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ABSTRACT

Terahertz spectroscopy probes the dynamics and spectral response of collective vibrational modes in condensed phase, which
can in turn yield insight into composition and topology. However, due to the long wavelengths employed (λ=300µm at 1THz),
diffraction limited imaging is typically restricted to spatial resolutions just below a millimeter. In this work, we demonstrate a
new form of subwavelength hyperspectral, polarization-resolved THz imaging which employs an optical pattern projected onto
a 6µm-thin silicon wafer to achieve near-field modulation of a co-incident THz pulse. By placing a near-field scatterer, one can
measure the interaction of object with the evanescent THz fields. Further, by measuring the temporal evolution of the THz field
the THz permittivity of a sample can be extracted with 65µm spatial resolution due to the presence of evanescent fields. Here,
we present the first application of this new approach to articular cartilage. We show that the THz permittivity in this material
varies progressively from the superficial zone to the deep layer, and that this correlates with a change in orientation of the
collagen fibrils that compose the dense extracellular matrix (ECM) of the tissue. Our approach enables direct interrogation
of the biophysical properties of the sample, in this case concerning the structure and permittivity of collagen fibrils and their
anisotropic organisation in connective tissue.

S1 Method of Modal Matching

Field definitions and boundary conditions
In this section we outline a full wave modal matching solution
which describes the evolution of field components emanating
from our photomodulator, and their subsequent effects during
permittivity extraction. The time dependent components of
the fields (eiωt) have been omitted for clarity. We begin by
selecting four regions within the cartilage sample along the
z-axis direction. Region 1 extends to the half space on the
incident side of silicon photomodulator and sample. Using
the angular spectrum representation1, 2 we have a normally
incident plane wave and a reflected component that is a super-
position of plane waves propagating away from the sample,
written

E1x = eik1,z(0)z +
∫

∞

−∞

Ar(vx)e−ik1,z(vx)zeivxxdvx, (1)

where vx is the directional wavevector in x, Ar(vx) is a spectral
amplitude function and k1,z(vx) =

√
(n1k0)2− v2

x . In the re-
gion describing our silicon modulator (region 2) our fields are
represented by the modes of a cavity, defined by unexcited di-
electric sections surrounded by photoexcited metallic regions.
Note that the metallic regions of this cavity are assumed to
be perfectly metallic (i.e. infinite conductivity) in order to
simplify the boundary conditions. For simplicity, we choose
polarization perpendicular to our cavity, thus the electric field
parallel to the interfaces of the conducting sections will be
zero. These boundary conditions will thus dictate that the
fundamental mode of our cavity be described by a rectangle

function. This is written

E2x =
(

G1eibzz−G2e−ibzz
)

rect
( x

w

)
(2)

where bz = n2k0 is the wave vector inside the cavity, w is
width of cavity. In region 3, containing the sample, we have
two sets of wave superpositions, each travelling in opposite z
directions, written

E3x =
∫

∞

−∞

F1(vx)eik3,z(vx)zeivxxdvx

−
∫

∞

−∞

F2(vx)e−ik3,z(vx)zeivxxdvx, (3)

where k3,z(vx) =
√

(n3k0)2− v2
x . Finally, in region IV we

have a transmitted component that is a superposition of plane
waves propagating away from the sample in the positive z
direction:

E4x =
∫

∞

−∞

At(vx)eik4,z(vx)zeivxxdvx, (4)

where k4,z(vx) =
√
(n4k0)2− v2

x . All Ey components are zero
due to our choice of geometry and incident polarization. From
the free space Maxwell’s equations ∇ ·E = 0 and ∇×E =
−µ0∂H/∂ t we obtain the z electric field components, and
also the subsequent expressions for the magnetic H-fields.

We now have the electric and magnetic components in
all regions of space in terms of six unknow functions Ar(vx),
G1,2, F1,2(vx) and At(vx). We solve for these by applying
boundary conditions: the electric fields must be continuous
for all x space at the interfaces between adjacent regions,
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while the magnetic fields are continuous only over our defined
apertures?, ?. Hence, for the interface between regions 1 and
2 at z = 0 we end up with E1x = E2x for the electric and
H1y = H2y for the magnetic continuity equations. Substituting
eqs. (1) and (2) into the E-field continuity equation for the
interface at z = 0, and taking its Fourier transform1, we end
up with

δ (vx)+Ar(vx) = (G1−G2)Q(vx) (5)

where δ (vx) is the delta function and Q(vx) is the Fourier
transform of the rect function, ie.

