1 SUPPLEMENTAL INFORMATION

2

3 Structures of the gasdermin D C-terminal domains reveal mechanisms of autoinhibition

- Zhonghua Liu¹, Chuanping Wang¹, Joseph K. Rathkey¹, Jie Yang^{1,2}, George R. Dubyak², Derek W. 4 5
 - Abbott¹, and Tsan Sam Xiao^{1,3*}
- 6 1 Department of Pathology, Case Western Reserve University, Cleveland, OH 44106 USA
- 7 2 Graduate program in Physiology and Biophysics, Department of Physiology and Biophysics, Case 8 Western Reserve University, Cleveland, OH 44106 USA
- 9 3 Cleveland center for membrane and structural biology, Case Western Reserve University, Cleveland,
- 10 OH 44106 USA
- 11
- 12 The supplemental data include three figures and one table.
- 13
- 14

Figure S1. Related to Figure 1. Structures of the hGSDMD, mGSDMD, mGSDMA3, and hGSDMB.

- 17 (A) Representative electron density maps for mGSDMD (gold) contoured at 1 sigma.
- 18 (B) Representative electron density maps for hGSDMD (cyan) contoured at 1 sigma.
- 19 (C) Superposition of structures for hGSDMD (cyan), mGSDMD (gold), mGSDMA3 (gray) and
- 20 hGSDMB (green). Helices are represented as cylinders. The β sheet and α 11 helix common for
- 21 GSDMDs and mGSDMA3 but absent in hGSDMB are marked with a red oval. Structural differences
- 22 near the β 1- β 2 loop are marked with a black square.
- 23 (D) Highlight of major structural differences near the $\beta 1-\beta 2$ loop between hGSDMB and other
- 24 gasdermin structures. The C α atom of residue F48 from mGSDMA3 is shown as a gray sphere.
- 25 (E & F) Highlight of major structural differences near the α 7' helix region between mGSDMA3 (gray in
- E), GSDMDs (cyan and gold in F) and hGSDMB (green in F).
- 27

Figure S2. Related to Figure 2. The gasdermin N- and C-domain interface.

- 29 (A-C) Electrostatic charge surface of the N- and C-domains for hGSDMD (A), mGSDMD (B) and
- 30 mGSDMA3 (C). The full-length hGSDMD and mGSDMD structural models were created using the full-
- 31 length mGSDMA3 as a template. The surface representations on top of the three panels are the same
- 32 as those in Figure 2. The open-book views of the N- and C-domains show charge-charge
- 33 complementarity with the N-domains largely positively charged (blue), and the C-domains negatively
- 34 charged (red). The electrostatic charge surface is displayed on a scale of -5kT/e (red) to 5 kT/e (blue).
- 35 Crucial residues at the site I interface are marked.
- 36

Figure S3. Related to Figure 4. Propidium iodide uptake by macrophages expressing WT or mutant mGSDMD.

- Propidium iodide uptake by macrophages reconstituted with WT mGSDMD or the Y376D mutant, in
 the presence or absence of *Salmonella*. Significant increase in PI uptake was only observed in the
 presence of *Salmonella* infection. The average ± SD is shown for three independent experiments.
 Asterisk denotes P value <0.05 calculated by one-way ANOVA.
- 43
- 44

	mGSDMD-C	mGSDMD-C	hGSDMD-C
	(SeMet)		
Data Collection			
Spacegroup	P1	P1	P21212
Unit cell (a, b, c) (Å)	45.3, 56.8, 82.0	45.3, 56.8, 81.8	47.8, 108.5, 45.9
(a, b, γ) (°)	94.8, 102.5, 98.2	94.9, 102.8, 99.0	90, 90, 90
Wavelength (Å)	0.9793	0.9800	0.9800
Resolution (Å) (Last shell)	50-2.02 (2.07-2.02)	50-1.76 (1.81-1.76)	50-2.90 (2.98-2.90)
No of reflections (total/unique)	196629/50375	220325/75173	37766/5664
Completeness (%) (Last shell)	97.9 (96.0)	97.1 (95.8)	99.9 (100)
<l o(i)=""> (Last shell)</l>	12.0 (1.8)	10.1 (2.1)	17.5 (1.8)
R _{meas} (%) ^a (Last shell)	8.7 (77.7)	8.8 (84.6)	10.2 (95.9)
CC ½ (%) ^b (Last shell)	99.8 (70.3)	99.5 (55.5)	99.8 (86.5)
SigAno ^c	0.88		
SAD Phasing			
Se sites (found/total)	8/8		
FOM ^d (Initial/DM/model building)	0.23/0.45/0.88		
Refinement			
Number of atoms (protein/solvent)		6021/587	1445/0
Rmsd bonds length (Å)/angles (°)		0.007/1.016	0.008/1.195
R _{work} / R _{free} (%) ^e		16.1/18.6	23.2/29.0
Ramachandran plot		99.0/0.0	91.5/0.0
favored/disallowed f			
PDB code		6AO3	6AO4

45 Table S1. Related to Figure 1. X-ray Diffraction Data Collection and Refinement Statistics

46

47

^a R_{meas} = $\Sigma_h \{ N_h / [N_h -1] \}^{1/2} \Sigma_i | I_i(h) - \langle I(h) \rangle | / \Sigma_h \Sigma_i I_i(h)$, where $I_i(h)$ and $\langle I(h) \rangle$ are the ith and mean measurement of the intensity of reflection *h*, and N_h is the multiplicity (Diederichs and Karplus, 1997). ^b CC_{1/2} = $\Sigma (x - \langle x \rangle) (y - \langle y \rangle) / [\Sigma (x - \langle x \rangle)^2 \Sigma (y - \langle y \rangle)^2]^{1/2}$ where x and y are randomly split half datasets. This is the Pearson's correlation coefficient of randomly split half datasets (Karplus and Diederichs, 2012).

