Supporting Information

Magnetite-Quantum Dot Immunoarray for Plasmon-coupled-Fluorescence Imaging of Blood Insulin and Glycated Hemoglobin

Vini Singh^a, Rajasekhara Nerimetla^a, Ming Yang^b, and Sadagopan Krishnan^{a,*}

^a Department of Chemistry, Oklahoma State University, Stillwater, OK 74078, USA

^b Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, OK 74078, USA

Table of Contents:

Table S1. DLS and zeta potential measurements of insulin and HbA1c conjugates.

Table S2. Different strategies for insulin and HbA1c detection in clinical matrices.

Figure S1. Negative SPR reflectivity upon binding of mixed thrombin and PDGF conjugates.

Figure S2. Standard curve of cyanmethemoglobin standards and UV-vis spectra of prepared

HbA1c standards.

Figure S3. Simulated and experimental SPR sensograms of insulin and HbA1c.

Figure S4. Plot of k_{obs} and concentration of insulin and HbA1c.

Table S1. DLS and zeta potential measurements of insulin and HbA1c conjugates (mean \pm standard deviation, N = 3 replicates).

Sample	Hydrodynamic size (nm)	Zeta potential (mV)
MNP (amine functionalized)	115 ± 2	45 ± 7
1.MNP-QD ₈₀₀	143 ± 3	-24 ± 1
MNP-QD ₈₀₀ -aptamer	186 ± 11	-10 ± 2
MNP-QD800-aptamer-control	480 ± 22	-11 ± 1
(unspiked with insulin)		
MNP-QD800-aptamer-spiked with	681 ± 22	-14 ± 1
50 pM insulin		
2. MNP-QD565	127 ± 1	-22 ± 4
MNP-QD565-aptamer	223 ± 7	-9 ± 2
MNP-QD565-aptamer-control	674 ± 19	-10 ± 1
(unspiked with HbA1c)		
MNP-QD565-aptamer-spiked with	759 ± 25	-12 ± 1
6% HbA1c		

Strategies	Matrix	Limit of Detection (LOD)	Reference
<u>Insulin:</u> 1. ELISA from Mercodia Inc.	Serum or plasma	0.9 pM	-
2. Solid phase extraction liquid chromatography mass spectrometry (SPE- LCMS) quantitation of endogenous insulin levels	Whole blood hemolyzed to extract plasma; plasma diluted 1:1 with 50 mM acetic acid	Limit of quantitation (LOQ) was 172 pM	[1]
3. Bloodspot chemiluminescent insulin assay	Insulin standards prepared in 0.55 haematocrit	5.9 pM	[2]
4. Chemiluminescence bead based sandwich immunoassay	Plasma	0.3 pM	[3]
5. Gold coated crystal- antibody (Au-Abinsulin) modified mass and impedimetric sensor	50% serum	5 pM	[4]
6. Nanotube-pyrene- Ab _{insulin} voltammetric sensor	50% serum	5 pM	[5]
7. Au-Ab _{insulin} modified SPRi sensor (sandwich assay)	50% serum	4 pM	[6]
8. MNP-QD-aptamer - insulin conjugation (sandwich assay with Au-dendrimer-Abinsulin modified surface)	Unprocessed whole blood diluted 20- times in PBS	4 pM	This study

Table S2. Different strategies for insulin and HbA1c detection in clinical matrices.

HbA1c: 9. Zirconium dioxide nanoparticles ferrocene boronic acid (ZrO ₂ / FcBA) modified amperometric HbA1c biosensor	Real blood samples diluted with PBS to give 20 µM total hemoglobin concentration	HbA1c control samples of concentrations 6, 8, 10, and 14% were purchased	[7]
10. Thiophene-3- boronic acid (T3BA) self-assembled monolayer (SAM) covered Au impedimetric HbA1c sensor	HbA1c reference solutions were pretreated	HbA1c reference solutions of concentrations 4.54, 5.27, 6.96, 9.24, and 11.58% were purchased	[8]
11. Fluorinated polydimethyl siloxane (PDMS) modified antibody microarrays using enhanced chemiluminescent luminol reagent kit (ECL)	No sample pretreatment. Whole blood diluted 5 orders of magnitude	3.58 ng/mL of total hemoglobin and 0.20 ng/mL of HbA1c (5.6%)	[9]
12. Gold nanoparticle modified amino phenyl boronic acid modified ampero-metric HbA1c sensor	Lyophilized HbA1c in pretreated hemoglobin with 10-fold dilution	0.052%	[10]
13. Luminol chemi- luminescence HbA1c biosensor	HbA1c in PBS buffer pH 8. Real blood samples diluted 50-fold	10 ng/mL (2.9%)	[11]
14. MNP-QD-aptamer -HbA1c conjugation (sandwich assay with Au-dendrimer-Ab _{HbA1c} modified surface)	Unprocessed whole blood diluted 20- times in PBS	1%	This study

Figure S1. Negative SPR reflectivity upon binding of mixed thrombin and PDGF conjugates on surface immobilized (a) anti-insulin or (b) anti-HbA1c antibody.

Cyanmethemoglobin assay for quantitation of total hemoglobin in HbA1c standards.

Figure S2. (A) Standard curve of cyanmethemoglobin standards and (B) UV-vis spectra of prepared HbA1c standards.

The kinetic analysis was performed using the kinetic equations shown below.