Q(vx) =
1

2π

∫
∞

−∞

rect
( x

w

)
e−ivxxdx. (6)

The H-field continuity equation at the same interface, z = 0,
gives

kz(0)−
∫

∞

−∞

Ar(vx)eivxxO(vx)dvx =

qz (G1 +G2) rect
( x

w

)
(7)

where O(vx)=
v2

x+k1,z(vx)
2

k1,z(vx)
in eq. (7). We now substitute Ar(vx)

from (5) into (7) and integrate the resulting equation over the
values of x for which the magnetic continuity equations hold
(the non-conducting regions), obtaining

kz(0)w−
∫

∞

−∞

(
(G1−G2)Q(vx)−δ (vx)

)
Ih(vx)A(vx)dvx = qz (G1 +G2)w, (8)

where

Ih(vx) =
∫ w/2

−w/2
eivxxdx. (9)

Notice that the field amplitudes in the cavities in region 2 do
not depend on the directional wavevector vx and thus can be
taken out of the integral in eq. (8). A similar consideration of
the remaining interfaces between the regions is carried out; in
the end we obtain six simultaneous equations which are solved
for all six amplitude coefficient functions via matrix methods.
We can now plot the electric & magnetic fields in any region of
space for any choice of parameters (w,λ ,n3, ...). In doing so,
we must numerically evaluate the overlap integrals resulting
from these mathematical manipulations. For example, the
integral ∫

∞

−∞

Ih(vx)O(vx)Q(vx)dvx (10)

arising from eq. (8) is numerically evaluated using a Riemann
sum over the interval [-125 000, 125 000]m−1 with 350 sam-
pling points, each evaluated at the midpoint of the respective
subintervals between the sampling points. Note that numerical

1The Fourier transform is allowed since the E-fields are continuous for all
x and the integration equates the fields for all x. However, a Fourier transform
of a the H-fields is not possible since they are not continuous for all x space.

instabilities were encountered when vx = n1k0 since O(vx) di-
verges to infinity at this point. These instabilities were solved
by excluding the values around these poles2.

Use of model
Our main goal here is to investigate the validity of the permit-
tivity extraction procedure outlined in the main paper. Briefly,
this procedure involves solving the Fresenl equations for the
transmission through our multilayer system with and without
the sample. This is emulated in our model by calculating
the far-field transmitted component, i.e. (4) for vx = 0, when
n3 =

√
7.5+2i and again when n3 = 1. In both cases we

set n1,4 = 1.58 in order to take into account the effect of the
plastic coverslips encapsulating our sample and n2 = 3.44 to
model our silicon photomodulator. In our experiments we
use a multi-aperture approach, meaning that our final am-
plitudes result from the addition of fields due to different
sized apertures and scatterers. This is also emulated in the
model by calculating (4) for a discrete range of values of w
and then carrying out a complex summation of these fields,
i.e. ∑wi E4x(wi). These fields are then processed in a manner
similar to the experimentally measured fields, as described
in the methods section of the main paper, so as to extract a
frequency dependent permittivity of the sample layer. This
extracted permittivity is plotted in the main paper as Fig. 2b
for three different sample layer thicknesses, and compared to
the input value (n3 =

√
7.5+2i) used for the model.
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Figure S1. (a) & (b) Colour plots of the percentage error
in the recovered permittivity over our frequency regime. In
part a) we vary aperture size and keep sample height constant
at 50µm, where as in part b) we vary sample height for an
aperture size of 200µm.

To further understand the shortcomings of the far-field
approximation, in Figs. S1a) & b) we plot the relative error of
the recovered permittivity, defined as |(εrecov− εinput)/εinput|,
for our frequency range as we vary aperture size and sample
height respectively. These plots show that the permittivity

2To be sure that excluding the poles did not affect the output value, we
used the various intergration algorithms built in to Wolfram Mathematica 9
to obtain consistent values between all these algorithms. The Riemann sum
was chosen for the final evaluation due to its speed.
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extraction procedure becomes more applicable as aperture
size and sample thickness are increased. In Fig. S1a) we see
two frequency independent maxima centered around 0.6 and
1.4THz, the strengths of which decrease with aperture size. In
part b) we see the frequency of these same maxima changing
with sample height. These maximal errors arise at the Fabry-
Perot resonances of the system. The far-field approximation
used in permittivity extraction miscalculates these resonant
frequencies due to the presence of evanescent fields, which
change the impedance of each interface.

