IG construct	Stoichiometry	Kd (µM)	ΔH Kcal/mol	ΔS cal/mol K
1483-1526	0.9	0.83	-5.2	10.2
1483-1523	0.7	1.1	-7.0	3.9
1483-1519	0.9	4.6	-3.2	13.5

Supplementary Table 1. Related to Figure 1.

Orystanographic data conection and	Tennement Statistics.		
PDB Entry	5DBR		
Data collection			
Space group	P3 ₂ 21		
Cell dimensions			
a, b, c (A)	58.09, 58.09, 102.64		
α,β,γ (°)	90, 90, 120		
Temperature (K)	100		
Wavelength (A)	1.542		
Resolution (A)	50.30 - 2.25		
	(2.31 - 2.25)		
Reflections			
Total	167,361		
Unique	19,561		
Completeness (%) ^a	99.6 (100)		
R_{merge} (%) ^b	9.1 (44.6)		
Ι/σ	14.0 (1.9)		
Redundancy	15.6 (10.6)		
Refinement			
B_{work}/B_{free} (%) ^c	23.1/28.3		
No. of residues			
Protein	145		
IG Peptide	14		
Solvent	11		
Calcium	4		
Average B-factor (Å ²)			
Protein	41.82		
IG Peptide	39.21		
Solvent	39.77		
Calcium	38.59		
RMSD bonds (Å)	0.018		
RMSD angles (°)	1.913		
Ramachandran ^d			
Most favored	135		
Allowed	8		
Disallowed	0		

Supplementary Table 2. Related to Figure 2.

Crystallographic data collection and refinement statistics

^a Values in parentheses are for the highest-resolution shell. ^b $R_{merge} = \Sigma (I - \overline{I}) / \Sigma I \times 100.$ ^c Rwork = $\Sigma I F_o - F_c / \Sigma F_o \times 100$, where F_o is the observed structure factor amplitude and F_c is the calculated structure factor amplitude.

^d Values are numbers of residues.

Fig. S1. Related to Fig. 1, Fig. 3, and Fig. 4. **Production and identification of an optimal IG construct**. a) 10% SDS denaturing gel of purified CaM and IG peptide. b) Sensorgrams and binding curves of CaM titrated into the Na_v1.5 D1471-D1532 peptide (left) and Q1483-A1529 (right). Conditions were 10 mM BIS-TRIS pH 6.5, 5 mM MES, 5 mM CaCl₂, and 20 mM TRIS, 50 mM NaCl, 1 mM CaCl₂ respectively. c) Overlay of ¹⁵N-¹H HSQC NMR spectra of IG peptide in the absence (black) and presence (blue) of apo CaM. d) Overlay of ¹⁵N-¹H HSQC spectra for Ca²⁺-CaM with D1471-V1532 (black) and optimized Q1483-A1529 (red) -IG constructs. e) Size Exclusion Chromatography coupled to Multi-Angle Light Scattering (SEC-MALS) of the 1:1 Ca²⁺ CaM-IG complex.

Fig. S2. Related to Fig. 2. **Crystal structure of CaM bound to Na_v1.5 IG peptide site B**. a) Density was observed for both CaM domains where adjacent molecules of CaM engaged IG L1514-T1526, consistent with a domain swap configuration. b) Surface rendering of CaM-N and -C domains color coded by hydrophobicity (red = least, yellow = most) bound to site B of IG peptide. IG peptide backbone shown

in cyan with interacting side chains in blue.

Fig. S3. Related to Fig. 3. **Expanded table of NMR chemical shift differences for the IG peptide in the absence and presence of Ca²⁺ CaM.** The * symbol denotes differences could not be calculated due to broadened or significantly overlapped resonances for either the free or complex IG samples. A red * symbol is used for the missing NH of Pro residues and CB of glycine residues.

Fig. S4. Related to Fig. 3. **Expanded NMR spectra for IG peptide, CaM and complex.** Overlay of ¹⁵N-¹H HSQC NMR spectra of the Q1483-A1529 IG peptide (left) in the absence (black) and presence (red) of Ca²⁺-CaM. Overlay of ¹⁵N-¹H HSQC NMR spectra of Ca²⁺-CaM in the absence (black) and presence (red) of the Q1483-A1529 IG peptide. The spectra were acquired in a buffer containing 20 mM BISTRIS at pH 6.8, 100 mM KCI, and 2 mM CaCl2 at 310 K. Although complete resonance assignments were made for the IG peptide, only a subset is shown in the left panel for convenience.

Fig. S5. Related to Fig. 1, and Fig. 3. **Interactions of Individual CaM domains and Na**_v**1.5 IG binding sites.** a) Overlay of ¹⁵N-¹H HSQC spectra of Na_v1.5-IG site A peptide in the presence of Ca²⁺-CaM –N (A1-M76) (left) and Ca²⁺-CaM-C (K77-K148) (right). The spectra are colored in accord with CaM to peptide ratios of 0:1 (black), 2:1 (green), and 8:1 (orange). The spectra of full length CaM bound to the complete IG is overlaid in red. b) Binding curves from NMR chemical shift changes induced in IG peptides titrated with CaM-N (blue) and CaM-C (red). c) Summary of binding constants from the NMR titrations, residues of site A (left) and site B (right). Values for Q1491-Y1495 could not be determined due to significant spectral overlap. K_d values for CaM-N domain shown in blue and CaM-C domain shown in pink.

