what “fundamental solutions” are but it seems fairly clear to me that their five distinct classes are in fact 
elaborations of just two “fundamental” motifs.   

The authors also seem to have overlooked a crucial minimal solution in their list of “minimal 
modules” in S6.2 (page 47).  I’ll next describe what I find to be the two “fundamental” motifs, the first of 
them equivalent to S6.2.1 Case A on page 49, but the second one is a nonlinear “balancer” module that 
is simpler than S6.2.3 Case C on page 49.  This has all been well-known in engineering for decades, but is 
no longer emphasized and would deserve some revival in the context of biology.   

 

Minimal “motifs”: Both minimal motifs have 2 states.  The first is the pure example of integral 
feedback control (IFC) and can be used to illustrate a simple but meaningful notion of robustness.  
Consider the system 

Case 1 (Minimal IFC):  2
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This also has a variety of robustness features. For example consider the same sparsity pattern 
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Note that the det condition (and stability) holds for all 0ija >  and the integrator is trivially in the 2nd 

state.  This is the purest example of RPA and all but one of the “5 distinct classes” are simply 



elaborations of this where the pure integrator is replaced by a circuit that implements an integrator.  
More details on this later. 

A second case which biologists call Incoherent Feedforward (IFF) has a linearization of 

Case 2 (Minimal IFF):  [ ]
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but here the integrator is a mixture of the 2 states.  This is not as robust as the first case, in that 
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So that it appears that the parameters must be “fine-tuned” so that 21 2a b= .  However, a nonlinear 
version can be easily made robust, and the authors seem to have rediscovered this, though made it 
unnecessarily complicated.  Consider the nonlinear system with input w and output P (using notation 
similar to the paper) and additional state B 
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so the output P has RPA with respect to the parameter α.  The linearization around w=0 is a version of 
Case 2: 
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So the linearization appears to need fine-tuning but since 21 2a b α= =  this is done “for free” by the 
linearization of the nonlinear system.  This has been viewed primarily as a curiosity in engineering, but it 
appears from earlier work in biology that this nonlinear motif does arise natural in biology and deserves 
further study.  In the paper this case study is not identified as one of the “minimal” modules but is part 
of S6.2.3 Case A which has 3 additional (and unnecessary) states.   

While the authors seem to overlook the minimality of Case 2, they would agree with this analysis that 
Case 1 and 2 are distinct cases.  Where we would appear to disagree is that I can easily show that all of 
their 5 “distinct cases” are in fact nearly trivial elaborations of these two “motifs”.  By “nearly trivial 
elaborations” I mean that their cases can all be shown equivalent to starting with Case 1 or 2 and then 
adding dynamics that can affect stability but not RPA, so these additional dynamics are inconsequential 
for RPA.  I’ll work through one case study at the end. 

So it is easily shown that the 6 minimal modules in S6.2 (pages 47-50) are not minimal. In particular, 
S6.2.3 Case C is an elaboration of Case 2, and the rest are either exactly Case 1 (S6.2.1 Case A) or are 
elaborations of it (the rest).  This is easily shown constructively by simply using the IFC Theorem to 
extract the z variable that is the integrator, and the rest of the states don’t contribute to PA and merely 
need to preserve stability.  To concretely illustrate this, next I’ll show how S6.2.4 Case D on page 49 is a 
trivial elaboration of Case 1 above and is not a “distinct class of network module” from Case 1.  The 
same argument applies to 4 of the 5 classes, with the remaining class being equivalent to Class 2 above.  



The nonlinear version of Case 2 has an integrator in its linearization but as a nonlinear system is not 
equivalent to Case 1, so Cases 1 and 2 are legitimately 2 distinct “motifs” that can yield RPA, but the 
remaining 3 “classes” are not distinct in any meaningful sense.  But to make this clear we will carefully 
work through S6.2.4 Case D and show how it almost trivially reduces to Case 1 above. 

Showing S6.2.4 Case D is a version of Case 1: 

Recap Case 1 and add a simple notation for the motif, which we’ll call the Minimal IFC motif: 

Case 1:  1
1

0

1 1
0 0

1 0

A b
c d

 − −
   

=   
   

 

Now consider S6.2.4 Case D which has RPA and can be mostly simply written and drawn this way 

S6.2.4 Case D: 

We can check the conditions for the IFC Theorem: 
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And then change coordinates so that z is the new 2nd state, and then redraw the motifs. 



More general case:

What we see here is that after a simple change of coordinates, S6.2.4 Case D is a special case of a more 
general motif that is a simple elaboration of the Minimal IFC.  The truly general case is this, where the 
det=0 condition is trivially seen by inspection of the matrices: 

My point is that this is a huge class of networks all of which have RPA and are an obvious elaboration of 
the Minimal IFC.  By “elaboration” I mean adding dynamics that can affect stability but not RPA (so must 
preserve stability), but these additional dynamics are inconsequential for RPA.  The other cases in 
Section 6 are more complicated but similar.   For example, this motif is an obvious elaboration of the 
Minimal IFC (see also 6.2.2 Case B), but has a different output. 
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Note that 4 of the 5 “distinct classes” are just such elaborations, with added dynamics that have no 
effect on RPA, which only depends on the existence of a single integrator state (which may be a linear 
combination of states in the original coordinates).  This does not rule out that there may be more 
“distinct classes” to be found (the elaboration of the IFF case 2 is less obvious), but the one in the paper 
do not qualify. 

Note also that the direct use of the IFC theorem vastly simplifies the arguments here, certainly 
compared with the complexity of those in the supplement.  Even if corrected, the results simply don’t 
seem to need this level of complexity.  RPA and the IFC theorem is arguably the simplest nontrivial result 
in control theory, and deserves more attention, particularly in biology, but not greater complexity unless 
that complexity buys additional insights. 
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Response to Reviewers  (R.P. Araujo and L.A. Liotta; NCOMMS-17-05100). 
 
 
Response to Reviewer #1 
 
We warmly thank this reviewer for such supportive input on our work.  We have copied the 
entirety of the reviewer’s report below (in italicized type, and indented), and have followed 
each comment or criticism with our response, including an explanation as to how we have 
changed our manuscript. 
 
By way of a general overview of our extensively revised manuscript, we note this reviewer’s 
major technical concern that the original categorization of the modules into five distinct 
types may have introduced unnecessary distinctions among the modules.  After careful 
consideration and analysis of this matter, we completely agree with the reviewer’s 
assessment and find that we can indeed express the full solution space of RPA network 
topologies in terms of just two classes of basis modules under our new unifying definitions. 
One class is the “opposer” modules (orchestrated by the “opposition” mechanism, and for 
which we had previously, and needlessly, subdivided into four different categories), The 
second class is the “balancer” modules (orchestrated by the “balancing” mechanism).   In 
particular, we have concluded that the reviewer is entirely correct in suggesting that single 
opposers may be considered special cases of opposing sets.  In addition, we have now 
discovered a precise way to describe “feedforward” opposition (where opposer nodes, 
acting in feedback formation, also occur in a route and thus contribute a transmissive, 
feedforward, function in the network) in terms of the interconnectivity of modules, rather 
than incorporating this into the module itself as a topological feature.   
 
The centrepiece of this work is the identification of network elements that can truly be 
considered basis elements, along with a general way to combine (interconnect) those 
elements, so as to span the complete solution space to the RPA problem.   Remarkably, 
grouping our basis modules into just two classes (rather than five), and incorporating the 
novel phenomenon of feedforward opposition into the interconnectivity of modules has 
tremendously simplified our communication of the general RPA solution.  Our descriptions 
of both the modules themselves, and their interconnections, have now become vastly more 
streamlined and elegant, and present to the reader a more accessible view of the 
overarching structures governing robustness in ALL complex networks. 
 
The reviewer has also made several other valuable suggestions for the improvement of our 
presentation, for which we are truly grateful.  We have taken careful note of all these 
helpful comments, as we note in the following point-by-point responses:  
 

Reviewer #1 (Remarks to the Author): 
 
I have mixed feeling about the manuscript “Only five classes of embedded motifs engender 
robust perfect adaptation in any network regardless of its size”. On the positive side the 
authors made reasonable assumptions on the network regulation rules and based on which 
derived relationship between network topology and an important behavior called perfect 
adaptation. Relying on mathematical derivation instead of numerical method, the authors 
could explore a network that is much larger than people have been working on before. Based 
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on Jacobian analysis the authors successfully derived several classes of networks that’s 
capable of perfect adaptation. The authors described some interesting structure like multi-
opposer control mechanism. from this perspective, I feel the author’s efforts is very valuable. 
It expands our capability to deal with large regulatory networks. 

We thank the reviewer for this generous support and encouragement, and for the 
recognition of various novel and unexpected aspects of both our method and our findings.  
As the reviewer points out, our mathematical view of the RPA problem (in comparison with 
previous, predominantly computational, approaches) has been able to identify topological 
features of robust networks that have never been observed before – features such as 
“opposing sets” involving multiple opposers working together in collaboration as a complex 
control structure.  The reviewer also acknowledges that our work establishes a connection 
between network function (RPA, in this case) and network topology, and that our approach 
allows us to explore much larger regulatory networks than have ever been considered 
previously. 

 
But this manuscript is not without its problems. The general problems include: 1. Figures are 
not organized. Some of the main text figures don’t show a conclusion by itself but works more 
like supplement figures to show examples instead. 2. There are many terms in different fields 
that the authors mixed together makes the article hard to read. 3. The main text is following a 
mathematical logic instead of a question driven logic line. This way the authors could lose 
many potential readers. 4. The authors also want to correct the color scheme of the time 
courses in figures, different colors are used on the output/input nodes which makes the figure 
hard to read. 

 
We thank the reviewer for this constructive feedback and for the opportunity to 
significantly improve the presentation of our work.    Our response, point-by-point, is as 
follows: 

1. The reviewer’s comment that our figures could be better organised is well taken.   In 
particular, the reviewer suggests that “Some of the main text figures don’t show a 
conclusion by itself but works more like supplement figures to show examples instead.”  We 
have especially taken careful note of the reviewer’s view (expressed later in his/her 
report) that at least one figure should show all the classes of modules and explain 
the key features. With these helpful comments in mind, we have completely 
rethought and revised the contents of our figures so that they are more illustrative 
of the central conclusions of our work, and better support the communication of our 
main arguments.  Our extensively revised manuscript now comprises a total of eight 
brand new figures, whose main features we summarize below:  

a. Figure 1 summarises the two distinct classes of RPA basis modules.  For the 
sake of clear illustration, two different examples of opposer modules are 
shown – one with a single opposer node (which we now consider to be the 
“trivial” opposing set) in part (a), and one with the smallest non-trivial 
opposing set (ie. a two-node opposing set) in part (b).  Part (c) of the figure 
gives a general representation of the balancer module.  Here (and in all the 
subsequent figures), use small superposed red asterixes to indicate all nodes 
within the module that exhibit the RPA property. 

b. Our new Figure 2 now clarifies the role of “integral control” in the solution to 
the RPA problem. The two different “mechanisms” of RPA – namely, 
opposition and balancing – are implemented via distinct sets of 
computational nodes (opposer nodes, for opposer modules;  and the 
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collaboration between at least one balancer and a connector node, for 
balancer modules).  This figure makes clear how these two mechanisms play 
distinct computational roles in the solution of the RPA problem, through the 
computation of distinct types of integrals.  For the sake of clear illustration of 
the basic principles, we have chosen the most “minimal” version of each type 
of module, and the simplest type of appropriate reaction kinetics (for the 
opposer, balancer and connector).  Again, we indicate the nodes that exhibit 
the RPA property within the module with a superposed red asterisk. 

c. Since our work is the first to identify and name “Opposing Sets” as a 
topological possibility in larger RPA-capable networks, our new Figure 3 gives 
several different examples of how these well-defined arrangements of 
opposer nodes could be embedded into a feedback structure. As we clarify in 
the caption to this figure, our Theorem 3 (SI) specifies all possible such 
arrangements of opposer nodes into collections of interlinked circuits.  The 
figure uses three different realizations of this principle to communicate to 
the reader how the members of the opposing set work together to compute 
the integral of some “tracking error” for a particular node in the route(s) that 
they collectively oppose.  These illustrations highlight the crucial aspect and 
that opposing set’s ability to accomplish this feat hinges upon the ability of 
each individual opposer node in the set to compute the integral of a tracking 
error in one particular node within the overall topological arrangement.  The 
consequence of this “team effort”, as indicated, is that various other nodes 
within the modular topology (in addition to the route node) will also exhibit 
the RPA property (indicated, according to our chosen convention, with a 
superposed red asterisk).  The distinctive topological feature of opposing sets, 
is that they participate in feedback loops that are disjoint from the route(s) 
they collectively oppose.   

