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Supplementary Text online 1 

Materials and Methods 2 

Calibration of examiners. Two calibrated examiners (CC & JB) were involved in the examination 3 

and sampling of the study subjects. The assessment of intra- and inter-examiner consistency was 4 

performed by a modification of a protocol described previously (Drucker et al 2012). Briefly, the 5 

examiners measured the periodontal probing depth (PPD) and clinical attachment loss (CAL) at 6 6 

sites on each of two maxillary teeth in 9 subjects who were not involved in the main study. Each 7 

site was measured twice by the same examiner within an interval of 30 to 60 minutes. The results 8 

showed 99.1% and 98.1% intra-examiner agreement of 1 (i.e., difference of 1 mm or less) for PPD 9 

and CAL, respectively. The inter-examiner agreement of 1 was 100% for both PPD and CAL, 10 

excluding the 3 sites with an intra-examiner difference of 2 mm.     11 

Subjects and microbial sampling. This investigation was approved by the Health Sciences 12 

Institutional Review Board of the University of Southern California (USC) (HS-11-00026). A total 13 

of 238 samples were obtained from 69 adult subjects (age 19 and over) recruited from the Herman 14 

Ostrow School of Dentistry of USC. The exclusion criteria included subjects who had periodontal 15 

treatment or antibiotic therapy during the previous six months, subjects with a medical condition 16 

that may affect their immune status, subjects who required antibiotic premedication prior to 17 

treatment, pregnant or lactating women and subjects who were taking medications (e.g., 18 

cyclosporine) that may affect the characteristics of the subgingival bacteria.  Inclusion criteria 19 

for the diseased group consisted of being an adult patient with CAL and PPD >3 mm in at least 20 

30% of the teeth. The periodontally healthy group consisted of adult patients with no CAL, no 21 

bleeding on probing (BOP), and PPDs ≤3mm in all teeth with the exception of the 3rd molars 22 



2 
 

For each study subject at baseline, two contralateral maxillary posterior teeth were sampled 23 

with sterile paper points as described previously (Ashimoto et al 1996, Chen et al 1997). After 24 

subgingival sampling, the sample sites were examined by the two designated examiners. The 25 

periodontal diagnosis, following the American Academy of Periodontology disease classification 26 

system (Armitage 2004), was verified by the examiners. The clinical measurements (i.e., PPD, 27 

CAL, BOP) were limited to the sampling sites.  28 

An unstimulated whole saliva sample was obtained from each subject. A 50-ml sterile, 29 

disposable centrifuge tube was provided to each subject for saliva collection. During sample 30 

collection, the subjects were instructed to lower their heads and let the saliva run passively to the 31 

front bottom of their mouths and spit into the tubes provided. Each saliva donor provided 3-5 ml 32 

of whole saliva in 2 to 10 minutes. After collection, the saliva samples were immediately 33 

transferred to the laboratory and either processed immediately or kept frozen at -80°C until use.  34 

After baseline examination and sampling, the subjects who were diagnosed with chronic 35 

periodontitis received conventional nonsurgical periodontal treatment that included oral hygiene 36 

instruction, scaling and root planing, and subgingival irrigation with 10% povidone iodine. No 37 

antibiotics were prescribed for the subjects. A subset (N=19) of the diseased subjects were 38 

resampled at the appointment for periodontal re-evaluation at least 4 weeks after the completion 39 

of the treatment for the whole mouth.  40 

Among 19 subgingival sites, the treatment was considered effective in two sites (major 41 

improvement [MI]: reduction in PPD of 2 mm or more, gain in CAL of 2 mm or more and a shift 42 

from BOP to no BOP), and somewhat effective in 12 sites (slight improvement [SI]: reduction in 43 

PPD by 1 mm and/or gain in CAL by 1 mm and a shift from BOP to no BOP), and ineffective in 44 

5 sites (no improvement [NI]: persistent BOP),   45 
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Extraction of DNA. Subgingival plaque samples collected by sterile paper points were immersed 46 

in PBS and vortexed to dislodge the bacteria. After removing the paper points, the samples were 47 

centrifuged at 20,000 rpm for 5 min to pellet the bacteria. The DNA was then extracted with the 48 