- ^o SigAno = $|F(+)-F(-)| / \sigma$ where F(+) and F(-) are structure factor estimates obtained from the merged intensity observations in each parity class, and σ is the standard deviation.
- 55 d FOM = $\int P(\alpha) \exp(i\alpha) d\alpha / \int P(\alpha) d\alpha = \langle \cos(\Delta \alpha) \rangle$ where $P(\alpha)$ is the probability of the phase α being
- 56 the best phase and the $\Delta \alpha = \alpha_{\text{best}} \alpha$ is the error in the phase angel at α . The figure of merit is the 57 expected value of the cosine of the phase error.
- ^e $R_{work} = \Sigma_h ||F_{obs}(h)| |F_{calc}(h)|| / \Sigma_h |F_{obs}(h)|$, where $F_{obs}(h)$ and $F_{calc}(h)$ are the observed and calculated
- structure factors, respectively; R_{free} is the R value obtained for a test set of reflections consisting of a
- 60 randomly selected 5% subset of the data set excluded from refinement.
- ^fValues from the Molprobity server (<u>http://molprobity.biochem.duke.edu/</u>).
- 62
- 63

64 Table S2. Related to STAR Methods and the Key Resources Table. Oligonucleotides used in

65 this study.

Oligonucleotides	SOURCE	IDENTIFIER
hGSDMD-FL Forward:	This paper	N/A
CGGGATCCATGGGGTCGGCCTTTGAGCGG		
hGSDMD-FL Reverse:	This paper	N/A
CGCGTCGACCTAGTGGGGCTCCTGGCTCAG		
hGSDMD-C Forward:	This paper	N/A
CGGGATCCGTCCCTGCGGAGGGAGCGTTC		
hGSDMD-N Forward:	This paper	N/A
CAGAGAACAGATTGGTGGATCCATGGGGTCGGCCT		
TTGAGCGGG		
hGSDMD-N Reverse:	This paper	N/A
GGTGCTCGAGTGCGGCCGCTCATGTCGCGGGTGG		
CTGGAAGGTC		
mGSDMD-FL Forward:	This paper	N/A
CGGGATCCATGCCATCGGCCTTTGAGAAAG		
mGSDMD-FL Reverse:	This paper	N/A
CCGCTCGAGCTAACAAGGTTTCTGGCCTAG		
mGSDMD-C Forward:	This paper	N/A
CGGGATCCGGGATTGATGAGGAGGAATTAAT		
mGSDMD-N Forward:	This paper	N/A
CAGAGAACAGATTGGTGGATCCATGCCATCGGCCT		
TTGAGAAAG		
mGSDMD-N Reverse:	This paper	N/A
GGTGCTCGAGTGCGGCCGCTCATGAGGAGGGCTC		
AAAGGTCCTC		
mGSDMD-FL L292D Forward *:	This paper	N/A
CGACTATGCTGAGGTGAAGGCTTGCTC		
mGSDMD-FL L292D Reverse:	This paper	N/A
CCCTGGAAGTCTGCCGCCTCAATTAAT		
mGSDMD-FL Y376D Forward *:	This paper	N/A
GACCTGCTGGGAGCACTGGCTGTGCTGAGT		
mGSDMD-FL Y376D Reverse:	This paper	N/A
GAAGATAGGGGCTGCGAGTTCCGGCAC		
mGSDMD-FL A380D Forward *:	This paper	N/A
GGGAGATCTGGCTGTGCTGAGTGAAAC		

mGSDMD-FL A380D Reverse:	This paper	N/A
AGCAGGTAGAAGATAGGGGCTGCGAGT		
mGSDMD-FL T387D Forward *:	This paper	N/A
GACCAGCAGCAGCTGCTAGCTAAGGCTC		
mGSDMD-FL T387D Reverse:	This paper	N/A
TTCACTCAGCACAGCCAGTGCTCCC		
mGSDMD-FL L391D Forward:	This paper	N/A
CTAGCTAAGGCTCTGGAGACAACG		
mGSDMD-FL L391D Reverse *:	This paper	N/A
GTCCTGCTGCTGGGTTTCACTCAGCACAGC		
mGSDMD-FL W442D Forward *:	This paper	N/A
GATGTCTTGCTAGAAGAATGTGGCCTA		
mGSDMD-FL W442D Reverse:	This paper	N/A
GGTGGGATTCTTTCATCCCAGCAG		
mGSDMD-FL V443D Forward *:	This paper	N/A
TGG <mark>GAC</mark> TTGCTAGAAGAATGTGGCCTAAG		
mGSDMD-FL V443D Reverse:	This paper	N/A
GGTGGGATTCTTTCATCCCAGCAG		

67 * Red-colored nucleotides mark the mutated codons.

Figure S1

Figure S3