d. Figure 4 depicts a more general representation of the essential structure of 
opposing sets, along with their topological relationships to the route(s) they 
oppose.   As the reviewer has noted, the discovery of opposing sets as sub-
network topologies that can be embedded within RPA-capable networks is an 
important novel finding of our work.   

e. A major improvement to our revised submission, thanks in no small part to 
the reviewer’s (correct) suggestion that the completely general RPA solution 
should be expressible in terms of just two classes of modules, is how we have 
been able to communicate the interconnections between modules in larger 
(multimodular) networks.  Figure 5 emphasizes the role of the possible 
outgoing regulations from the two classes of modules, and indicates that 
these fall within two major categories:  “blind” regulations, which are 
outgoing regulations RPA-exhibiting nodes within the module;  and “live” 
regulations, which are outgoing regulations from nodes that do not exhibit 
the RPA property.  In our revised submission we now show that “live” 
outgoing regulations correspond to routes in the network that must be either 
opposed or balanced by at least one additional ancillary module.  Such an 
ancillary module must be connected into the network at the position 
indicated “A” indicated in Figure 5.  As we explain within the text of the 
manuscript, the ancillary module(s) are connected “in series” with the 
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original module. The new concept of “live “ and “blind” regulations, we 
believe is another exciting outcome of the simplification of the module 
number and its translation to large, previously unapproachable, networks.  

f. One of the key achievements of our work is that we are able to explain, in a 
general way, how individual RPA modules may be connected together to 
form larger RPA-capable networks.  In Figure 6, we illustrate the general 
principles through an example in which an opposer module (using a single 
opposer node) is connected “in series” with a balancer module.  Here again, 
we indicate which nodes exhibit the RPA property with a superposed red 
asterisk. 

g. One of the reviewer’s extremely valuable suggestions (indicated later in 
his/her report) was that we should explain more clearly the role of different 
parameter regimes (which are able to produce the different classes of 
reaction kinetics), and to highlight the possibility that a given overall network 
structure could admit different RPA solutions, depending on the types of 
reaction kinetics that are implemented at the various nodes. (“ … if there are 
feedforward loops and feedback loops co-existing in one network the adaptation 
could due to either feedback control (S-set control) or feedforward control (M-set 
control), based on different parameters. The authors seem to totally neglect the 
importance of control parameters.)  In Figure 7, we have presented an example 
of a network that does indeed admit two different RPA solutions, depending 
on the reaction kinetics at certain key nodes.   Thus, although the major 
conclusion of our work is that all RPA networks must be decomposable into 
RPA basis modules, we show here that a given network construction could, in 
principle, admit multiple distinct decompositions into basis modules.  We 
sincerely thank the reviewer for this helpful and insightful suggestion, as it 
does give us the opportunity to clarify an important technicality, and gives 
the reader greater insight into the possible structures of RPA-capable 
networks.  

h. In Figure 8, explore the issue of how many nodes are required to incorporate 
various topological features that our work reveals for the first time. As we 
point out in our revised manuscript: 
“In Figure 8, we consider the smallest RPA networks that are capable of 
invoking the various novel topological features we identify in the present 
work, illustrating the significant increases in the computational screening 
problems that would be required to identify these topologies.  For a network 
to employ both an opposer module and an balancer module working 
together in collaboration, for instance, a minimum of five nodes would be 
required (Figure 8a,b).   Likewise, for a network to feature an opposer node 
that is also involved in a route (Figure 8a,c), thereby requiring an additional 
ancillary module connected in series, at least five nodes are needed.  For a 
network with distinct input/output nodes to incorporate a (non-trivial) 
opposing set (Figure 8d), five nodes are, once again, the minimum 
requirement.  If one or both of these opposer nodes are also in a route, 
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however, thereby requiring the collaboration of an ancillary module (Figure 
8e,f), the smallest such RPA networks contain seven nodes.” 

 
 

2. The reviewer suggests that “There are many terms in different fields that the authors mixed 
together makes the article hard to read”.  Although the reviewer is not terribly specific 
on this point, we have completely rewritten our manuscript, and have carefully 
revised our Supplementary Information document, and have taken great pains to 
streamline our explanations, and present a more clear and lucid account of our key 
findings, in order to make our work as accessible and interesting as possible to as 
large a potential readership as possible.  We trust the reviewer feels that this aspect 
of our work is much improved, and thank the reviewer for his/her patience and care 
in considering our work so carefully. 
 

3. The reviewer also suggests that “The main text is following a mathematical logic instead 
of a question driven logic line. This way the authors could lose many potential readers.”.  
Once again, we emphasize that we have completely rewritten our manuscript to 
make our work clear and engaging, and to emphasize to the reader that our novel 
findings represent a paradigm shift in our understanding of the basic structures 
underlying the complex networks occurring in nature.   We also emphasize how our 
work provides fundamental questions to some of the most perplexing questions in 
molecular biology;  for instance, “During development, and throughout evolution (1), 
biologic networks  - or “bionetworks” - grow to enormous size and biochemical 
complexity, apparently without any compromise in robustness. Why isn’t this growth 
in complexity associated with heightened fragility, or instablility, or a loss of requisite 
function (18-20)? 
 
We go on to explain that,   
 
“ …in this connection, it is essential to recognise that biological systems differ in 
fundamental ways from engineering control systems.   Molecular signaling networks 
are self-organising, self-regulating and evolvable, and as such, are comprised of 
elements that must serve both as the transmitted signals and their own controllers.  
Unlike their designed counterparts in engineering control systems, bionetworks do 
not have the luxury of employing specially-designed, dedicated components whose 
purpose is to sense or control biochemical signals.  Although asymptotic tracking 
problems (of which RPA to constant exogenous inputs is a special case) have been 
studied extensively for engineering systems (21), how can we understand the 
mechanisms governing robust performance in the context of the self-organizing, 
self-regulating autonomous systems arising in biology?   
 
“In particular, how can RPA-generating mechanisms be realized topologically in 
bionetworks – that is, in terms of the arrangements of interconnected nodes,  along 
with the types of chemical reactions regulated by the interacting nodes?  Do the 
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topological requirements for RPA in large systems increase in complexity, or change 
qualitatively, along with the growth of the system, or do larger systems simply 
replicate the same basic design principles used by smaller systems?  If the latter is 
the case, what are the universal topological principles that characterize general RPA-
capable network designs (18)?  
 
We go on to point out in our Discussion section that, 

 
“In many biological contexts – cellular signal transduction and cellular metabolism, 
for instance – the underlying signaling networks are so complex and high-
dimensional, so prone to change over time, and so extraordinarily variable from one 
realization to another (even from one cell to another phenotypically-identical 
neighboring cell), that the networks themselves are virtually impossible to define 
concretely at any useful level of detail.  Whereas most investigators view this 
variability as a source of intractable complexity, particularly in our current age of Big 
Data, our work reveals that these networks may now be considered from the point 
of their unexpected simplicity – that is, as decompositions into well-defined basis 
modules.  In this sense, complex bionetworks are like snowflakes:  while each is 
unique, all individual instances are alike in their essential structure. 
 
Throughout our revised manuscript, we make every effort to clearly identify the 
relationship of our methods and our findings with these fundamental questions and 
problems. 

 
4. The reviewer suggests some improvements to the color schemes in the time courses 

in some of our figures, explaining that “different colors are used on the output/input 
nodes which makes the figure hard to read.”  As we mention in our response to Point 1 
above, we have now completely revised the figures for our revised manuscript, and 
have taken the utmost care to ensure that the color and notation conventions are 
consistent throughout. 

 
 

The reviewer then moves to his/her central criticism, concerning whether five classes are 
really needed in order to adequately describe RPA networks in sufficient generality, or if just 
two classes (for S-Sets) and a single balancer class (M-Set) might suffice.  The reviewer’s 
commentary on this particular point, in extenso, is: 

 
The major problem of the manuscript is the classification of 5 classes of adaptation networks. 
The title is very attractive, but when I look through the main text and the supplement it is hard 
to find how the classification standard is chosen and why the way of classification is 
reasonable. Because this is the central point of the manuscript I would expect at least one 
figure to list all the five classes of motifs and explain the key features. There is also no such 
figure. Although figure 1 listed four of them but I have to go back and forth several time to 
realize figure 4 is the other one. When we really look into the 5 classes I am not sure it’s the 
right way to categories all the networks. Generally, networks in figure one are all feedback 
loop controlled networks while figure 4 feedforward loops. For feedback controlled networks 
the author further divide them into 4 classes. I find this extremely confusion. First single-
opposer classes could be special cases of multi-opposer classes. I think there should be at 
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most two classes for S-set. These many classes just confuse people. Second all the opposer 
sets should use integral control as the mechanism which makes the feedforward loop 
dispensable. This means only one class is absolutely necessary to represent all the networks 
in the S-set. 

As we explain in our introductory remarks, we completely agree with the reviewer’s 
assessment that five different modular classes are superfluous.  After careful consideration 
and analysis, we do indeed find that we can indeed express the full solution space of RPA 
network topologies in terms of just two classes of basis modules, which we define and 
name – one class of “opposer” modules (orchestrated by the “opposition” mechanism, and 
for which we had previously, and needlessly, subdivided into four different categories), and 
one class of “balancer” modules (orchestrated by the “balancing” mechanism).   In 
particular, we have concluded that the reviewer is entirely correct in suggesting that single 
opposers may be considered special cases of opposing sets.  In addition, we have now 
discovered a precise way to describe “feedforward” opposition (where opposer nodes, 
acting in feedback formation, also occur in a route and thus contribute a transmissive, 
feedforward, function in the network) in terms of the interconnectivity of modules, rather 
than incorporating this into the module itself as a topological feature.   
 
The centrepiece of this work is the identification of network elements that can truly be 
considered basis elements, along with a general way to combine those elements, so as to 
span the complete solution space to the RPA problem.   Remarkably, grouping our basis 
modules into just two classes (rather than five), and incorporating the novel phenomenon of 
feedforward opposition into the interconnectivity of modules has tremendously simplified 
our communication of the general RPA solution.  Our descriptions of both the modules 
themselves, and their interconnections, have now become vastly more streamlined and 
elegant, and present to the reader a more accessible view of the overarching structures 
governing robustness in all complex networks. 
 
But the central conclusion of our work remains unchanged:  All networks that exhibit 
Robust Perfect Adaptation (RPA) to a persistent change in stimulus are decomposable into 
well-defined modules, of which there exist several well-defined classes – two general 
classes, scalable through the way they are connected for any size network , rather than the 
five we originally proposed.   This novel finding represents a paradigm shift in our 
understanding of the basic structures underlying the complex networks occurring in nature.   
As we explain in our revised manuscript, “… these networks may now be considered from 
the point of their unexpected simplicity … .  In this sense, complex bionetworks are like 
snowflakes:  while each is unique, all individual instances are alike in their essential 
structure.” 
 
The reviewer goes on to raise another important issue: 
 

But actually if there are feedforward loops and feedback loops co-existing in one network the 
adaptation could due to either feedback control (S-set control) or feedforward control (M-set 
control), based on different parameters. The authors seem to totally neglect the importance of 
control parameters. All in all, I am not convinced the conclusion in this manuscript is sound 
and helpful to the field although I think the way the authors approach the problem is valuable. 
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We thank the reviewer for this helpful feedback.  Our work presents general constraints for 
the reaction kinetics of the special “computational nodes” within RPA networks – opposer 
nodes, balancer nodes and connector nodes – with most of the technical details given in SI 
Sections 5.1 (for opposers), 5.2 (for balancers) and 5.3 (for connectors).  In each case, we 
present the general constraint, and then give a number of concrete examples of reaction 
forms that would satisfy those constraints.  But the reviewer is correct to point out that we 
do not clearly demonstrate how these examples of suitable reaction forms may actually be 
obtained from well-established rate laws such as Michaelis-Menten kinetics (for example) 
via appropriate parameter regimes.   
 
In our revised Supplementary Information document, we now carefully elaborate on how 
each of our example rate laws may be closely approximated using Michaelian kinetics for 
enzymes that are either close to saturation (with very small Michaelis constants) or far from 
saturation (with very large Michaelis constants), depending on the requirements of the 
computational node in question. 
 
In the case of opposer nodes, for instance,  
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We thereby see, and emphasize in the revised manuscript, that although RPA does not 
require any specific parameter values (no fine-tuning of parameters needed), the correct 
computational function of opposer nodes may require effective Michaelis constants that 
reside in certain regions of parameter space. 
 
Likewise, for balancer nodes, we provide some additional clarifications on the parameter 
regions that may be required for these nodes to execute their computational functions – 
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In Section 5.3, we explain that such parameter constraints do not obtain for connector 
nodes.  Unlike opposers and balancers, whose reaction forms must be “paired” with respect 
to the substrates’ contributions to the activating and deactivating components of their 
reactions (thereby imposing the parameter restrictions we discuss above), connector 
kinetics are “paired” with respect to its regulating enzymes, thus obviating any constraints 
on suitable parameter regimes. 
 
