Science Advances

AAAS

advances.sciencemag.org/cgi/content/full/4/5/eaao1478/DC1

Supplementary Materials for

Posttranslational modification of a histone-like protein regulates phenotypic resistance to isoniazid in mycobacteria

Alexandra Sakatos, Gregory H. Babunovic, Michael R. Chase, Alexander Dills, John Leszyk, Tracy Rosebrock, Bryan Bryson, Sarah M. Fortune

> Published 2 May 2018, *Sci. Adv.* **4**, eaao1478 (2018) DOI: 10.1126/sciadv.aao1478

This PDF file includes:

- table S1. Bacterial strains used in this study.
- table S2. Genes down-regulated >10-fold in small versus large colonies.
- table S3. Genes up-regulated more than fivefold in HupB Δ versus WT.
- fig. S1. *M. tuberculosis* colony sizes and numbers plated on increasing concentrations of INH.
- fig. S2. *M. smegmatis* strains expressing WT and mutant HupB alleles grown at WT rates.
- fig. S3. Modifications identified in previous study and current work.
- fig. S4. His-tagged HupB was purified from *M. smegmatis*, and modifications were identified by MS.
- fig. S5. Effects of disrupting HupB modification sites on HupB protein abundance.

Supplementary Materials

Strain or plasmid	Relevant genotype and description	Source
mc ² 155	Wild type M. smegmatis	Lab stock
E.coli DH5α	Host of plasmid used for	Lab stock
	cloning	
WT_empty vector	$mc^{2}155$ strain with with	This study
	pjeb vector inserted at attB	
	site	
HupB∆_empty vector	hupB gene deletion mutant	This study
	of $mc^2 155$ with pjeb vector	
	integrated at attB site	
HupB∆_pjeb::WT	hupB gene deletion mutant	This study
	of $mc^{2}155$ complemented	
	with WT <i>hupB</i> expressed	
	under its native promoter	
	(200 bp upstream of <i>hupB</i>	
	gene) in the pjeb vector	
HupB∆_pjeb::WT	hupB gene deletion mutant	This study
	of $mc^{2}155$ complemented	
	with K86R mutant of <i>hupB</i>	
	expressed under its native	
	promoter	

table S1. Bacterial strains used in this study.

table S2. Genes down-regulated >10-fold in small versus large colonies.

Gene name	Product	Fold change	p-value
MSMEG_5568	Clavaldehyde	35.41568388	6.72E-98
	dehydrogenase		
MSMEG_6451	ArsR, transcriptional	33.52727279	1.85E-148
	regulator		
MSMEG_0538	MarR	18.09940587	1.12E-163
MSMEG_3362	Enoyl-CoA hydratase	18.07062619	8.26E-53
MSMEG_0894	dihydrodipicolinate	16.61854973	1.58E-46
	reductase		
MSMEG_4334	flavoprotein	16.24766249	6.00E-54
MSMEG_4333	TetR transcriptional	14.55094106	3.71E-26
	regulator		
MSMEG_0285	TetR transcriptional	13.80766428	1.20E-129
	regulator		
MSMEG_1564	lignostilbene-alpha,beta-	13.04035087	7.84E-14
	dioxygenase		
MSMEG_4057	GntR transcriptional	12.31583883	4.78E-110
	regulator		
MSMEG_4026	hypothetical protein	11.66841714	1.93E-93
MSMEG_4034	NAD dependent	11.39409212	3.17E-95
	epimerase/dehydratase		
	family protein		
MSMEG_3012	acetyl-CoA	10.9587545	2.36E-40
	acetyltransferases		

MSMEG_5819	pyridoxamine 5'-phosphate oxidase family protein	10.64027145	1.29E-12
MSMEG_3520	TetR- transcriptional regulator	10.24468663	1.73E-56
MSMEG_2532	dehydroquinase dehydratase, type II	10.02220734	1.46E-36
MSMEG_3318	oxidoreductase	10.00810306	1.09E-37
MSMEG_6505	NfnB protein	9.513810908	2.13E-47
MSMEG_2011	LacI transcriptional regulator	9.239361958	1.54E-12
MSMEG_5596	oxidoreductase	9.237059746	1.31E-21

table S3. Genes up-regulated more than fivefold in HupBA versus WT.

Gene name	Product	Fold change	p-value
MSMEG_2266	hypothetical protein	14.99065998	0.000897823
MSMEG_4141	hypothetical protein	9.150673323	7.33E-10
MSMEG_0643	extracellular solute- binding protein, family protein 5, putative	7.368960396	0.000789029
MSMEG_3325	hypothetical protein	6.296780421	0.033627484
MSMEG_2274	hydrogenase assembly chaperone HypC/HupF	5.968932095	2.23E-06
MSMEG_2659	alanine dehydrogenase	5.64584855	0.002833064
MSMEG_5083	hypothetical protein	5.642153607	0.000341015
MSMEG_0641	binding-protein-dependent transport systems inner membrane component	5.481512254	2.61E-19
MSMEG_5568	Clavaldehyde dehydrogenase	5.358667289	0.005390566
MSMEG_3199	quinolinate synthetase complex, A subunit5.265245111		0.068910413

fig. S1. *M. tuberculosis* colony sizes and numbers plated on increasing concentrations of INH.

fig. S2. *M. smegmatis* **strains expressing WT and mutant HupB alleles grown at WT rates.** Indicated strains were grown in triplicate in 7H9 medium . There were no significant differences in growth rates between the *hupB* deletion mutant complemented with the WT and K86R alleles.

Residue	Published modification on <i>M.tuberculosis</i> HupB ²	Modification identified in this study on <i>M.smegmatis</i> HupB
К3	acetylation	acetylation, methylation
R53, R54, or R55	none	methylation
K72	acetylation	acetylation
K86	acetylation	methylation
K94	none	acetylation, methylation
K103	Acetylation	acetylation, methylation

fig. S3. Modifications identified in previous study and current work.

Peptide sequence	Mascot Ion score	Mascot Identity score	Modifications identified by spectrum
MNKAELIDVLTTK	46.9	28.6	Methyl (+14)
VKPTSVPAFRPGAQFK	40	31.2	Methyl (+14)
AVISGAQKLPADGPAVKR	26.7	28.8	Methyl (+14)
AVISGAQKLPADGPAVK	87.4	29.7	Acetyl (+42)
LPADGPAVKR	67.7	25	Acetyl (+42)
MNKAELIDVLTTK	26.9	28.7	Oxidation (+16), Acetyl (+42)

fig. S4. His-tagged HupB was purified from *M. smegmatis*, and modifications were identified by MS. Representative peptides are shown. Mascot Ion score is the calculated probability that the observed match between the experimental data and database sequence is a random event, reported in -10Log(P).

fig. S5. Effects of disrupting HupB modification sites on HupB protein abundance. A) Protein levels of representative HupB point mutants tagged by western blot. **B**) Summary of all mutants assessed on HupB protein levels relative to wild-type as measured by western blot.