QIAamp DNA Mini Kit (Qiagen Inc.) following the manufacturer’s protocol. DNA extraction 49 

from the saliva samples followed the protocol described previously (Quinque et al 2006, Yang et 50 

al 2012). Briefly, 500 µl of saliva was mixed with an equal volume of lysis buffer (50 mM Tris, 51 

pH 8.0, 50 mM EDTA, 50 mM sucrose, 100 mM NaCl, 1% SDS). To this mixture, 75 µl of 10% 52 

SDS and 15 µl of proteinase K (20 mg/ml) were added, and the sample was incubated at 53°C in 53 

a shaking water bath overnight. After addition of 200 μl of 5M NaCl, the mixture was incubated 54 

on ice for 10 min and then centrifuged at 13,000 rpm at room temperature. The DNA in the 55 

supernatant was precipitated with the addition of 400 μl of isopropanol and pelleted by 56 

centrifugation. The pellet was washed with 70% ethanol, dried in air, and dissolved in water until 57 

use. The amount and the quality of the DNA were determined by OD260 and OD280 measurements. 58 

Amplification of 16S rDNA and MiSeq sequencing. Barcoded forward and reverse primers 59 

targeting 16S rDNA base positions 515-806 that included the V4 region (in reference to 60 

Escherichia coli) were used (Baker et al 2003). Each forward primer was comprised of an adapter, 61 

a sequencing primer, a spacer, and a 19-base primer for the 16S rDNA target. Each reverse primer 62 

also included a 12-bp barcode sequence allowing for pooling of up to 2,167 multiple samples in 63 

each lane. The list of primers is provided in Supplementary Table S1.  64 

In a typical PCR reaction, the PCR mixture contained 2.5 µl of buffer, 1 µl each of the 65 

forward and reverse primers, 0.1 µl of AccuTaq, 2.5~5.0 ng of template DNA, and enough water 66 

to achieve a final volume of 25 µl. The PCR profile was as follows: 94°C/1 min; 30 cycles of 67 

94°C/20s, 53°C/25s, 68°C/45s; and a final extension at 68°C for 10 min. After amplification, 2 µl 68 
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of the PCR product was analyzed directly by agarose gel (1%) and another 5 µl of the PCR product 69 

was analyzed by Picogreen. Based on the Picogreen result, part of the purified PCR product (about 70 

5 µl to 10 µl containing 100 ng to 200 ng of DNA) was added to a multi-sample pool. The pooled 71 

PCR products were gel purified (1% agarose gel) and re-quantified with Picogreen, Qubit, and 72 

Bioanalyzer. Then the pooled PCR products were serially diluted to 2 nM for sequencing. PCR 73 

products were then processed for sequencing by the Illumina MiSeq platform according to the 74 

method described previously (Caporaso et al 2010, Caporaso et al 2011, Caporaso et al 2012). 75 

Sequencing data pre-processing. After assigning each sequence to its sample according to its 76 

tag/barcode and allowing no mismatches, a total of 10,412,986 reads (250 bp) from both ends were 77 

obtained from the samples. Pair-end reads were merged into longer reads by FLASH (Magoc and 78 

Salzberg 2011) followed by the recommended UPARSE pipeline (Edgar 2013). The setting for 79 

maximum expected error was 0.5 and chimeras were checked against the Greengenes 16S core 80 

reference sequences (DeSantis et al 2006). Operational taxonomic units (OTUs) were generated at 81 

a similarity level of 97% and 10,000 sequences from each sample were resampled without 82 

replacement. Taxonomic annotations were assigned to the representative sequence of each OTU 83 

by the Ribosomal Database Project (RDP) naïve Bayesian 16S classifier (Wang et al 2007). The 84 

sequences are accessible at the NCBI Sequence Read Archive (accession: SRP075100).  85 

16S rDNA sequence analysis. The final 16S data set was analyzed for differential abundance of 86 

OTUs or genera using a variety of tools including STAMP 2.0.8 (Parks and Beiko 2010, Parks et 87 

al 2014), R v3.1.3 ( http://www.r-project.org/), vegan (R package), and metagenomeSeq 88 