In closing, we would like to sincerely thank this reviewer again for such generous 
encouragement, and for many specific suggestions for improvement.  We have thought 
carefully about all the reviewer’s comments, and gratefully acknowledge his/her 
contributions to the significant improvements we feel we have now made to our manuscript. 
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Response to Reviewer #2 
We are deeply honored and truly appreciative of the huge investment of this reviewer’s 
time, which has greatly helped us to communicate our arguments more simply, clearly and 
accurately, and to note the connections between our work and well-established results in 
engineering control theory.   The reviewer has taken the special effort to write a very 
extensive document for our consideration which includes a brief “primer” on control theory.  
Since many comments and constructive criticisms of our paper are scattered throughout 
that document, even within the “primer” sections, we have decided to reproduce the 
reviewer’s comments in their entirety below (italicized and indented) in order to ensure that 
we respond to each and every critique.   In addition, we use highlighted text to indicate the 
changes that we have made to our revised manuscript in response to those criticisms. 
 
Before giving detailed responses, point-by-point, to each of the reviewer’s individual 
remarks, we would like to emphasize at the outset that the overarching goal of our work is 
to study the problem of Robust Perfect Adaptation (RPA), from a topological point of view, 
and in full generality, in complex networks that are self-organizing, self-regulating and 
evolvable – in other words, networks that arise in biology.   We are not simply looking for 
more solutions to the RPA problem, given that we already know some solutions in very small, 
simple networks.  Nor do we seek a method for testing a particular network topology to see 
if it satisfies the necessary mathematical conditions for RPA.  Rather, we identify for the 
very first time, the set of all possible RPA-capable network topologies – not by 
enumeration, of course, or even by construction, but through the identification of a suitable 
basis. 
 
As we explain in our newly revised manuscript, “ … In many biological contexts – cellular 
signal transduction and cellular metabolism, for instance – the underlying signaling 
networks are so complex and high-dimensional, so prone to change over time, and so 
extraordinarily variable from one realization to another (even from one cell to another 
phenotypically-identical neighboring cell), that the networks themselves are virtually 
impossible to define concretely at any useful level of detail.”  In view of the essential 
“unknowability” of most complex bionetworks, then, we propose to approach the problem 
of network complexity in reverse:  Given an observed qualitative response (here, RPA), what 
conclusions can we draw with certainty as to the structure of the network responsible for 
that response?  To work backwards from the observed response to the possibilities for the 
underlying network topologies, we need to determine the full solution space for the 
general RPA problem – that is, ALL the possible networks that could exhibit RPA in terms of 
the arrangement of nodes relative to one another, along with any constraints on the 
functions of those nodes (eg. via their reaction kinetics) within those arrangements.  
 
The centerpiece of this work is the identification of a set of rich yet well-defined classes of 
network topologies which, together, span the space of all possible RPA-capable networks 
when suitably interconnected.  These modular classes thus represent a topological basis 
for the solution to the RPA problem in any network, no matter how large.  In this sense, the 
topological basis modules are like the “atoms” of robust adaptation.   
 
Now, a major technical point raised by the reviewer is whether there are truly five RPA basis 
modules (four “opposer” modules, and a single “balancer” module), as we had claimed in 
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our original submission, or if there might really be just two generalizable modules.   In our 
original submission, we had subdivided our “opposer” basis module into four distinct types 
based on two novel topological features – namely, the existence of “opposing sets”, where 
integral feedback control is transacted by a collection of nodes working together in 
collaboration within a feedback loop, and the existence of “feedforward opposers”, where 
nodes that participate integral feedback control also play a transmissive (feedforward) role 
in the network. 
 
We have considered this matter very carefully, and do indeed find that our original 
subdivision of the opposition mechanism into four different basis modules was unnecessary 
and a distraction from the central results of our paper.  In particular, we have concluded 
that a single opposer node may indeed be considered a special case of an opposing set (the 
“trivial opposing set”).  In addition, we have now discovered a precise way to describe the 
phenomenon of “feedforward” opposition in terms of the interconnectivity of modules, 
rather than incorporating this into the module itself as a topological feature.  Thus, as we 
explain in greater detail in our point-by-point responses below (and in our revised 
manuscript) we now conclude that the full set of network topologies that are capable of 
solving the RPA problem can be specified fully in terms of just two basis modules – one for 
the opposition mechanism (rather than four), and one for the balancing mechanism (as we 
reported previously).   
 
Remarkably, grouping our basis modules into just two classes (rather than five), and 
incorporating the novel phenomenon of feedforward opposition into the interconnectivity 
of modules has tremendously simplified our communication of the general RPA solution.  
Our descriptions of both the modules themselves, as well as their interconnections, have 
now become vastly more streamlined and elegant, and present to the reader a more 
accessible view of the overarching structures governing robustness in complex networks. 
 
Nevertheless, our central result still stands:  All networks that exhibit Robust Perfect 
Adaptation (RPA) to a persistent change in stimulus are decomposable into well-defined 
modules, of which there exist several well-defined classes – two classes, as we now realize, 
rather than the five we originally proposed.   This novel finding represents a paradigm shift 
in our understanding of the basic structures underlying the complex networks occurring in 
nature.   As we explain in our revised manuscript, “… these networks may now be 
considered from the point of their unexpected simplicity … .  In this sense, complex 
bionetworks are like snowflakes:  while each is unique, all individual instances are alike in 
their essential structure.” 
 
The second major technical query raised by the reviewer concerns the relationship of our 
present work to established results in control theory - in particular, the Internal Model 
Principle (IMP).  We emphasize in this regard that our “RPA equation” is not intended to be 
a “centrepiece of this paper” (as the reviewer suggests), but a convenient algebraic form of 
the mathematical criterion for RPA which readily allows a topological basis for RPA-capable 
networks to be deduced (which is the centrepiece of our work).  It certainly is true, as we 
now make more explicit, that our RPA equation is equivalent to the conditions given in Yi et 
al (albeit in an alternative form, with a single input and single output for reasons that have 
to do with the topological nature of the solution we seek).  The essential difference 
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between our RPA equation, and the “IFC det” condition used in the Yi et al paper (and 
discussed by the reviewer), is one of form:  with a single input and single output, there 
arises an unambiguous notion of “route” relative to the input/output pair, which is key to 
the delineation of the overarching topological structures of the network.  In this way, our 
RPA equation makes explicit reference to network elements that are transmissive in nature 
(“routes”, which transmit biochemical signals from input to output) and elements that are 
regulatory in nature (“cycles” – encompassing reaction kinetics at each node (kinetic 
multipliers), as well as feedback loops (circuits)).  As such, our RPA equation is particularly 
well suited to identifying all the topological realizations of the IMP for RPA in complex, 
self-organizing, self-regulating networks.    
 
Of course, once we have a particular network topology in mind, we can readily test its 
potential to exhibit RPA purely algebraically – either using the IFC Det condition, or using the 
matrix form of the RPA equation det(MIO)=0.  But we respectfully emphasize that it is simply 
not the purpose of our work to produce a framework for testing special cases of putative 
RPA networks, or to explore well-established RPA instances such as the Che-gene signal 
transduction pathway involved in bacterial chemotaxis (first established as an RPA network 
by Barkai and Leibler in a seminal contribution to Nature in 1997, and later shown by Yi et al 
to be an instance of integral feedback control).  The reviewer is right to point out that such 
an algebraic condition for the RPA problem has long been established. 
 
We do make the connections between our work and previous results on the internal model 
principle more precise in our revised submission.  For example, under the heading 
“Development of a General Analytical Framework”, we now explain that - 
 
“In the 1970s, Francis and Wonham (21) investigated the necessary controller structures 
required to achieve robust regulation with internal stability, and established what is now 
referred to as the internal model principle (IMP).   By this principle, a controller can reject 
exogenous disturbances and/or track prescribed reference signals by incorporating within 
itself a model of the dynamic structure of the disturbances/references.  More recently, Yi et 
al (22) considered a special case of the IMP concerning RPA to constant exogenous inputs, in 
the context of providing a framework for understanding the extraordinary precision of 
adaptation in bacterial chemotaxis (5).  This analysis provided a purely algebraic condition 
that must be satisfied by an RPA-capable system, which the authors showed to be 
equivalent to the requirement for integral control.”   
 
We go on to explain that  
 
“Here, our interest is not in confirming whether a particular network topology is capable of 
RPA, but in specifying all the possible network topologies – ie. all the possible arrangements 
of nodes that are capable of exhibiting RPA, along with any constraints on the reaction 
kinetics for those nodes.  For this, we begin by developing an alternative version of the 
algebraic condition specified by Yi et al (22) for the special case in which a particular 
input/output node pair is specified, thereby constructing a framework from which 
topological structures may be deduced relative to that input/output node pair.” 
 
On the other hand, we do emphasize in our newly revised Introduction section that 
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“… it is essential to recognise that biological systems differ in fundamental ways from 
engineering control systems.   Molecular signaling networks are self-organising, self-
regulating and evolvable, and as such, are comprised of elements that must serve both as 
the transmitted signals and their own controllers.  Unlike their designed counterparts in 
engineering control systems, bionetworks do not have the luxury of employing specially-
designed, dedicated components whose purpose is to sense or control biochemical signals.  
Although asymptotic tracking problems (of which RPA to constant exogenous inputs is a 
special case) have been studied extensively for engineering systems (21), how can we 
understand the mechanisms governing robust performance in the context of the self-
organizing, self-regulating autonomous systems arising in biology?   
 
In particular, how can RPA-generating mechanisms be realized topologically in bionetworks 
– that is, in terms of the arrangements of interconnected nodes, along with the types of 
chemical reactions regulated by the interacting nodes?  Do the topological requirements for 
RPA in large systems increase in complexity, or change qualitatively, along with the growth 
of the system, or do larger systems simply replicate the same basic design principles used by 
smaller systems?  If the latter is the case, what are the universal topological principles that 
characterize general RPA-capable network designs (18)?”  
 
In addition, we have created eight new figures for our extensively revised resubmission to 
clearly support our careful arguments as to the full set of all possible RPA network 
topologies through the identification of a topological basis.  Of these, Figures 2 and 3 
highlight the two different types of integral control that are realized, respectively, by the 
two different types of topological basis modules.  We comment on these technical issues in 
greater detail in our point-by-point responses to follow. 
 
By way of additional background on the scientific advance represented by our work, we 
gratefully acknowledge the reviewer’s constructive arguments towards the end of his/her 
review, and recognise that one can indeed construct more (larger) RPA networks (that 
satisfy the IFC Det condition) once one has identified a particular RPA network.    But we 
respectfully point out that one simply cannot precisely delineate all possible topological 
arrangements of nodes that could solve the RPA problem by such descriptions of 
constructive methods.  In fact, the reviewer’s constructive argument is reminiscent of an 
approach we ourselves had attempted in the early days of working on this problem.    For 
small networks, it is relatively easy to find (at least some) ways to modify, or add to, simple 
known RPA solutions to obtain further RPA networks.  For RPA networks using only the 
opposition mechanism, for example, this is a question of putting zeros in the right places in 
the matrix version of the RPA equation so that the matrix is always singular regardless of the 
values of the non-zero elements.  For small networks, one can generally see by inspection 
when the RPA equation is satisfied due to the presence of these zeros:  the form of our RPA 
equation gives rise to either a row or column of zeros in the simplest of cases.  Even for 
slightly larger networks, one can permute the ordering of the nodes to obtain a form of the 
matrix that is readily observed to be singular by inspection due to the presence of the zeros.  
Likewise, for a pure balancing mechanism, singularity of the matrix comes from the linear 
dependence of collections of columns (or equivalently rows), and larger RPA networks using 
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only the balancing mechanism to achieve RPA can be certainly be constructed from smaller 
ones by preserving this property.   
 
The difficulties of obtaining truly general solutions (topologically speaking, for arbitrarily 
large and interconnected networks) become more evident when one attempts to “mix” the 
two different mechanisms in sufficiently general ways as to obtain all solutions for a matrix 
(network) of a specified size.  Once again, for fairly small networks, (some) constructions 
may readily be obtained that preserve the singularity of the matrix.  As network size grows, 
some solutions may still be obtained and identified by inspection (here again, node ordering 
may be permuted to organise the matrix into blocks, with some blocks containing one or 
more rows or columns of zeros corresponding to the presence of the opposition mechanism, 
and other blocks containing linearly dependent row/columns corresponding to the presence 
of the balancer mechanism).   
 