S2 Raw time data and Absorption maps

As outlined in the main paper, by varying the arrival time of
the optical detection pulse we measure the temporal evolution
of our THz pulse. We, however, take images at each temporal
point resulting in a hypertemporal stack of images. These
stacks are shown in supplementary videos S1 and S2 where
we present the raw data used to extract the permittivity of
the cartilage sample for horizontal and vertical polarization,
respectively. A pair of still images from the two videos are
shown in Fig. S2. These stacks are Fourier transformed along
their temporal direction to obtain a hyperspectral stack and
further analyzed as outlined in the main paper to obtain the
permittivity of the cartilage sample.

From these hypertemporal stacks one can obtain the fre-
quency response of each pixel and then obtain the permittivity
at each point in space, as outlined in the methods sections of
main manuscript. In figs. S3(a) and (b) we show an example
of these absorption maps when the sample is aligned hori-
zontally and vertically respectively across the field of view.
The main manuscript shows an optical image of a horizontally
aligned sample in fig. 3(a). Note that our electric field polar-
ization is horizontal in both absorption maps. In these images
we can see a gradient in the absorption. This gradient was
found to arrise from misalignment in the sample and refer-
ence measurements. In other words, between the sample and
reference measurements there might be a 1◦ (in both x and y)
different angle of incidence on to the sample. In order to re-
move this gradient effect, we plot the permittivity as averaged
horizontally and vertically across our absorption maps. Since
the sample has an inhomogeneity only across 1-dimension
(see fig. 3 in the main manuscript), we can still look at the
near-field permittivity across the inhomogeneity. This is what
we plot for all frequencies in figs. S3(c)-(f), where parts (c)
and (d) are averaged parallel to the sample (shown by the
coloured rectangles in parts (a) and (b) respectively) and parts
(e) and (f) are averaged perpendicularly to the sample. We
can see that the parallel averaging has a clear dependance
on position where as the perpendicular averaging does not
have anything obvious. This is what we expect as the parallel
averaging is taken from different inhomogenous areas of the
sample.

S3 Second sample measurements
For comparison, we present the permittivities measured for
second sample in fig. S4 (windowed with a Chebyshev win-
dow function), where the colour coding is the same as the
main manuscript. We observe similar features as the previ-
ous sample; namely, when the THz polarization is horizontal
(vertical) the real (imaginary) part of the THz permittivity
increases (decreases) going from the superficial to the deep
zone (from top to bottom in fig. 3a). Further, when the po-
larization is rotated by 90◦ this behaviour is reversed. It is
important to note that slight variations in the sample thickness
and hydration causes variation in the extracted magnitudes of
the real and imaginary parts of the permittivity, a well known
problem in phase resolved measurements. Nevertheless, in
all data sets we observe the same resonant feature around
∼ 1.6T Hz in regions where the polarization is aligned to the
fibril axis.
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Figure S2. Still images from supplementary videos S1 and S2 on the top and bottom, respectively. In both cases, a temporal
trace of our averaged signals is shown below the two colourmaps. A vertical dashed line shows the time at which the above
colourmaps have been taken at (∼ 2.5ps). The location of the sample is indicated by the green lines on left colourmap.
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Figure S3. (a) & (b) Absorption maps at 1THz when the cartilage sample is aligned horizontally & vertically respectively
across the field (see fig. 3(a) for an optical image of a horizontally aligned sample). (c) & (d) The permittivity when it is
averaged parallel to the sample alignment (shown the by coloured rectangles in parts (a) and (b)). These are the results of figs.
3(b-e) shown in the manuscript. (e) & (f) The permittivity when it is averaged perpendicularly to the sample alignement. In
parts (c) to (f) the real (imaginary) permittivity is shown in the solid (dash-dotted) line. The black and grey lines are respectively
the far-field and water response.
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Figure S4. Permitivity measurement of supplementary sample. Colour coding is the same as fig. 3 in the main manuscript, ie.
deep purple is the top part of the sample with fibrils aligned horizontally and going to green to orange the fibrils rotate their
orientation by 90◦ to end up orientated vertically.
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