(R/Bioconductor package) (Paulson et al 2013). For STAMP and R analyses, a metadata file was 89 

constructed describing the experimental metadata for each sample including subject (patient) 90 

number, treatment status (healthy, diseased pre-treatment, diseased post-treatment), subgingival 91 
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plaque vs. saliva, healthy vs. diseased, recession, PPD, CAL, gender, tobacco use, alcohol use, 92 

age, and whether the samples were paired (i.e., pre- and post-treatment samples from the same 93 

subject and site). These metadata were used to group the samples into subsets and for analysis 94 

using different factors in two-group and multi-group analyses in STAMP, and for subset-grouping 95 

and constructing linear models in metagenomeSeq.  96 

STAMP allows for statistical analyses of two samples, two groups (multiple samples in 97 

each group), and multiple groups. The statistical parameters used for these analyses were as 98 

follows and were fully described previously (Parks and Beiko 2010, Parks et al 2014). For multiple 99 

group analysis (multiple groups of samples), the statistical test used was ANOVA with Storey’s 100 

false discovery rate (FDR) approach used for multiple test correction of p-values. The Tukey-101 

Kramer method was used for the post-hoc test (0.95) and the eta-squared method was used as the 102 

measure of effect size. 103 

Abundance profiling of metagenomics data was analyzed using metagenomeSeq to test for 104 

differential abundance between metagenomic samples by fitting normalized abundance profiles to 105 

a zero-inflated Gaussian (ZIG) distribution (Paulson et al 2013). The fit was made using a user-106 

defined linear model that included covariates of interest such as sample site (saliva, subgingival 107 

plaque) or treatment state (periodontally healthy, periodontally diseased/pre-treatment, 108 

periodontally diseased/post-treatment). Rare features (OTUs consisting of cumulatively <15 109 

occurrences across all samples) were removed and normalization factors were determined for each 110 

trimmed data set using the cumNorm function of metagenomeSeq (0.75). The fitZig output was 111 

examined both with and without the effective sample size cutoff (eff = 0.5) to identify those 112 

samples most likely to be differentially abundant, with p-values adjusted to account for multiple 113 

corrections using the FDR approach.  114 
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Pearson correlation coefficients and Bray-Curtis dissimilarity values were calculated in R 115 

for all pairs of samples. A heat map of the log2 transformed counts of the 200 OTUs with the 116 

largest overall variance was created in metagenomeSeq using the MRheatmap function.  The 117 

heatmap was clustered both by OTU (column) and sample (row).  Figures were reformatted in 118 

Adobe Illustrator without modification of the underlying data. 119 

Principal component analysis (PCA) plots were constructed in STAMP using different 120 

factors defined in the metadata file. Alpha and beta diversity, hierarchical clustering and detrended 121 

correspondence analysis (DCA) were conducted using the Institute for Environmental Genomics 122 

(IEG) pipeline (http://ieg.ou.edu) or R. Classical multidimensional scaling (CMDS) plots were 123 

constructed in metagenomeSeq. All other analyses were conducted in R using custom R scripts.  124 

Correlation network construction and analysis. Microbial interactions in this study were 125 

characterized by pairwise correlations (i.e., Pearson correlation coefficient) among the abundances 126 

at the level of OTU or genus. To construct the correlation network, we first assembled the 127 

correlation matrix for each sample group based on all pairwise taxa abundance correlations. A 128 

threshold value was assigned for each correlation matrix to remove the correlations with strengths 129 

lower than the threshold for the network inference. The threshold identification is a crucial step, 130 

because using inappropriate critical thresholds can cause inaccurate structures of the inferred 131 

network. In this study, we used a Random Matrix Theory (RMT)-based approach for assigning the 132 

critical thresholds. The details of the RMT approach were documented previously (Deng et al 133 