Not only is it impossible to organise these procedures into a truly general description of all 
the possible network topologies for any sized network (containing thousands of nodes, or 
even beyond), but more importantly, it is impossible to be sure when, if ever, one has 
indeed found all the topological realizations of RPA network of a given size.  For this, we 
require a topological approach to the solution – an abstract consideration of the contents of 
the determinant expansion, with the topological roles of all the factors in each term duly 
noted, along with a general way to view partitions of that expansion into what we have 
termed “independently adapting subsets”.   In doing so, we discover and characterise the 
topological basis sets of the RPA problem, which we show to correspond to RPA basis 
modules in the network.  In our extensively revised manuscript, we now recognize that 
there are two and only two such topological basis modules.    As we take great pains to 
demontrate rigorously, a network can ONLY exhibit RPA if it is decomposable into some 
combination of these modules. 
 
Several times throughout his/her review, the reviewer suggests that this novel topological 
framework for identifying the RPA basis modules, along with a set of “rules” as to how 
these modules may coexist (be interconnected) in larger networks, is “unnecessarily 
complicated”.  We underscore in the pages to follow, and in the extensive revisions to our 
manuscript, that the task of identifying a suitable basis, along with a general way to 
combine those basis elements, to thereby yield the entire solution space for all possible RPA 
network topologies is indeed, inevitably, difficult – “complicated”, even – but not 
“unnecessarily” so.  Among other things, we will attempt to explain how the constructive 
methods used by the reviewer readily lend themselves to omitting possible RPA solutions, 
particularly for networks that involve combinations of the two different types of modules.   
 
We now proceed to a detailed point-by-point response to the reviewer’s criticisms below: 
 

Reviewer #2 (Remarks to the Author): 
 
I'm sympathetic to the aims of this paper but it needs major revisions to achieve them.  
Details of review for NCOMMS-17-05100 
This paper aims to expand and refine the concept of Robust Perfect Adaptation (RPA) as it 
arises in cell biology. The aims are interesting and even important, but I think the paper as 
written falls short. However, if the details were corrected and improved, the author’s aims 
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would be strengthened. So this review is critical of the technical details, but I’m sympathetic 
to the aims and would like to see a paper like this succeed.  I’ll sketch what the main aims 
are and then go into selected details that I think are the best opportunities for improvement. 
As I’m sympathetic to the aims of the paper, and the authors have clearly done a lot of work, 
I spent a lot (too much in retrospect) time going through the details in the supplement for 
anything that would justify the proliferation of definitions and mitigate the main problems 
focused on below. Unfortunately, I was unsuccessful, but the supplement is so long and 
involved it is hard to be certain.  

 
Once again, we wish to express our sincere gratitude to this reviewer for such generous 
support of our work, and for investing so much time into working through our extensive 
Supplementary Information document which contains most of the technical details of our 
approach.  We are very happy that the reviewer is “sympathetic to the aims of the paper” 
and “would like to see a paper like this succeed”.    The reviewer’s extensive input has 
helped us to clarify our arguments and streamline our explanations of the general solution, 
topologically speaking, to the RPA problem in complex self-organizing/self-regulating 
networks.   
 
While we acknowledge that our Supplementary Information document is indeed quite 
lengthy and involved, we respectfully point out once again that the overarching goal of our 
work is to identify all possible topological realizations of the two basic mechanisms of RPA 
(opposition and balancing) and their combinations, rather than to simply identify the two 
mechanisms themselves – an undertaking which demands a great deal of abstraction and 
mathematical rigor.  Our topological focus, at such a complete level of generality, has 
required us to develop a new vocabulary (“opposition”, “opposing sets”, “balancing”, 
“kinetic multipliers”, etc) for speaking about RPA network topologies more abstract ways.  
The technical nature of the Supplementary Information document will inevitably not be of 
interest to all readers, but is nevertheless an important reference for those readers who 
seek a more complete mathematical understanding of the topological basis of the solution 
to the RPA problem.  We have tried to streamline our explanations as much as possible in 
this newly revised submission, which has been greatly aided by the recognition that two 
classes of modules (rather than five) represent a complete topological basis for general RPA 
networks. 
 
The reviewer continues: 
 

The highlights:  
Necessary conditions for RPA: 
 
“… in stark contrast to previous work on the RPA problem (see (3,18) for recent reviews), we 

present a global and ‘top-down’ methodology that allows us to identify the necessary 

conditions for achieving RPA in arbitrarily large and complex networks.” (see line 57) The 

“previous work” cited is all recent papers in biology, where the literature is admittedly a bit 

of a mess. What is overlooked is a much bigger and older (>40 years) literature in 
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engineering and math in control theory. One centerpiece of this paper, the “RPA equation” is 

actually a special case of a special case of the Internal Model Principle (by Francis and 

Wonhom, 1977). A very brief primer with this and additional reference is in - 
Yi, Huang, Simon, Doyle: (2000) Robust perfect adaptation in bacterial 

chemotaxis through integral feedback control. Proc. Natl. Acad. Sci. 2000: Apr 25 

97(9): 4649-53. 

Yi et al appears to be the only biology paper like this, but it uses only the most trivial 
parts of control theory that was already decades old in 2000. The RPA equation is 
trivially equivalent to the RPA conditions given in Yi et al. I’ll expand on this in more 
detail below. 

 
As part of the revision process for our manuscript, we have carefully reviewed the work 
of Francis and Wonham, and Yi et al, and thank the reviewer very much for bringing this 
key literature to our attention.   We do not deny that our RPA equation is equivalent to 
the conditions given in Yi et al (and is actually a special case tailored to our particular 
topological goals for this work).  Our revised manuscript makes this clear, and highlights 
what our work accomplishes that previous studies (such as Yi et al.) do not:  that is, we 
show – in complete generality – how the necessary conditions for RPA (to a constant 
exogenous input) are realized topologically in self-organizing, self-regulating 
bionetworks of arbitrary size and complexity.   
 
We comment on these distinctions in greater detail later in our response, since the 
reviewer raises variations on this point several times.  But for now, we reiterate:   Our 
approach identifies not only the “mechanisms” for RPA (ie. requiring integral control, of 
which there are two different types), but their topological implications – how signaling 
nodes must be arranged relative to each other, and (as we show) organized into well-
defined modules which may be connected together (subject to a well-defined set of 
intermodular connection rules).   Our major innovative leap, in comparison with 
previous work, is to show – rigorously and conclusively - that the topology of any RPA-
capable network can be expressed as a combination (interconnection) of modules, 
selected from the two classes of topological basis modules. 
 
The reviewer continues: 
  

Five and only five classes 
 
Beyond the RPA equation, a central claim in this paper is that (line 86) “…five and only 
five distinct classes of network modules represent a basis for the solution to the RPA 
problem in any size network.” The aim here is interesting but the claim appears not to be 
correct. The 5 classes are in fact only 2 in disguise, though the disguises are quite clever. 
I’ll work through the details of this below, and the required machinery is vastly simpler 
than what is in the paper. 
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The reviewer is entirely correct to suggest that only two classes of modules are needed to 
solve the general RPA problem, and we have extensively revised our work to reflect this.   
Our work demonstrates conclusively that there are two and only two mechanisms for 
generating RPA (which we refer to as opposition and balancing), and we now show that 
each mechanism engenders a distinct class of topological basis modules.  We clarify the 
nature of these topological basis modules much more carefully in our revised manuscript 
(and Supplement), and also explain more carefully the constraints as to how these 
modules may be interconnected to form larger (multi-modular) networks.  We comment 
more extensively on the nature of these intermodular connectivity constraints later in our 
response. 
 
The reviewer continues: 
 

Minimal modules 
 
The authors also seem to have overlooked a crucial minimal solution in their list of “minimal 
modules” in S6.2 (page 47). Below I’ll describe what I find to be the two “fundamental” 
motifs. This has all been well- known in engineering for decades, but is no longer emphasized 
and would deserve some revival in the context of biology. The paper would be much clearer 
if such minimal modules were corrected and emphasized more rather than devote many 
pages to algebra for what seem to be unnecessarily complex case studies. 

 
It is true that we did not include the minimal version of the balancer module in our original 
list of “minimal solutions”.   Although we have fundamentally re-organized our presentation 
of the general topological solution to the RPA problem, we point out here by way of 
explanation that the original depictions of minimal solutions were intended to be minimal 
networks that incorporated what we previously identified as five basis modules.  In that 
earlier version of our solution, we had incorporated, for instance, the topological possibility 
of an opposer node (which “opposes” routes  while in feedback formation to those routes) 
that is also in a route (a “feedforward opposer”, in our previous terminology) within the 
description of the module itself (a “feedforward opposer module”). 
 
But again, we emphasize that we no longer use this five-module categorization to describe 
the full (topological) solution space to the RPA problem.  We agree with the reviewer that 
two classes of modules are sufficient, and we have reorganized our explanations 
accordingly.  In our new Figure 8, for example, we present illustrations of “small RPA 
networks with new topological features”, and explain the smallest networks that can 
incorporate, among other things, two different types of RPA module working together in 
collaboration to allow the network as a whole to exhibit the RPA property.  We return to 
this matter later in our response, as the reviewer raises variations on this issue several 
times. 
 
Next, the reviewer offers us a primer on integral feedback control theory basics, which we 
gratefully acknowledge: 
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Primer on integral feedback control theory basics: The paper mentions integral feedback 
control (IFC) but never clearly states what it is, though it is implicit in much of the 
supplement. Since IFC is such a simple concept it is probably worth explicitly mentioning 
what it is. The RPA equation, a centerpiece of this paper, is a simple special case of the IFC 
det condition below, which is a special case of the Internal Model Principle (IMP). The 
paper incorrectly claims that the RPA equations is a “generalization of integral control” 
(191) when it is a special case of a special case of a result (IMP) that is now >40 years old. 
For references on IMP and a brief primer on Integral Feedback Control (IFC) for biologists, 
see Yi et al above. 

I’ll quickly review below what is in Yi et al 2000 PNAS paper but note it has been “well 
known” (taught to undergrads) regarding “perfect adaptation” in engineering for at least 30 
years. The current submission’s main results are largely special cases, so the paper would be 
both more scholarly and clearer if it adopted these standard results. The confusion arises on 
line 57 where the paper states that “…until now, three basic approaches have been used to 
understand the requirements for RPA (2,3,5,8,14,18,19), and they have only provided 
answers for very small systems.” The authors claim that “… in stark contrast to previous 
work on the RPA problem (see (3,18) for recent reviews), we present a global and ‘top-down’ 
methodology that allows us to identify the necessary conditions for achieving RPA in 
arbitrarily large and complex networks.” If you ignore the Yi et al PNAS paper above, this is 
largely true in the biology literature but has emphatically not been true for >40 years in 
undergrad engineering control theory. What follows is a minimal primer on this material. 

 
We are truly appreciative of the reviewer’s extensive input on the relationship of our work 
to established engineering control theory, and suggestions as to how the concept of integral 
feedback control could be referenced more explicitly in our work.   
 
The reviewer points out at this stage that the RPA equation is “a centerpiece of this paper”, 
and we would like to acknowledge here once again that our RPA equation is, indeed, as the 
reviewer correctly points out, an alternative statement of the “IFC Det condition”.  We 
elaborate on our decision to use this particular form as our RPA equation in more detail 
later in the context of why this particular incarnation of the principle is best suited to our 
(topological) purposes.   For now, we simply wish to emphasize again that the RPA equation 
is not intended to be a “centerpiece” of this work;  rather it is the launching point for our 
topological solution methodology concerning the partition of the terms of the RPA equation 
into basis subsets (“independently adapting subsets”).  It is our method for solving this 
equation in a way that can view any RPA-capable network in terms of interconnections of 
RPA basis modules that is intended to be the centerpiece of this work.   
 
In addition, we would like to respectfully point out that we do not claim that “the RPA 

equations is a “generalization of integral control” (191)”, as the reviewer suggests.  What we 
had actually stated in that section of our original submission was that “the opposition 
mechanism represents a generalization of integral feedback control to networks of 
arbitrary size and complexity” (emphasis added).   Recall, in this regard, that our work 
identifies two different RPA-generating mechanisms – opposition and balancing – along 
with their topological realizations (opposer modules and balancer modules).  The balancing 
mechanism underlies a different form of integral control that does not require feedback, 
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but requires multiple “routes” (and hence a “feedforward” topology), and requires the 
associated module to adhere to its “linearization” at steady-state for all inputs.  To be fair, 
we now notice that we had unwittingly omitted the key word “feedback” from this 
particular sentence in our original submission (which was certainly an error on our part).    
We also realize that we should, more correctly, have stated that opposer modules 
represent topological generalizations of integral feedback control in self-organizing/self-
regulating networks of arbitrary size and complexity. 
 