The interaction between the two macromolecules follows a one-to-one binding reaction and is written as:

$$A + B \stackrel{k}{\leftrightarrow} AB$$

Association phase:
$$\frac{d[AB]}{dt} = k_a[A][B] - k_d[AB]$$
 (1)

Dissociation phase: $\frac{d[AB]}{dt} = -k_d[AB]$ (2)

where A is the antibody of insulin or HbA1c immobilized on the SPR chip, B is the concentration of insulin or HbA1c conjugated to the MNP-QD-aptamer, and AB is the complex formed between insulin (or HbA1c) and surface antibody. Because the concentration of A is constant, the complex formation has been considered to follow a pseudo first order kinetics.¹²⁻¹⁴ The SPR response of the interaction with time can be written as:

$$\frac{dR}{dt} = k_a C R_{max} - (k_a C + k_d) R_t \tag{3}$$

The integrated form of (3) is,¹⁵

$$R_t = \frac{k_a C R_{max} [1 - e^{-(k_a C + k_d)t}]}{k_a C + k_d} + R_0$$
(4)

$$k_{obs} = k_a C + k_d \tag{5}$$

$$K_D = \frac{k_d}{k_a} \tag{6}$$

where R_t is the SPR response at time t, R_{max} is the maximum reflectivity change, R_o is the SPR response at time t = 0, C is the concentration of the analyte (insulin or HbA1c), k_a is the association rate constant, k_d is the dissociation rate constant, and K_D is the binding constant.

Figure S3. Simulated (red) and experimental SPR sensograms (black, data of Fig. 4A-B in main Ms.) of (A) insulin and (B) HbA1c.

Figure S4. Plot of k_{obs} and concentration of (A) insulin and (B) HbA1c.

References.

(1) Darby, S. M.; Miller, M. L.; Allen, R. O.; LeBeau, M. A. A mass spectrometric method for quantitation of intact insulin in blood samples. *J. Anal. Toxicol.* **2001**, *25*, 8-14.

(2) Butter, N. L.; Hattersley, A. T.; Clark, P. M. Development of a bloodspot assay for insulin. *Clin. Chim. Acta* **2001**, *310*, 141-150.

(3) Poulsen, F.; Jensen, K. B. A luminescent oxygen channeling immunoassay for the determination of insulin in human plasma. *J. Biomol. Screen.* **2007**, 12, 240 – 247.

(4) Singh, V.; Krishnan, S. An electrochemical mass sensor for diagnosing diabetes in human serum. *Analyst* **2014**, *139*, 724-728.

(5) Singh, V.; Krishnan, S. Voltammetric immunosensor assembled on carbon-pyrenyl nanostructures for clinical diagnosis of type of diabetes. *Anal. Chem.* **2015**, *87*, 2648-2654.

(6) Singh, V.; Rodenbaugh, C.; Krishnan, S. Magnetic optical microarray imager for diagnosing type of diabetes in clinical blood serum samples. *ACS Sens.* **2016**, *1*, 437-443.

(7) Liu, S.; Wollenberger, U.; Katterle, M.; Scheller, F. W. Ferroceneboronic acid-based amperometric biosensor for glycated hemoglobin. *Sens. Actuator B Chem.* **2006**, *113*, 623-629.

(8) Park, J. Y.; Chang, B. Y.; Nam, H.; Park, S. M. Selective electrochemical sensing of glycated hemoglobin (HbA1c) on thiophene-3-boronic acid self-assembled monolayer covered gold electrodes. *Anal. Chem.* **2008**, *80*, 8035-8044.

(9) Chen, H. H.; Wu, C. H.; Tsai, M. L.; Huang, Y. J.; Chen, S. H. Detection of total and a1c-glycosylated hemoglobin in human whole blood using sandwich immunoassays on polydimethylsiloxane-based antibody microarrays. *Anal. Chem.* **2012**, *84*, 8635-8641.

(10) Kim, D. –M.; Shim, Y. –B. Disposable amperometric glycated hemoglobin sensor for the finger prick blood test. *Anal. Chem.* **2013**, *85*, 6536-6543.

(11) Ahn, K. S.; Lee, J. H.; Park, J. M.; Choi, H. N.; Lee, W. Y. Luminol chemiluminescence biosensor for glycated hemoglobin (HbA1c) in human blood samples. *Biosens. Bioelectron.* **2016**, *75*, 82-87.

(12) Fägerstam, L. G.; Frostell-Karlsson, A.; Karlsson, R.; Persson, B.; Rönnberg, I. Biospecific interaction analysis using surface plasmon resonance detection applied to kinetic, binding site and concentration analysis. *J. Chromatogr.* **1992**, *597*, 397-410.

(13) Karlsson, R. A.; Miachaelsson, A.; Matsson, L. Kinetic analysis of monoclonal antibodyantigen interactions with a new biosensor based analytical system. *J. Immunol. Methods* **1991**, *145*, 229-240. (14) Walgama, C.; Al Mubarak, Z. H.; Zhang, B.; Akinwale, M.; Pathiranage, A.; Deng, J.; Berlin, K. D.; Benbrook, D. M.; Krishnan, S. Label-free real-time microarray imaging of cancer protein-protein interactions and their inhibition by small molecules. *Anal. Chem.* **2016**, *88*, 3130-3135.

(15) O'Shannessy, D. J.; Brigham-Burke, M.; Soneson, K. K.; Hensley, P.; Brooks, I. Determination of rate and equilibrium binding constants for macromolecular interactions using surface plasmon resonance: use of nonlinear least squares analysis methods. *Anal. Biochem.* **1993**, *212*, 457-468.