2012, Shi et al 2016). In brief, a system (i.e., correlation matrix) falling within the applicable range 134 

of the RMT obeys two universal laws in which if the system was system-specific and non-random, 135 

its nearest neighbor spacing distribution (NNSD) of matrix eigenvalues follows Poisson statistics; 136 

while if the system was inflated with randomness and noise, its NNSD follows the Wigner-Dyson 137 
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distribution. When the threshold value is attempted from low to high, weak and random 138 

correlations are removed from the system increasingly, so the NNSD of the system will transition 139 

from following the GOE distributions to following Poisson distributions. Therefore, such a 140 

transition point is mathematically defined and can serve as a reference point to distinguish system-141 

specific and non-random properties of the system from random noise. Compared with methods 142 

using arbitrary thresholds or relying on empirical p-values, the RMT-based approach has the 143 

advantages of being theoretically sound, identifying the thresholds automatically and objectively, 144 

and having been demonstrated to work compatibly with network inference in biological systems, 145 

such as inferring metabolic (Luo et al 2007 #12103), protein (Luo et al 2007 #12104), and 146 

microbial ecological networks (Zhou, 2011 #12105). The RMT-based approach used in this study 147 

has the following steps for the identification of the threshold. 148 

1. Start from the taxonomic profiling data 𝐶, which is an 𝑚 × 𝑛 matrix where 𝑚 is the number 149 

of samples and 𝑛 is the number of OTUs detected, and every quantity 𝑐𝑘𝑗 represents the 150 

count the OTU 𝑗 in sample 𝑘. Meanwhile, OTUs with presence in less than 60% of the 151 

samples were excluded from further analysis. 152 

2. Calculate the co-occurrence matrix 𝑃, which is an 𝑛 × 𝑛 symmetric matrix, and every 153 

quantity 𝑝𝑖𝑗 from 𝑃 is the co-occurrence strength (i.e., Pearson correlation) between the 154 

OTU 𝑖 and 𝑗.  155 

3. Generate a threshold series, 𝑠 = [𝑠0, 𝑠1, … , 𝑠𝑘 , … , 𝑠𝑚𝑎𝑥], where 𝑠0 = 0.3, 𝑠𝑚𝑎𝑥 = 1 and 156 

𝑠𝑘 − 𝑠𝑘−1 = 0.01. 157 

4. For each 𝑠𝑘 in every 𝑠, the following algorithm was performed for transitioning point 158 

evaluation. 159 

i. Reduce the 𝑃 to 𝑃𝑠𝑘
 in such a way that any 𝑝𝑖𝑗 ∈ [−𝑠𝑘, 𝑠𝑘] was set to 0.  160 
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ii. Calculate eigenvalues 𝜆 of the 𝑃𝑠𝑘
, where λ is the eigenvalue, and transform 𝜆 to 𝑒, 161 

where 𝑒𝑖 = 𝑁𝑎𝑣(𝜆𝑖), and 𝑁𝑎𝑣 is the unfolding function of eigenvalues. 162 

iii. Calculate the nearest neighbor spacings (NNS) of unfolded eigenvalues, 𝑑, where 163 

𝑑𝑖 = |𝑒𝑖+1 − 𝑒𝑖| for every 𝑖 = 1, 2, … , 𝑛 − 1.   164 

iv. Approximate the probability density of NNSD, 𝑃(𝑑), which can be treated as a 165 

standard quantity describing the level fluctuations of the system. Assess the 166 

goodness of fit of 𝑃(𝑑) for both Poisson and Wigner-Dyson statistics, which are 167 

expressed as 𝑃(𝑑) ≈ 𝑒−𝑑 and 𝑃𝐺𝑂𝐸(𝑑) ≈
𝜋

2
∙ 𝑑 ∙ 𝑒(−𝜋∙𝑑2/4), respectively. Terminate 168 

the process and yield the threshold 𝑠𝑘, if 𝑃(𝑑) fits the Poisson distribution better 169 

than the Wigner-Dyson distribution, and 𝑠𝑘 is chosen for the final threshold. 170 

With the final threshold 𝑠𝑘, each correlation matrix was transformed into the corresponding 171 

adjacency matrix by: 1) setting every value in the correlation matrix to 0 if its absolute form was 172 

less than 𝑠𝑘, and 2) setting the value to 1 if its absolute form was greater than 𝑠𝑘. To this end, 173 

adjacency matrices were obtained and used for constructing all correlation networks.  174 