Based on the reviewer’s extensive and constructive comments, we do recognize that our 
original presentation of these technicalities and distinctions was inadequate.   We have now 
clarified the relationship of our study to “well-known” results in control theory (concerning 
the internal model principle).   Under the section heading “Development of a General 
Analytical Framework”, for example, we explain that – 
 
“In the 1970s, Francis and Wonham (21) investigated the necessary controller structures 
required to achieve robust regulation with internal stability, and established what is now 
referred to as the internal model principle (IMP).   By this principle, a controller can reject 
exogenous disturbances and/or track prescribed reference signals by incorporating within 
itself a model of the dynamic structure of the disturbances/references.  More recently, Yi et 
al (22) considered a special case of the IMP concerning RPA to constant exogenous inputs, in 
the context of providing a framework for understanding the extraordinary precision of 
adaptation in bacterial chemotaxis (5).  This analysis provided a purely algebraic condition 
that must be satisfied by an RPA-capable system, which the authors showed to be 
equivalent to the requirement for integral control.   
 

“Here, our interest is not in confirming whether a particular network topology is capable of 
RPA, but in specifying all the possible network topologies – ie. all the possible arrangements 
of nodes that are capable of exhibiting RPA, along with any constraints on the reaction 
kinetics for those nodes.  For this, we begin by developing an alternative version of the 
algebraic condition specified by Yi et al (22) for the special case in which a particular 
input/output node pair is specified, thereby constructing a framework from which 
topological structures may be deduced relative to that input/output node pair. 
 
“The generality of our method for studying RPA in biological networks, being self-organizing, 
complex and evolvable, builds upon precise definitions of all the key terms of the problem, 
which we provide in detail in the attached Supplementary Information (SI) …” 
 
But we also emphasize earlier on, in the Introduction section, that – 
 
“ … it is essential to recognise that biological systems differ in fundamental ways from 
engineering control systems.   Molecular signaling networks are self-organising, self-
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regulating and evolvable, and as such, are comprised of elements that must serve both as 
the transmitted signals and their own controllers.  Unlike their designed counterparts in 
engineering control systems, bionetworks do not have the luxury of employing specially-
designed, dedicated components whose purpose is to sense or control biochemical signals.  
Although asymptotic tracking problems (of which RPA to constant exogenous inputs is a 
special case) have been studied extensively for engineering systems (21), how can we 
understand the mechanisms governing robust performance in the context of the self-
organizing, self-regulating autonomous systems arising in biology?   
 
“In particular, how can RPA-generating mechanisms be realized topologically in bionetworks 
– that is, in terms of the arrangements of interconnected nodes, along with the types of 
chemical reactions regulated by the interacting nodes?  Do the topological requirements for 
RPA in large systems increase in complexity, or change qualitatively, along with the growth 
of the system, or do larger systems simply replicate the same basic design principles used by 
smaller systems?  If the latter is the case, what are the universal topological principles that 
characterize general RPA-capable network designs (18)?” 
   
Moreover, on the subject of the computation of integrals by the opposition mechanism,  
 
“… we illustrate in Figures 2a and 3 (with additional discussion in SI Section 5.1) that 
opposer nodes play a special computational role in RPA networks by calculating an integral 
of a “tracking error” – the difference between some network quantity (eg. the activity of a 
particular node) and its steady-state value, the latter being determined purely by system 
parameters, rather than the magnitude of the system input.   
 
“For a single opposer node, the tracking error in question corresponds to the error in the 
activity of the single independent regulator (Figure 2a).  Since the opposer and its regulator 
participate in a common circuit, the computation of this integral constrains the regulator 
node to exhibit the RPA property.  In an opposing set, on the other hand, each opposer in 
the collection computes the integral of a unique tracking error, involving various 
combinations of nodes in the master set (Figure 3).  All nodes featuring in these various 
tracking errors exhibit the RPA property due to the combined effect of the multiple integrals;  
the opposer nodes themselves, by contrast, never exhibit the RPA property (SI Section 5.1).  
In any event, all these computations work together to confer the RPA property on one or 
more nodes within the route being opposed.  We shall see later that the fact that some 
nodes within the opposer module exhibit the RPA property, while others do not, has 
important implications for the possible interconnectivities of modules in larger networks. 
 
“In any case, by distributing the requisite integral over multiple opposer nodes in this way, 
opposing sets represent a topological generalization of the application of integral feedback 
control to complex, self-organizing, self-regulating bionetworks.  
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“This novel concept of an opposing set, where multiple nodes work together in complex 
interlinked feedback relationships to compute RPA-conferring integrals, has never 
previously been reported to our knowledge.  Nevertheless, it is apparent that these more 
complex arrangements of opposer nodes are indeed employed in certain gene regulatory 
circuitries since we show in SI Section 6.1.5 that the recently-identified phenomenon of 
antithetical integral feedback (3,14) is actually an instance of a two-node feedback opposing 
set with single input/output node.”   
 
On the subject of opposing sets, we offer the following clarifications on their relationship to 
single opposer nodes - 
 
“The topological requirements of opposing sets specified in Theorem 3, combined with the 
requirement for each opposer node to have a single independent regulator in a common 
circuit, define a rich class of network topologies associated with the opposition mechanism:  
a collection of opposer nodes distributed to a set of interlinked circuits, embedded into a 
feedback loop that is contiguous with the route being (fully) opposed.  In this sense, a single 
opposer (with no disjoint circuits relative to a route it fully opposes, and is embedded alone 
into a contiguous circuit), may be considered a trivial opposing set – a special case which 
vacuously satisfies the conditions of Theorem 3.   
 
“In Figure 1(a,b), we depict the class of network topologies corresponding to the mechanism 
of an opposing set, illustrating (for the sake of definiteness) the case of a single opposer 
node as well as a simple version of a two-node opposing set.  We refer to these network 
topologies hereafter as opposer modules.  Some additional examples of opposing sets are 
depicted in Figure 3, with a more general representation of opposing sets given in Figure 4 
(further details in SI Section 5).” 
 
 

In addition, we acknowledge the correctness of the reviewer’s later arguments that the 
integrator “state” for an opposing set is a linear combination of states.  Nevertheless, we 
have important reasons for wishing to depict opposing sets as collections of individual 
integrators, working together in collaboration, for reasons that have to do with allowed 
intermodular connections for opposer modules that employ an opposing set.  We comment 
on our presentation of the essential ideas of integral control for the two types of module in 
greater detail later in our response.   
 
The reviewer continues: 

 
Starting simply, consider the linear system 
 
 [x’;  y] = [A  b; c  d][x; w] = [A  b; c  0][x; w]. 
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where y and w are scalar output and input, and x is a vector internal state and all vectors 

and matrices are real and of compatible dimensions. It is actually simpler to use this 

general case rather than the special case where some states are identified as inputs and/or 

outputs. We’ll assume that c ≠ 0 for nontriviality (and we are assuming d=0 as in the 

paper, not an important restriction). 

 

The reviewer claims here that “It is actually simpler to use this general case rather than the 

special case where some states are identified as inputs and/or outputs”.   In the context of what 
we are actually attempting to achieve in this study – namely, to define the full solution 
space of all network topologies for complex networks that are self-organizing, self-
regulating and evolvable, whose nodes represent both the signal and their own controllers 
– we respectfully disagree with the reviewer’s point of view on this matter.   We sincerely 
thank the reviewer for helping us to communicate more clearly how our work is distinctly 
different in its approach, and in its end goal, from previous work.  After carefully 
reviewing the two early papers by Francis and Wonham, and also that by Yi et al, we 
certainly recognize that the form of the linear control problem presented by the reviewer 
(and the corresponding form of the “IFC Det criterion” referenced by both the reviewer 
and Yi et al), is considerably more general and considers (among other things) input and 
output “states” (so to speak) that are effectively linear combinations of various individual 
component states.  We maintain, however, that it is highly convenient to our purpose to 
select a single input node (the node which receives a stimulus or perturbation delivered 
from outside the system), and a single output node (the network node that represents 
the endpoint of interest).  Since our goal is to identify all network topologies that are 
capable of solving the RPA problem, a particular choice of input/output node pair 
produces an unambiguous notion of “route” – ie. a “pathway” of biochemical signal 
transmission through the network (ie. from input to output).   As we explain later, this 
clear delineation of the specific topological roles played by all nodes of the network, and 
especially those nodes with a computational (integral computing) role, greatly aids us in 
drawing the strong conclusion as to the required modularity of RPA capable networks 
with respect to a chosen input/output node pair.  Importantly, our particular 
interpretation of the algebraic criterion for RPA most closely corresponds to what we 
would actually measure experimentally:  complex networks would typically be perturbed, 
or stimulated, via the delivery of a particular growth factor, say, or a target-specific 
enzyme inhibitor, or perhaps by knocking-down a specific gene product by siRNA; the 
effect of the perturbation on various individual endpoints of interest would then be 
studied.  
 
The reviewer goes on: 
  

We’ll consider some arbitrary initial condition in x and a step input in w, both at t=0. Then 
“perfect adaptation” (PA) is defined to be the property that 
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PA: y (t) → 0  ∀x(0) initial conditions  ∀w(t) = constant (step) 
t→∞ 

 
This goes by other names in engineering (asymptotic tracking, zero steady state, …) but 
we’ll use the biologist’s PA. For Robust PA (RPA) we need to define some uncertain set [A, 

b,c ] ∈ S and check that  PA holds for all [A, b,c ] ∈ S.  We’ll assume A is stable 
throughout. Stability is largely ignored in this paper, and discussed briefly in S9 
(Supplement Section 9). More on this later, but note that for any nontrivial uncertainty 
model, verifying robustness of PA is trivial compared with robustness of stability, and thus 
not surprisingly robust control theory focuses on the latter. In biology the relative 
simplicity of testing RPA should probably be a feature. 
The main “integral feedback control” (IFC) theorem is 

IFC Thm:  PA iff det [A b; c d] = 0 ⇔ ∃ k s.t. z = k & z’ = y. 
 

This is easily proven with a few lines of algebra, given in the Yi et al paper. This is arguably 
the simplest nontrivial result in control theory and is a special case of the Internal Model 
Principle (IMP), that PA to an external disturbance like a step requires an internal model. 
For example, PA to steps, ramps, and sinusoids need, respectively, an internal single and 
double integrator, and an oscillator. Let me underscore here that the “RPA equation” is 
strictly a special case of the det condition in the IFC Thm (easily shown by simply taking the 
special case in the paper and applying the Schur complement formula to the determinant). In 
the author’s defense these simple results are perhaps not adequately emphasized in control 
theory education, and typically mentioned mostly in passing, as RPA seems to be such a 
trivial special case that it doesn’t need highlighting. I think this attitude makes sense in 
engineering but perhaps less so in biology. In any case, biologists are clearly interested in 
RPA so it would help them to have a rigorous and accessible account. 

 

Once again, we completely agree with the reviewer’s statement that the “IFC Theorem”, 
and consequently our RPA equation also, is “a special case of the Internal Model Principle (IMP), 

that PA to an external disturbance like a step requires an internal model”.   We completely concur 
that “the ’RPA equation’ is strictly a special case of the det condition in the IFC Thm (easily shown 
by simply taking the special case in the paper and applying the Schur complement formula to the 

determinant)”.  On the other hand, the reviewer claims that “RPA seems to be such a trivial 

special case that it doesn’t need highlighting. I think this attitude makes sense in engineering but 

perhaps less so in biology.”  We feel it is worth pointing out that RPA (as we define it in this 
work) is of fundamental importance in biology.  As we emphasized earlier, network 
perturbations in biology most commonly come in the form of the arrival (or 
upregulation/downregulation) of some signaling protein (eg. growth factor, mitogen, 
inflammatory cytokine, etc.), the mutation (or knockout) of a gene, or the delivery of a 
pharmacological inhibitor, for example.  These perturbations are typically realized on a very 
short time scale in comparison with the regulation of the network, and are thus most readily 
approximated by a step function.  RPA to other more general inputs such as ramps and 
sinusoids, are not of particular interest in this context.    Once again, our overarching goal is 
to identify the full solution space of network topologies that are capable of exhibiting RPA to 
the kinds of perturbations we describe here – that is, exogenous inputs that are effectively 
constants.  
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We interpret RPA in this sense throughout our work.  We explain that – 
 
“Robust Perfect Adaptation (RPA) is the ability of a system to generate an output that 
returns to a fixed reference level (its “set point”) following a persistent change in input 
stimulus, with no need for tuning of system parameters (1-3).  RPA has been widely 
observed throughout biology (1,4,5-11), at the cellular level (signal transduction, gene 
regulation, protein expression (6-8)), in sensory systems (6,10,11), at the whole-organism 
level in mammals (9), and during development (12,13).  For example, mammalian plasma 
calcium concentration exhibits perfect adaptation to persistent changes in calcium export 
(e.g. lactation), or influx (e.g. diet changes or bone remodeling), thereby keeping plasma 
calcium within very tight tolerances as calcium demands vary (9).  In addition, perfect 
adaptation enables a biological system to “reset” itself following a perturbation, in order to 
maintain responsiveness to subsequent variations in external stimuli (3).  The RPA property 
thus promotes high sensor sensitivity, while increasing the dynamic range, regardless of the 
intensity, or the variations, in the average stimulus (1-3,14,15).  
 