Fig. S6. Related to Fig. 4. Expanded SAXS data for the CaM-IG complex and optimal orientation of the CaM -IG crystal structures. a) intensity plot, b) Kratky-Debye plot, c) P(r), $\chi^2 = 0.84$. d-i) Overlay of experimental P(r) (black) and back-calculated curves for different structures of CaM binding to peptides in different conformations (red). (J) Plot of χ^2 values for various orientations of the merged crystal structures for CaM-C -Site A and CaM-N -Site B interactions. (k) A minimum value is observed when the CaM domains are translated a distance of 2 Å closer together (purple line) and rotated ~300° about the central helix of CaM after alignment .

Nav1.5 DNFNQQKKKLGGQDIFMTEEQKKYYNAMKKLGSKKPQKPIPRPLNKYQGFIFDIVTKQA Nav1.4 DNFNQQKKKLGGKDIFMTEEQKKYYNAMKKLGSKKAAKCIPRPSNVVQGVVYDIVTQPF NavPas DIFRQQRRKAEGLSATDSRTQLIYRRAVMRTMSAKPVKRIPKPTCHPQSLMYDISVNRK

Fig. S7. Related to Fig. 6. **Homology of the Nav1.5 alpha subunit.** a) Sequence alignment of IG sections from Nav channels. b) Homology models of Nav1.5 based on Nav1.4 (left) and NavPas (right). The homology model of the alpha subunit from Nav1.5 constructed from Nav1.4 with the IG colored blue and CaM binding sites A and B highlighted in red. The latch F1486 is shown in dark red. The channel appears to be in the inactivated configuration and clearly CaM binding to the A and B sites would destabilize the latch interaction as well as re-orient site B portion of the IG. Both of these interactions would destabilize the structure of the suggested inactivated configuration. The NavPas channel contains minimal sequence and homology resemblance of the human Nav1.5 IG sequence. Neither the latch or IG CaM bindings site sequences are conserved. The observed interaction between the EF hand and - NavPas IG occurs for an IG sequence that is not highly conserved in Nav1.5. All homology models of Nav1.5 indicate that both the IG A and B CaM binding sites are contained in the cytosol and not in the lipid bilayer. c) An extended structure of CaM is provided as a visual reference to illustrate that the -N and -C domains of CaM are able to span the distance between the two IG sites.

Fig. S8. Related to Fig. 7. In vitro characterization of the binding of CaM to the IG peptide variants. a) ITC sensorgrams for the three variants overlaid with CaM binding to WT IG (black). The sensorgram data could not be fit to a binding curve due to the complexity of the CaM interaction. We anticipate that the mutants reveal the existence of multiple equilibria because both CaM domains are able to interact with both IG binding sites, and CaM can also engage site B with a wrap around conformation. b) 2D NMR 15N-1H HSQC spectra of ¹⁵N-enriched IG in complex with CaM (black) overlaid with the CaM complex with ¹⁵N-enriched Y1494L+F1522L IG (red). For the double mutant numerous crosspeaks disappear upon the addition of CaM, consistent with an intermediate mode of exchange on the NMR timescale, whereas the WT IG peptide exhibits slow exchange. This difference is consistent with a reduction in the affinity of CaM for both sites A and B in the IG peptide. c) Schematic showing possible modes of CaM engaging an IG peptide containing a mutation at each binding site.

Steady State Inacitvation

prepulse potential (mV)

	$\begin{array}{c} \text{Recovery} \\ (\tau_{\text{fast}}) \end{array}$	Recovery (τ_{slow})	Weight of fast component	Weight of slow component	Inactivation Kinetic (-30 mV) (τ _{fast})	V _{1/2} steady- state Inactivation
wт	5.8 ± 0.5 ms	60.1 ± 4.9 ms	78 ± 3%	22 ± 3%	1.32 ± 0.08 ms	-73.7 ± 0.7
	n = 15	n = 15	n = 15	n = 15	n = 20	n = 21
Y1994L +	15.8 ± 4 ms*	156.1 ± 41 ms*	81 ± 3%	19 ± 3%	0.99 ± 0.07 ms*	-75.9 ± 1.4
F1522L	n = 12	n = 12	n = 12	n = 12	n = 12	n = 13
V1404I	8.8 ± 0.4 ms*	112.7 ± 16.5 ms*	71 ± 2%*	29 ± 3%*	1.44 ± 0.08 ms	-73.0 ± 1.1
11454L	n = 11	n = 11	n = 11	n = 11	n = 16	n = 16
E15221	7.4 ± 0.7 ms	86.3 ± 10.1 ms*	82 ± 3%	18 ± 3%	1.24 ± 0.09 ms	-73.2 ± 1.1
FIJZZL	n = 12	n = 12	n = 12	n = 12	n = 12	n = 13

Fig. S9. Related to Fig. 7. Whole cell patch clamp recordings of structure guided mutations. Summary of recovery from inactivation, inactivation kinetic and voltage dependence of inactivation biophysical properties for Na_V1.5 WT, Y1994L + F1522L, Y1494L, F1522L, and Y1494N in presence of Ca²⁺. *P < 0.05 (compared with WT)

Fig. S10. Related to Fig. 5. **CaM binding to Na**_V**1.5-IG mutations**. Plots of changes in chemical shifts for Ca²⁺-CaM binding to NaV1.5-IG peptides containing individual disease associated mutations. Values are shown as the difference compared to CaM binding wild type IG peptide.