Each correlation network was visualized and analyzed in Cytoscape 3.4.0. We computed 175 

the following topological indices for the analysis: node number, link/edge number, average 176 

shortest path length, clustering coefficient (Watts and Strogatz 1998), diameter (i.e., the longest 177 

length of all shortest paths), average node degree (i.e., average number of node neighbors), density 178 

(i.e., edge number divided by the number of all possible edges), centralization and heterogeneity 179 

(Dong and Horvath 2007). Putative key nodes/taxa were inferred based on: 1) whether the nodes 180 

had the most degree in the module where they were located, 2) whether the nodes had most of their 181 

edges connected to different modules, and 3) both situations. Accordingly, all taxa were assigned 182 

to one of the following roles in the network: peripherals, connectors, module hubs or network hubs 183 
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(Deng et al 2012, Olesen et al 2007, Shi et al 2016). Unique or shared taxa in each module between 184 

sample groups were identified using “Difference” or “Intersection” in the “Advanced Network 185 

Merge” interface available from “Tools” in Cytoscape 3.4.0. For the inferred networks at the level 186 

of OTU, the OTU nodes under each genus were also merged together into the single genus nodes 187 

using the “Group” then “Collapse” features provided in the menu in the Cytoscape graphics panel. 188 

Mechanisms underlying community assembly. Five community assembly processes were 189 

evaluated. These are variable selection, homogeneous selection, dispersal limitation, 190 

homogenizing dispersal and undominated as described previously (Stegen et al 2013a, Stegen et 191 

al 2015, Webb et al 2008). “Selection” is defined as a major niche-based process which shapes 192 

community structure due to fitness differences (e.g., survival, growth, reproduction) among 193 

different organisms, including effects of abiotic conditions (environmental filtering) and biotic 194 

interactions (e.g., competition, facilitation, mutualism, predation, host filtering). “Variable 195 

selection” or “homogeneous selection” are selection processes under heterogeneous or 196 

homogeneous abiotic and biotic environmental conditions, respectively, which drive communities 197 

toward more dissimilarity or similarity, respectively. “Dispersal limitation” means that the 198 

movement to and/or establishment (colonization) of individuals in a new location is restricted, 199 

which leads to communities that are more dissimilar; while “homogenizing dispersal” means a 200 

very high rate of dispersal among communities, which homogenizes the communities to become 201 

very similar. “Undominated” is a turnover not differentiable from either phylogenetic or taxonomic 202 

null patterns, which mainly includes various stochastic processes, e.g., drift. "Drift" means random 203 

changes of community structure due to the stochastic processes of birth, death and offspring 204 

reproduction. 205 
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The relative roles of community assembly processes were quantified using a framework 206 

proposed by Stegen et al (Stegen et al 2013b, Stegen et al 2015). The influence of selection was 207 

estimated based on the beta nearest taxon index (βNTI) between communities. The pairwise 208 

turnovers between communities were first analyzed for phylogenetic dissimilarity using the beta 209 

mean nearest taxon distance (βMNTD, Eq. S1). 210 

𝛽𝑀𝑁𝑇𝐷𝑖𝑗 =
1

2
[∑ 𝑝𝑖𝑘 min

𝑚
(𝛿𝑘𝑚)

𝐴

𝑘=1

+ ∑ 𝑝𝑗𝑚 min
𝑘

(𝛿𝑘𝑚)

𝐵

𝑚=1

] Eq. S1 

where 𝛽𝑀𝑁𝑇𝐷𝑖𝑗 is βMNTD between community i and j;  𝛿𝑘𝑚 is the phylogenetic distance between 211 

OTU k and OTU m; 𝑝𝑖𝑘 is the relative abundance (proportion) of OTU k in community i; 𝑝𝑗𝑚 is 212 

the relative abundance (proportion) of OTU m in community j. Then, we performed null model 213 

analysis for phylogenetic dissimilarity, where the OTU labels were shuffled across the tips of the 214 

phylogenetic tree to randomize phylogenetic relationships among OTUs, while the relative 215 

abundance of each OTU in each community was fixed as observed. This null model algorithm is 216 

called “taxa shuffle” (Kembel 2009) and was performed for 1000 times to get 1000 sets of null 217 