“Importantly, while RPA confers many benefits to living systems, loss of the RPA property in 
networks that require it could lead to disease (e.g. ras-mediated oncogenesis (3,16)), 
reduced fitness (1), or death (17).”   

 
 

The reviewer continues: 
  

The integral feedback is in the variable z = kx which has dynamics  z’ = y . This is popular in  
engineering because it is easily implemented in digital controllers, and the main technical 
issue is called “integrator windup” which occurs with saturating actuators, and thus 
integral controllers include antiwindup mechanisms. In biology, the issue is more “reverse 
engineer” to identify mechanisms that achieve PA, and the paper cites several of the 
standard papers in this genre. The det condition is a simple algebraic test for PA and is 
equivalent to the existence of integral control. 
      Beyond the RPA equation, a central claim in this paper is that (86) “… fundamental 
solutions to the RPA problem is limited to five: that is, five and only five distinct classes of 
network modules represent a basis for the solution to the RPA problem in any size network.” 
I was unable to find a clear definition of what “fundamental solutions” are but it seems fairly 
clear to me that their five distinct classes are in fact elaborations of just two “fundamental” 
motifs.  

 

We concur that there are indeed two, rather than five, “fundamental” motifs – by which we 
mean topological basis modules.  These important technical details have all been carefully 
revised in our submission.   
 
The reviewer then moves on to the topic of “minimal motifs” - 
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The authors also seem to have overlooked a crucial minimal solution in their list of “minimal 
modules” in S6.2 (page 47). I’ll next describe what I find to be the two “fundamental” motifs, 
the first of them equivalent to S6.2.1 Case A on page 49, but the second one is a nonlinear 
“balancer” module that is simpler than S6.2.3 Case C on page 49. This has all been well-
known in engineering for decades, but is no longer emphasized and would deserve some 
revival in the context of biology. 

 

The reviewer correctly points out that we omitted the minimal balancer module from our 
original listing of minimal modules.   Our original intention in presenting a selection of 
“minimal networks” was to highlight how many nodes would be required for a network to 
exhibit RPA while including the novel topological features we had identified – in particular, 
“feedforward opposition” (where an opposer node, which operates in feedback formation 
to the route it opposes, also operates in a route), and opposing sets.  In our previous 
framework, we had used these new features to make unnecessary topological distinctions 
among opposer modules.  Again, we have discarded this approach in our revised submission, 
and agree with the reviewer that two modules are sufficient to describe the set of all 
possible RPA-capable network modules.  As we explain in our new manuscript, and 
elsewhere in this document, the phenomenon of “feedforward” opposition is now 
incorporated into the interconnectivity of modules, rather than as a feature of the modules 
themselves, thus vastly streamlining our explanations of the complete RPA solution space as 
the arbitrary combination (via allowed interconnections) of RPA basis modules.  Likewise, 
we now make clearer that single opposer nodes are, essentially, trivial opposing sets, 
thereby allowing us to dispense with the concept of making opposing sets into a separate 
type of module.  Our new Figure 8 communicates more carefully our intended purpose for 
these “small network” examples - to highlight to the reader that we would need to solve 
vastly larger computational problems if we were to identify these kinds of RPA-capable 
topologies using “blind” methods such as computational screening.  This is important 
because the study by Ma et al (that we cite several times in our paper), published in Cell in 
2009, undertook a huge computational search of “the 16,038 possible three-node 
topologies that contain at least one direct or indirect causal link from the input node to the 
output node” (what we would call “connected and transmissive” networks containing three 
nodes), using Michaelis-Menten reaction kinetics, with 10,000 different parameter sets for 
each individual topology.  They thereby analyzed a total of (16038)x(10000) ≈1.6 x 108 
different circuits.  Their results showed that, for networks containing just three nodes, all 
RPA solutions are either a minimal version of what we call an opposer module (using a 
single opposer node), or a minimal version of what we call a balancer module.   It is clear 
that searching for opposing sets, or combinations of opposer and balancer modules, for 
instance, using such methods, would be so computationally expensive as to be effectively 
infeasible. 
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For explanatory purposes, we wish to point out that our former “Case C” (now “Case a” in 
our new Figure 8) was intended to reflect an RPA-capable network that included a (minimal) 
opposer module, whose single opposer node was also in a route (hence, a “single 
feedforward opposer module” in our previous categorization of the modules).  In that 
earlier framework, we emphasized that such modules require the collaboration of an 
additional module that either “balances” or “opposes” the route in which the “feedforward 
opposer” participates;  in that particular example, we chose a (minimal) balancer module for 
this purpose.  In other words, our former “Case C” represented a minimal RPA network that 
featured both an opposer module and a balancer module connected together. (Note that, in 
that example, if the opposer node (noted in yellow) failed to exhibit “opposer kinetics”, the 
output node O would not exhibit RPA in that network.  Our former Case C was, most 
emphatically, not just a balancer module with some extra “unnecessary regulations”:  again, 
this is an opposer module and a balancer module connected together “in series”.  In the 
same vein, our former Case F (now “Case f” in our new Figure 8) is a two-node opposing set 
(involving nodes O1 and O2) connected “in series” with a single opposer module (involving 
O3).)    We give detailed explanations on the meaning of modules being connected “in 
parallel” and “in series” in our revised manuscript, and also later in this document. 
 
We clarify the nature of these small network solutions much more carefully in our revised 
submission, and clearly explain to the reader what we are trying to show using these simple 
illustrations.  (We note for reference that our former “Case C” has become “Case a” in our 
new Figure 8;  our former “Case E” has become “Case d”;  our former “Case F” has become 
“Case f”;  our remaining examples, Cases b, c, and e are all new).  We explain, for instance, 
that - 
 
“In Figure 8, we consider the smallest RPA networks that are capable of invoking the various 
novel topological features we identify in the present work, illustrating the significant 
increases in the computational screening problems that would be required to identify these 
topologies.  For a network to employ both an opposer module and an balancer module 
working together in collaboration, for instance, a minimum of five nodes would be required 
(Figure 8a,b).   Likewise, for a network to feature an opposer node that is also involved in a 
route (Figure 8a,c), thereby requiring an additional ancillary module connected in series, at 
least five nodes are needed.  For a network with distinct input/output nodes to incorporate 
a (non-trivial) opposing set (Figure 8d), five nodes are, once again, the minimum 
requirement.  If one or both of these opposer nodes are also in a route, however, thereby 
requiring the collaboration of an ancillary module (Figure 8e,f), the smallest such RPA 
networks contain seven nodes.” 
 
We will elaborate further on these small network illustrations in the sections to follow. 
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The reviewer continues - 

 
Minimal “motifs”: Both minimal motifs have 2 states. The first is the pure example of 
integral feedback control (IFC) and can be used to illustrate a simple but meaningful 
notion of robustness. Consider the system 

 (GRAPHIC:  case 1) 
This also has a variety of robustness features. For example consider the same sparsity pattern 

(GRAPHIC:  same sparsity pattern illustrated) 
Note that the det condition (and stability) holds for all aij > 0 and the integrator is 
trivially in the 2nd  state. This is the purest example of RPA and all but one of the “5 
distinct classes” are simply elaborations of this where the pure integrator is replaced by 
a circuit that implements an integrator. More details on this later. 

A second case which biologists call Incoherent Feedforward (IFF) has a linearization of 
(GRAPHIC:  case 2) 

but here the integrator is a mixture of the 2 states. This is not as robust as the first case, in 
that 
    (GRAPHIC:  same sparsity pattern illustrated) 
So that it appears that the parameters must be “fine-tuned” so that a21 = b2 . However, a 
nonlinear version can be easily made robust, and the authors seem to have rediscovered this, 
though made it unnecessarily complicated. Consider the nonlinear system with input w and 
output P (using notation similar to the paper) and additional state B 
    (GRAPHIC) 
so the output P has RPA with respect to the parameter α. The linearization around w=0 is 

a version of Case 2: 

    (GRAPHIC) 
So the linearization appears to need fine-tuning but since a21 = b2 =α this is done “for free” 
by the linearization of the nonlinear system. This has been viewed primarily as a curiosity in 
engineering, but it appears from earlier work in biology that this nonlinear motif does arise 
natural in biology and deserves further study. In the paper this case study is not identified as 
one of the “minimal” modules but is part of S6.2.3 Case A which has 3 additional (and 
unnecessary) states.  

 

Again, we sincerely thank the reviewer for investing so much time into conveying to us 
these various ideas for consideration.  Once again, on the subject of “minimal motifs”, we 
had originally intended to highlight how large computational screening problems would 
have to be in order to “discover” feedforward opposition, opposing sets, and compound 
networks (comprising multiple modules connected together – just two different modules, in 
the very simplest cases) by such methods.  Now that we have revised our explanatory 
framework for the complete solution space to the RPA problem in terms of just two (rather 
than five) topological basis modules, our earlier presentation of these minimal networks is 
no longer relevant. 
 
The reviewer’s “case 1” (equivalent to one of our original “minimal modules”) is a two-node 
RPA network comprising just one opposer module, generated by a single opposer node 
(which, as we now point out in our revised analysis, may be viewed as a “trivial” opposing 
set).  Here the integrator is the opposer node itself.  The “case 2”, on the other hand, is the 
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minimal version of a single balancer module (which we omitted from our original selection 
of minimal networks).   As the reviewer points out, this module makes a very different type 
of computation from that of an opposer module.  The reviewer correctly points out that the 
balancer module strictly requires the linearization of the nonlinear system in order to 
guarantee robustness (ie. no fine-tuning of parameters required). 
 
Regarding the relationship between this linearization, and the robustness of perfect 
adaptation generated by balancer modules, we would like to make several additional points.  
It’s essential to recognize that, although our RPA equation (and correspondingly the “IFC 
Det” condition that appears in Yi et al) is obtained from a linearization of the system about 
the steady-state, our analysis shows that special classes of reaction kinetics are required at 
what we denote the “balancer nodes” in order to constrain these nodes to adopt steady-
states values that are linearly related to what we call the D-node (diverter node) .  The D-
node occurs at the apex of the module, and in the “minimal” balancer module discussed in 
this section by the reviewer, the module’s D-node is simply the input node.   We discuss 
these special classes of reaction kinetics in our Supplementary Information document, 
Section 5.2;  in our revised version, we elaborate on how these special reaction forms could 
be implemented, or at least approximated, by established rate laws such as Michaelis-
Menten kinetics, explaining that  – 
 

 
 
In other words, evolution has to “find” these special enzyme-substrate reaction kinetics at 
balancer nodes in order for the associated module to promote RPA in a nonlinear network.  
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As the above excerpt from our Supplementary Information document conveys, for 
Michaelian enzymes this could require operating either at saturation (in the case of the 
activating reaction above), or far from saturation (in the case of the de-activating reaction 
above).  We refer to the special reaction kinetics required at balancer nodes as “balancer 
kinetics”.   The entries in the matrix forms of the “IFC Det” condition, or the RPA equation, 
are not just numbers:  they are “generated” by the reaction kinetics at the associated nodes.   
 
In this way, the reaction kinetics of balancer nodes contribute a key computational function 
to RPA networks.  We highlight this subtlety in our depiction of integral control for a 
“minimal” balancer module in Figure 2b.  In that figure we emphasize that the balancer 
nodes are required to adopt steady-states that are in a strict linear relationship with the D-
node (and with each other, in balancer modules that contain multiple balancer nodes) by 
expressing their activity in terms of an integral of a tracking error.  This particular tracking 
error concerns the deviation of the node’s activity from the “flat manifold” to which it must 
adhere at steady-state.  Once this “linearizing” integral has been computed at all balancer 
nodes, the connector node (C-node) is able to compute an integral which allows its steady-
state to be independent of the activity of the D-node, provided the connector node has the 
requisite reaction kinetics to compute such an integral.  We elaborate on the reaction 
kinetics required for connector nodes (“connector kinetics”) in SI Section 5.3.  All these 
principles are clearly illustrated to the reader by way of the simple example presented in 
Figure 2b (with corresponding numerical simulations presented in Figure 2d).    While the 
reviewer only identifies the C-node as the “integrator” for the module, our simple 
illustration emphasizes that integral control in balancer modules involves a computational 
collaboration with two different types of nodes - one or more balancer nodes, whose 
linearizing ability creates the conditions that allow the C-node to complete the “balancing 
act”. 
 
We also point out that this “balancing” mechanism, while “viewed primarily as a curiosity in 
engineering” is by no means a “curiosity” in the robust performance of complex networks of 
chemical reactions.  In fact, most examples of simple RPA networks identified to day involve 
this mechanism.  Transcription networks in E Coli, for instance, being a particularly well 
studied model system, is replete with examples of three-node networks of this type.  Fewer 
examples have been identified of the opposer type, although the simple feedback control 
circuit underpinning chemotaxis in E Coli identified by Barkai and Leibler (and later analyzed 
by Yi et al) is a well-known example. 
 
There is really no reason to consider the opposition mechanism more important than the 
balancing mechanism in complex bionetworks, just because this is the more “natural” 
approach in engineering control systems:  simple versions of both modules have been 
identified in bionetworks;  both require “special” reaction kinetics at certain key nodes, and 
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we have identified in our study the classes of reaction kinetics that are required to support 
the essential computational functions of these nodes. 
 
 
The reviewer continues: 
 

While the authors seem to overlook the minimality of Case 2, they would agree with this 
analysis that Case 1 and 2 are distinct cases. Where we would appear to disagree is that I 
can easily show that all of their 5 “distinct cases” are in fact nearly trivial elaborations of 
these two “motifs”. By “nearly trivial elaborations” I mean that their cases can all be shown 
equivalent to starting with Case 1 or 2 and then adding dynamics that can affect stability but 
not RPA, so these additional dynamics are inconsequential for RPA. I’ll work through one 
case study at the end. 
So it is easily shown that the 6 minimal modules in S6.2 (pages 47-50) are not minimal. In 
particular, S6.2.3 Case C is an elaboration of Case 2, and the rest are either exactly Case 1 
(S6.2.1 Case A) or are elaborations of it (the rest). This is easily shown constructively by 
simply using the IFC Theorem to extract the z variable that is the integrator, and the rest of 
the states don’t contribute to PA and merely need to preserve stability.  
 

 

We certainly do agree that “Case 1” and “Case 2” are distinct cases.  They are, in fact, the 
“minimal” versions of an opposer module (employing a single opposer node, or a “trivial” 
opposing set), and a minimal balancer module.   We also agree that our original distinctions 
among modules, suggesting a total of five different modules rather than two, were 
unnecessary. 
 
As we will elaborate further in the next section, however, we do not agree that our former 
“Case C” (now “Case a” in our new Figure 8) is simply an elaboration of Case 2.  On the 
contrary:  This is an opposer module (involving a single opposer node, O1, noted in yellow), 
connected in series with a balancer module (with a single balancer node, B, noted in blue, 
and connector node, C, noted in green).  We invite the reviewer to verify that if the reaction 
kinetics at node O1 do not conform to the special form for “opposer kinetics”, the output 
node “O” will not exhibit RPA.  We also emphasize again that this is not intended to be a 
“minimal module”:  This is a minimal network containing two modules connected together 
(an opposer module and a balancer module). 
 

We also agree that our former Cases A and B, and also D and E, were all examples of an 
opposer module (with A and B each using a single opposer node, while D and E each use a 
two-node opposing set).  But we do not agree that the former Case F (now Case f in our new 
Figure 8) is an elaboration of the reviewer’s Case 1 example.  Rather, our new Case f is 
actually two opposer modules connected together in series – one module uses a two-node 
opposing set involving O1 and O2, while the other module uses a single opposer node, O3.  
We highlight this important subtely by choosing a related small network for Case e, where 
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the opposer module involving the two-node opposing set (O1 and O2) is now connected in 
series with a balancer node instead.   
 
This distinction – interpreting Case f as two opposer modules connected together, rather 
than as an “elaboration” of the reviewer’s case 1 – is not just splitting hairs:  it is absolutely 
crucial to our ability to specify the set of all possible solutions to the RPA problem via the 
correct identification of what we can truly consider a “basis”, along with a set of rules for 
combining those basis elements to give the set of all possible RPA networks.  The reviewer is 
right to identify that Case f only requires the opposition mechanism, and for this simple case, 
the three opposer nodes place zeros into the matrix form of the RPA equation in locations 
that make it clear by inspection that the matrix is singular.    But by contrasting cases e and f 
in Figure 8, we readily observe that that O1 and O2 make a different contribution to the RPA 
solution from O3.  In particular, O1 and O2 collaborate to “oppose” the route IO in both 
cases.  But in Case f, O3 “opposes” the route IO1X1O2X2O.  In Case e, on the other 
hand there are two other routes in the network,   IO1X1O2CO and 
IO1X1O2BCO, which are balanced by the balancer module employing B (noted 
in blue) and C (noted in green).  In both Cases e and f, the opposer nodes O1 and O2 play a 
regulatory role (as feedback integrators) and also play a transmissive role (participating in 
transmission routes from I to O.  This subtlety is not readily noted from the matrix form of 
the RPA equation (or the IFC Det condition used by Yi et al). 
 
We take great pains in our revised submission to provide a clear and lucid explanation as to 
how a topological analysis of the set of terms (R) comprising the determinant expansion of 
the RPA equation yields a very clear notion of RPA basis elements.  We carefully explain that 
this may be achieved via a partition of R into “independently adapting subsets”, and 
through a logical and rigorous set of arguments, emphasize that  
 
“… from the observation that the terms of R are distributed to independently adapting 
subsets by route (that is, all instances in R of a particular route are to be grouped together 
into a single such subset), it follows that these subsets are disjoint, and must cover R.   We 
have seen, moreover, that two and only two mechanisms – which we call opposition and 
balancing – are able to generate the independently adapting subsets of R in an RPA capable 
network, and that each such mechanism may be implemented by a rich class of sub-network 
topologies – opposer modules and balancer modules, respectively.  Taken together, these 
considerations imply that a network can exhibit RPA only if it is decomposable into opposer 
and/or balancer modules – that is, each route for the transmission of biochemical signal 
from input to output must be either balanced or (fully) opposed by a single network 
module.”   
 
Thus, basis sets are created in R from “generating mechanisms” – opposition and balancing 
– and these correspond to specific classes topological arrangements of nodes in the 



 33

associated network, which we elaborate fully in the preceding sections of our manuscript.  
In other words, a basis module is comprised of a collection of routes along with the 
mechanism that either balances or (fully) opposes those routes. 
 
But the key point which turns these basis sets, and their corresponding basis modules, into 
the full solution space to the RPA problem is the set of rules that specifies how these 
modules can coexist in larger networks.  As we point out,  
 
“A general RPA network could contain an arbitrary number of such modules – 
corresponding to its RPA equation being partitioned into (the same) arbitrary number of 
disjoint independently adapting subsets – so the question now remains as to how multiple 
such network modules may coexist (ie. be connected together) in RPA networks.”  
 
We begin our careful explanations as to these “connectivity rules” with the observation that 
-  
“ …the nature of the two distinct RPA-generating mechanisms, and their topological 
realizations in self-organizing/self-regulating networks, does place some constraints on how 
RPA modules may be interconnected to form more complex “multi-modular” networks.  
These constraints are two-fold:  First, we note that the three types of reaction kinetics 
required to implement RPA – opposer kinetics, balancer kinetics and connector kinetics – 
are mutually exclusive (SI Section 5).  That is, any given node can exhibit at most one of the 
three types of reaction kinetics.  Second, any given computational node (opposer, balancer 
or connector) is constrained in how it may be regulated:  an opposer node, or a collection of 
collaborating balancer nodes, each has a single independent regulator; and a connector 
node works with a single collection of collaborating balancer nodes. 
 
“From this, we can conclude that the “active” part of each module (nodes residing between 
the “apex” (node “C” in Figure 1a,b and node “D” in Figure 1c), and the “base” (“D” in Figure 
1a,b and “C” in Figure 1c) must be distinct from the active part of any other module.  A node 
that plays the role of an opposer in one module, for instance, cannot also be required to 
operate as a balancer (or a connector) for some other module.  Moreover, the requirement 
for a single independent regulator implies that an opposer node can only perform its 
computational function for a single opposer module.  Likewise, a set of collaborating 
balancer nodes, together with their connector node, delineates a single balancer module. 
 
“The requirement for distinctness of the active parts of RPA modules implies that the 
modules may either be connected “in parallel”, or “in series” according to the following 
definitions: 
   
“Two RPA modules are said to be connected in parallel if none of the computational nodes 
within either module participate in route(s) that are opposed/balanced by the other.  The 
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respective route collections for the two modules must therefore diverge upstream of the 
active parts of the modules, and then reconnect again downstream of the active parts.  
Informally speaking, parallel modules are connected “side-by-side” within the global 
topology of the RPA network.  When an opposer module is connected in parallel with all 
other RPA modules that comprise the network, for instance, its opposer node(s) do not 
participate in any route of the network;  they participate in feedback loops only.  This is a 
comparatively straightforward intermodular arrangement, then, for which we present an 
example in SI Section 6.1.4 for two opposer modules connected in parallel. 
 
“A parallel arrangement of modules may be contrasted with the possibility that in some 
particular RPA module, one (or more) of its computational nodes may also participate in 
some network route that is not opposed or balanced by the module in question.  For 
example, an opposer node – which operates within a feedback arrangement relative to the 
route(s) it opposes – may also participate in some route within the network.  Likewise, a 
balancer node – embedded into the route segments defining its balancer module – may also 
participate in some other route in the network (that is, a route that is not balanced by the 
balancer module in question).  In either case, the “extramodular route(s)” in which the 
computational node(s) participate must be either balanced or fully opposed by one (or more) 
additional RPA module(s) connected in series with the original module.  Informally speaking, 
series modules are connected in an upstream-downstream arrangement, since 
computational nodes for the upstream module “feed into” the downstream module. 
 
“In order to make the series connection of RPA modules precise from a topological 
perspective, we first recall from the preceding sections that within the active part of each 
module, some nodes exhibit the RPA property, while others do not.  Opposer nodes, along 
with any associated dependent nodes, do not exhibit the RPA property.  The single 
independent regulator for an opposer, along with any associated dependent nodes, do 
exhibit the RPA property.  Likewise, balancer nodes, along with their single independent 
regulator (the associated D-node) do not exhibit the RPA property, while connector nodes 
do exhibit the RPA property.  From these considerations, we can consider any outgoing 
regulations from the active parts of an RPA module - leading ultimately to the network’s 
output node - to be either “blind regulations” if they come from node(s) that exhibit the 
RPA property or “live regulations” if they come from node(s) which do not exhibit the RPA 
property.   
 
“We illustrate the essential principles of series interconnections of modules, which are 
required in any RPA network containing a module with live outgoing regulations, in Figure 5.  
As shown in Figure 5(a,b), outgoing regulations from an opposer node (or associated 
dependent nodes) place that opposer in a route which must then be either balanced or 
(fully) opposed by some other RPA module (as indicated by the symbol “A” which indicates 
the position of the required ancillary module).  Likewise, in a balancer module, outgoing 
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regulations from balancer nodes place these nodes in routes that are not balanced by the 
module;  these routes must be either balanced or (fully) opposed by some other ancillary 
module, as indicated by the symbol “A” in Figure 5c.  In either case, any outgoing blind 
regulations generate no requirements for any ancillary modules.  Thus, any module with 
only blind outgoing regulations may exist alone in an RPA network, and any subnetwork 
structures downstream of such regulations may be considered part of the module itself.  In 
addition, blind outgoing regulations may “feed into” any other RPA module(s) without 
affecting the ability of those modules to contribute to RPA in the network as a whole. 
 
Now, the reviewer continues his/her argument that all our previously suggested “minimal 
modules” other than “Case C” are simply elaborations of the “Case 1” illustration via a 
constructive method that we have reviewed carefully.  In particular -  
 

To concretely illustrate this, next I’ll show how S6.2.4 Case D on page 49 is a trivial 
elaboration of Case 1 above and is not a “distinct class of network module” from Case 1. 
The same argument applies to 4 of the 5 classes, with the remaining class being equivalent 
to Class 2 above. 
The nonlinear version of Case 2 has an integrator in its linearization but as a nonlinear 
system is not equivalent to Case 1, so Cases 1 and 2 are legitimately 2 distinct “motifs” that 
can yield RPA, but the remaining 3 “classes” are not distinct in any meaningful sense. But to 
make this clear we will carefully work through S6.2.4 Case D and show how it almost 
trivially reduces to Case 1 above. 

 
Showing S6.2.4 Case D is a version of Case 1: 
Recap Case 1 and add a simple notation for the motif, which we’ll call the Minimal IFC motif: 

(GRAPHIC) 
Now consider S6.2.4 Case D which has RPA and can be mostly simply written and drawn this 
way 

(GRAPHIC) 
We can check the conditions of the IFC Theorem: 
 
 A stable  det[A b; c d] = 0  
 Integral feedback:  z = [0 1 0 -1]x, z’ = y 
 
And then change coordinates so that z is the new 2nd state, and then redraw the motifs. 