βMNTD values. Then, βNTI between community i and j is calculated as follows (Fine and Kembel 218 

2011, Stegen et al 2012). 219 

𝛽𝑁𝑇𝐼𝑖𝑗 =
𝛽𝑀𝑁𝑇𝐷𝑜𝑏𝑠[𝑖,𝑗] − 𝛽𝑀𝑁𝑇𝐷𝑛𝑢𝑙𝑙[𝑖,𝑗]

̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅

𝑠𝑑(𝛽𝑀𝑁𝑇𝐷𝑛𝑢𝑙𝑙[𝑖,𝑗])
 Eq. S2 

where 𝛽𝑀𝑁𝑇𝐷𝑜𝑏𝑠[𝑖,𝑗] is observed βMNTD between community i and j; 𝛽𝑀𝑁𝑇𝐷𝑛𝑢𝑙𝑙[𝑖,𝑗]
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and 220 

𝑠𝑑(𝛽𝑀𝑁𝑇𝐷𝑛𝑢𝑙𝑙[𝑖,𝑗]) are the mean and standard deviation of the 1000 null βMNTD between 221 

community i and j from the null model. If the community turnover is due to neutral processes, the 222 

observed βMNTD should not be differentiable from the null βMNTD values. In contrast, if the 223 

observed βMNTD of a turnover was significantly higher (βNTI>2) or lower (βNTI<-2) than null 224 
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expectation, the turnover was considered to be governed by “variable selection” or “homogeneous 225 

selection” (Stegen et al 2015, Webb et al 2008).  226 

Then, the turnovers not governed by selection (i.e., -2<βNTI<2) were analyzed using the 227 

modified Raup-Crick metric (RC) based on the Bray-Curtis dissimilarity index (BC) (Stegen et al 228 

2013b) (Stegen et al 2015). The observed BC of each turnover was compared with 1000 null BC 229 

values from null model analysis. In the null model, the richness of each sample was fixed as 230 

observed, and the presence of OTUs in each null community was simulated as a random draw of 231 

OTUs from a regional species pool with probabilities proportional to their observed occurrence 232 

frequencies (Chase et al 2011). Then, the abundance of the present OTUs in each null community 233 

was simulated as a random draw of individuals into the present OTUs with probabilities 234 

proportional to their regional relative abundances (Stegen et al 2013b). After 1000-time 235 

randomization, an α value for each turnover was calculated as the percentage of null BC values 236 

lower than observed BC plus a half of percentage of null BC values equal to observed BC. Then, 237 

the RC value of each turnover was calculated by subtracting 0.5 from the α value and multiplying 238 

by 2 to make the index range from -1 to +1 (Eq. S3 and S4).  239 

𝑅𝐶𝑖𝑗 = 2(α − 0.5) = 2
∑ 𝛿[𝑖,𝑗,𝑡]

𝑁𝑛𝑢𝑙𝑙
𝑡=1

𝑁𝑛𝑢𝑙𝑙
− 1 Eq. S3 

𝛿[𝑖,𝑗,𝑡] = {

0 𝐵𝐶𝑛𝑢𝑙𝑙[𝑖,𝑗,𝑡] > 𝐵𝐶𝑜𝑏𝑠[𝑖,𝑗]

0.5 𝐵𝐶𝑛𝑢𝑙𝑙[𝑖,𝑗,𝑡] = 𝐵𝐶𝑜𝑏𝑠[𝑖,𝑗]

1 𝐵𝐶𝑛𝑢𝑙𝑙[𝑖,𝑗,𝑡] < 𝐵𝐶𝑜𝑏𝑠[𝑖,𝑗]

 Eq. S4 

where 𝑅𝐶𝑖𝑗 is RC value between community i and j; 𝑁𝑛𝑢𝑙𝑙 is the randomization times; 𝛿[𝑖,𝑗,𝑡] is an 240 

operator for RC at the tth randomization; 𝐵𝐶𝑛𝑢𝑙𝑙[𝑖,𝑗,𝑡] is the null BC dissimilarity between 241 

community i and j at the tth randomization; 𝐵𝐶𝑜𝑏𝑠[𝑖,𝑗] is the observed BC dissimilarity between 242 

community i and j. If selection has little effect on the turnover, the major cause of the non-random 243 
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turnover pattern should be abnormal dispersal conditions. Thus, if an observed BC was 244 

significantly higher (RC>0.95) or lower (RC<-0.95) than null expectation when |βNTI|<2, the 245 

turnover was considered to be governed by “dispersal limitation” or “homogenizing dispersal” 246 

(Stegen et al 2013b). The remaining turnover (i.e., |βNTI|<2 and |RC|<0.95) that was not 247 

differentiable from null patterns was named “undominated” (Stegen et al 2015) and included other 248 

stochastic processes (e.g., drift).  249 

After the steps described above, each pairwise turnover was assigned a governing process. 250 

Then, the relative influence of a process was estimated as the percentage of turnovers governed by 251 

this process (Stegen et al 2013b, Stegen et al 2015), shown in Eq. S5 to S9. 252 

𝑃𝑉𝑆 =
∑ 𝑤𝑉𝑆[𝑖,𝑗]

𝑛
× 100%        𝑤𝑉𝑆[𝑖,𝑗] = {

1 𝛽𝑁𝑇𝐼𝑖𝑗 > 2

0 𝑒𝑙𝑠𝑒
 Eq. S5 

𝑃𝐻𝑆 =
∑ 𝑤𝐻𝑆[𝑖,𝑗]

𝑛
× 100%        𝑤𝐻𝑆[𝑖,𝑗] = {

1 𝛽𝑁𝑇𝐼𝑖𝑗 < −2

0 𝑒𝑙𝑠𝑒
 Eq. S6 

𝑛 0 𝑒𝑙𝑠𝑒
𝑃𝐷𝐿 = 

∑
 
𝑤𝐷𝐿[𝑖,𝑗]

 × 100%        𝑤𝐷𝐿[𝑖,𝑗] = {1 |𝛽𝑁𝑇𝐼𝑖𝑗| < 2 & 𝑅𝐶𝑖𝑗 
> 0.95 Eq. S7 

𝑛 0 𝑒𝑙𝑠𝑒
𝑃𝐻𝐷 = 

∑
 
𝑤𝐻𝐷[𝑖,𝑗]

 × 100%        𝑤𝐷𝐿[𝑖,𝑗] = {1 |𝛽𝑁𝑇𝐼𝑖𝑗| < 2 & 𝑅𝐶𝑖𝑗 
< −0.95 Eq. S8 

𝑛 0 𝑒𝑙𝑠𝑒
𝑃𝑈𝑛 = 

∑
 
𝑤𝑈𝑛[𝑖,𝑗]

 × 100%        𝑤𝑈𝑛[𝑖,𝑗] = {1 |𝛽𝑁𝑇𝐼𝑖𝑗| < 2 & |𝑅𝐶𝑖𝑗| < 0.95 
Eq. S9 

where 𝑃𝑉𝑆, 𝑃𝐻𝑆, 𝑃𝐷𝐿, 𝑃𝐻𝐷, and 𝑃𝑈𝑛 are the process ratios to estimate the relative influence of 253 

“variable selection”, “homogeneous selection”, “dispersal limitation”, “homogenizing dispersal”, 254 

and “undominated”, respectively; 𝑤𝑉𝑆[𝑖,𝑗], 𝑤𝐻𝑆[𝑖,𝑗], 𝑤𝐷𝐿[𝑖,𝑗], 𝑤𝐻𝐷[𝑖,𝑗], and 𝑤𝑈𝑛[𝑖,𝑗] are the operators 255 

of the corresponding processes for the turnover between community i and j; n is the number of 256 

pairwise turnovers in a certain comparison within a group or between groups (treatments) of 257 

communities. The significance of such a percentage was analyzed by a permutation test in which 258 

null results were calculated by randomizing the sample names for 1000 times.  259 
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