(GRAPHIC) 
 

What we see here is that after a simple change of coordinates, S6.2.4 Case D is a special case 
of a more general motif that is a simple elaboration of the Minimal IFC.  The truly general 
case is this, where the det = 0 condition is trivially seen by inspection of the matrices: 

(GRAPHIC) 
My point is that this is a huge class of networks all of which have RPA and are an obvious 
elaboration of the Minimal IFC.  By “elaboration I mean adding dynamics that can affect 
stability but not RPA (so must preserve stability), but these additional dynamics are 
inconsequential for RPA.  The other cases in Section 6 are more complicated but similar.  For 
example, this motif is an obvious elaboration of the Minimal IFC (see also 6.2.2 Case B), but 
has a different output. 

(GRAPHIC) 



 36

 
We acknowledge the reviewer’s constructive argument for obtaining our previous “Case D” 
from his/her “Case 1” (which was based on our previous “Case A”).  We acknowledge the 
correctness of the reviewer’s analysis which uses a coordinate transformation to 
demonstrate the essential equivalence of the Case D and Case 1 (or equivalently, Case A).  
Along similar lines, we have now shown that single opposer nodes vacuously satisfy the 
conditions of Theorem 3 (on opposing sets), thereby demonstrating that an opposer module 
with a single opposer node is a simple special case of an opposer module with an opposing 
set (ie. a single opposer is a “trivial” opposing set.) 
 
The reviewer then concludes his/her review with the following statement - 

Note that 4 of the 5 “distinct classes” are just such elaborations, with added dynamics that 
have no effect on RPA, which only depends on the existence of a single integrator state 
(which may be a linear combination of states in the original coordinates).  This does not rule 
out that there may be more “distinct classes” to be found (the elaboration of the IFF case 2 is 
less obvious), but the ones in the paper do not qualify. 
Note also that the direct use of the IFC theorem vastly simplifies the arguments here, 
certainly compared with the complexity of those in the supplement. Even if corrected, the 
results simply don’t seem to need this level of complexity. RPA and the IFC theorem is 
arguably the simplest nontrivial result in control theory, and deserves more attention, 
particularly in biology, but not greater complexity unless that complexity buys additional 
insights. 

 
While we agree that the IFC theorem is able to confirm that all our sample networks are 
indeed capable of exhibiting RPA, and more importantly, can be used to construct even 
more networks using our examples as starting points, we respectfully point out that the IFC 
Theorem – as an essentially algebraic statement on RPA-capable networks – does not 
readily lend itself to identifying the set of all networks capable of exhibiting RPA (as we 
define the term RPA here).     
 
Our revised manuscript extensively and thoroughly addresses this reviewer’s comments, 
clearly showing how we have taken the study of the RPA problem to a whole new level 
through the identification of network elements that can truly be considered basis elements, 
along with a general way to combine those elements, so as to span the complete solution 
space to the RPA problem.   
 
The definitive conclusions we draw in this work provide a new level of understanding of the 
essential structures of complex networks, and as such, require a completely rigorous 
mathematical justification.  Our fairly extensive Supplementary Information document, 
which contains most of the deeper technical details of this work, studies the problem 
painstakingly and rigorously, using a topological framework that is entirely different from 
the reviewer’s arguments, although based on a common underlying foundation (namely, 
the RPA equation, which is a convenient special case of the criterion given by Yi et al, and 
referred to repeatedly by the reviewer).  We have taken great pains to rewrite this 
supplement to make it more clear and concise, but acknowledge that this document 
inevitably entails significant “complexity” (as the reviewer suggests).  This Supplement will 
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inevitably not be of interest to all readers, but the careful and systematic analysis contained 
therein, with its emphasis on rigor and abstraction (yet always supported with concrete 
illustrative examples) is crucial to being able to draw the extremely strong conclusion we 
present:  namely, that all networks capable of exhibiting RPA are decomposable into some 
combination of the two classes of modules we carefully define.  In other words, no RPA-
capable network can exist that is not constructible from these well-defined topological basis 
modules.     
 
The pervasive explanatory power of such a strong statement as to the essential structures 
unifying all RPA networks permits us to strongly address the reviewer’s statement that “This 
does not rule out that there may be more “distinct classes” to be found (the elaboration of the IFF 
case 2 is less obvious), but the ones in the paper do not qualify.”  In this work, we reveal two 
things that have never before been shown, or even suggested, to our knowledge: (a) we 
show conclusively that opposition and balancing are the only two RPA mechanisms, and (b) 
we show, topologically speaking, how these two mechanisms can be combined, in general, 
in the unfathomably complex networks that exist in nature.   
 
Thus, our overall purpose in the revised manuscript is to move beyond the classic small 
networks comprising just a few nodes (eg. in the Yi et al study, where the authors discuss 
the small collection of interactions governing RPA in bacterial chemotaxis). These simple 
cases say nothing about most networks of interest to biologists (or clinicians, even:  How 
might we understand the immense signaling networks underpinning cancer signal 
transduction, for instance?) 
 
In closing, we would like to thank the reviewer again for such generous support of our work, 
and for the huge investment of time involved in considering our work so carefully.  The 
reviewer’s detailed comments and analysis have tremendously enriched our understanding 
of the control engineering principles relevant to this work which, we feel, has allowed us to 
produce a more scholarly article.   We cannot thank the reviewer enough for giving us a 
fresh perspective on how to communicate the significance and distinctiveness of our 
approach more clearly, and to make our work more accessible to an even wider scientific 
readership. 
 



Overview: For cells to function and survive in a complex, dynamically varying environ-
ment, it is imperative for them to contain network modules that display Perfect Adaptation
(PA) w.r.t. some input signals. PA is the ability of a system to “reject” disturbances in
input stimulus by returning to its reference level or “set-point”. If this property PA holds
without the need for tuning system parameters, then it is called robust PA or RPA. The aim
of this paper is to demonstrate that RPA-capable networks have a special structure, that
is expressible using a topological basis containing two simple types of network motifs. The
key result is that any RPA-capable network, irrespective of its size, can be decomposed into
smaller network modules, each of which belongs to these two distinct network classes that
form the topological basis.

Recommendation: The results in this paper are interesting and present a impor-
tant advance in our understanding of RPA in biological reaction networks. In my opinion,
the authors have successfully addressed the comments of Reviewer 2 and improved their
manuscript substantially in the process. I recommend this paper for publication but the
authors must address the issues mentioned below.

1. The RPA conditions (1)-(2) are not new and the authors acknowledge it and mention
that these conditions can be derived from the Internal Model Principle in control
theory. However it seems that the authors are not aware that these conditions have
appeared before in the context of RPA for biological networks in [?]. This paper calls
it the “cofactor” condition which is equivalent to the determinant conditions given in
the paper. The authors must cite this paper and compare its results with their results.

2. A necessary requirement for RPA is global stability, to ensure that there is a unique
equilibrium point regardless of the initial condition. However the main paper com-
pletely sidesteps the stability issue and it is covered only very briefly in Section 9
of the Supplementary Information document. Even though negative feedback loops
are“stability promoting” as mentioned in the Supplementary, they also tend to induce
oscillations and possibly even chaotic behavior. The authors must discuss this point in
the main paper so as to apprise the readers to some of the limitations of the “algebraic”
approach presented in the paper, as opposed to the more direct “dynamical systems”
approach found in other papers.

3. This is just a minor point. On lines 339-341 on page 12 it says that
“The balancing mechanism thus requires a computational collaboration between two
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REVIEWERS' COMMENTS: 

Reviewer #1 (Remarks to the Author): 

The authors revised the manuscript well. I have no further questions. 

Reviewer #2 (Remarks to the Author): 



distinct types of nodes: a collection of one or more balancer nodes, along with a single
connector node.”
Shouldn’t there be at least two balancer nodes for this mechanism to work?
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Response to Reviewers  

We sincerely thank all three reviewers for such a careful and detailed review of our work, and for 
the abundance of helpful and insightful feedback that has given us the opportunity to make such 
substantial improvements to our original submission.  

We reproduce each remaining reviewer’s report below, italicized and indented for clarity, and 
follow each individual point with our response and explanations as to how we have changed our 
manuscript.  

 

Reviewer #1 

The authors revised the manuscript well. I have no further questions. 

 

Reviewer #3 (for previous Reviewer #2) 

Overview: For cells to function and survive in a complex, dynamically varying 

environment, it is imperative for them to contain network modules that display Perfect 

Adaptation (PA) w.r.t. some input signals. PA is the ability of a system to “reject” 

disturbances in input stimulus by returning to its reference level or “set-point”. If this 

property PA holds without the need for tuning system parameters, then it is called robust 

PA or RPA. The aim of this paper is to demonstrate that RPA-capable networks have a 

special structure, that is expressible using a topological basis containing two simple 

types of network motifs. The key result is that any RPA-capable network, irrespective of 

its size, can be decomposed into smaller network modules, each of which belongs to these 

two distinct network classes that form the topological basis.  

Recommendation: The results in this paper are interesting and present an important 

advance in our understanding of RPA in biological reaction networks. In my opinion, the 

authors have successfully addressed the comments of Reviewer 2 and improved their 

manuscript substantially in the process. I recommend this paper for publication but the 

authors must address the issues mentioned below.  

 

 



We thank this reviewer very warmly for such a thorough review of our work, and for his/her 
supportive feedback and suggestions for some additional improvements to our final manuscript.  
We have considered each point very carefully, and have made all the suggested revisions as 
detailed below. 

1.  The RPA conditions (1)-(2) are not new and the authors acknowledge it and mention 

that these conditions can be derived from the Internal Model Principle in control theory. 

However it seems that the authors are not aware that these conditions have appeared 

before in the context of RPA for biological networks in [1]. This paper calls it the 

“cofactor” condition which is equivalent to the determinant conditions given in the paper. 

The authors must cite this paper and compare its results with their results.   

 

We thank the reviewer very much for drawing our attention to this key recent paper, and for 
giving us the opportunity to cite it, and review its findings in the context of our new study.  We 
are very happy to be able to update our paper with a more complete exposition of all prior 
relevant work. Under the heading “Methods Overview and Relationship to the IMP” within our 
newly-created Methods section, we now include the following text:   

 
We note that an alternative, but mathematically equivalent, version of the RPA equation 

has also been developed in the recent work of Tang and McMillen [1].  Those authors 

refer to the condition as “the cofactor condition”, and apply this approach to the issue of 

designing novel homeostatic systems.  In particular, their design algorithm has been used 

to generate topologies and parameter constraints that “will support homeostatic 

behavior for a given set of network components and a desired set of general regulatory 

constraints to be applied between them” [1]. 

 

2.  A necessary requirement for RPA is global stability, to ensure that there is a unique 

equilibrium point regardless of the initial condition.  However the main paper completely 

sidesteps the stability issue and it is covered only very briefly in Section 9 of the 

Supplementary Information document. Even though negative feedback loops are 

“stability promoting” as mentioned in the Supplementary, they also tend to induce 

oscillations and possibly even chaotic behavior. The authors must discuss this point in 

the main paper so as to apprise the readers to some of the limitations of the “algebraic” 



approach presented in the paper, as opposed to the more direct “dynamical systems” 

approach found in other papers.   

 
We thank the reviewer for this suggestion, and now provide a clarification on this point in the 
main paper.  In the section “Additional Notes on Methods” in our newly-created Methods section, 
we now insert the following text: 
 

For completeness, we also observe that although the topological structures we identify 

here are necessary conditions for solving the RPA problem in complete generality, these 

conditions are not sufficient by themselves to guarantee the implementation of RPA 

across all possible parameter regimes.  In practice, RPA also requires global stability to 

ensure that there is a unique and stable steady-state regardless of initial conditions.  We 

discuss stability issues briefly in Supplementary Note 8, where we point out that feedback 

loops, if present at all, should be negative feedback loops since these are stability 

promoting.  We nevertheless acknowledge that negative feedback could potentially 

induce oscillations or even chaotic behavior.  More direct dynamical systems approaches 

are required to examine these possibilities for specific RPA topologies and specific 

parameter regimes. 

 
 

3.  This is just a minor point. On lines 339-341 on page 12 it says that “The balancing 

mechanism thus requires a computational collaboration between two distinct types of 

nodes: a collection of one or more balancer nodes, along with a single connector 

node.” Shouldn’t there be at least two balancer nodes for this mechanism to work? 

 
We thank the reviewer very much for paying such close attention to the details of our work.  This 
is an important question.  We provide several specific examples in the manuscript in which one 
balancer node is sufficient.  (Figure 2b, Figure 8b and Figure 8c, for example.  In each of these 
cases, the single balancer node is indicated in blue).   
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