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Description of mathematical model 
We developed a mathematical model of U2AF2 binding to all binding sites in the 
in vitro transcripts. In the following, it will be described how this model was 
derived, calibrated by fitting to in vitro iCLIP titration data with eight different 
concentrations of recombinant U2AF2RRM12 and then applied to better understand 
the in vivo landscapes of U2AF2 binding. 

I. Modeling in vitro U2AF2 binding to its binding sites 
1. Derivation of the binding model 

The binding sites of U2AF2 were defined as peaks of U2AF2RRM12 iCLIP signal 
above background in a 9-nt window (see Supplemental Methods), corresponding 
to the commonly observed width of U2AF2 binding sites (Agrawal et al. 2016). 
The binding of U2AF2 to these sites was modeled using the following reversible 
and monomeric binding model: 

𝑈2𝐴𝐹2+ 𝑆𝑖𝑡𝑒!  
!!""!

  !!"!  𝑈2𝐴𝐹2: 𝑆𝑖𝑡𝑒!  

𝑈2𝐴𝐹2+ 𝑆𝑖𝑡𝑒!   
!!""!

  !!"!  𝑈2𝐴𝐹2: 𝑆𝑖𝑡𝑒!  

… … 
𝑈2𝐴𝐹2+ 𝑆𝑖𝑡𝑒!  

!!""#

  !!"#  𝑈2𝐴𝐹2: 𝑆𝑖𝑡𝑒!   

…… 
𝑈2𝐴𝐹2+ 𝑆𝑖𝑡𝑒!  

!!""#

  !!" !  𝑈2𝐴𝐹2: 𝑆𝑖𝑡𝑒!  

The temporal changes of the system’s components were described by sets of 
ordinary differential equations (ODEs) and algebraic equations describing 
conservation relations.  
The temporal changes of U2AF2-RNA complexes are described by ODEs: 
 

𝑑( 𝑈2𝐴𝐹2: 𝑆𝑖𝑡𝑒! )
𝑑𝑡 =   𝑘!"!  ∙ 𝑈2𝐴𝐹2 ∙ 𝑆𝑖𝑡𝑒! − 𝑘!""! ∙ 𝑈2𝐴𝐹2: 𝑆𝑖𝑡𝑒!  

 
𝑑( 𝑈2𝐴𝐹2: 𝑆𝑖𝑡𝑒! )

𝑑𝑡 =   𝑘!"!  ∙ 𝑈2𝐴𝐹2 ∙ 𝑆𝑖𝑡𝑒! − 𝑘!""! ∙ 𝑈2𝐴𝐹2: 𝑆𝑖𝑡𝑒!  
… … 

𝑑( 𝑈2𝐴𝐹2: 𝑆𝑖𝑡𝑒! )
𝑑𝑡 =   𝑘!"#  ∙ 𝑈2𝐴𝐹2 ∙ 𝑆𝑖𝑡𝑒! − 𝑘!""# ∙ 𝑈2𝐴𝐹2: 𝑆𝑖𝑡𝑒!   

 
… … 

𝑑( 𝑈2𝐴𝐹2: 𝑆𝑖𝑡𝑒! )
𝑑𝑡 =   𝑘!""  ∙ 𝑈2𝐴𝐹2 ∙ 𝑆𝑖𝑡𝑒! − 𝑘!"!" ∙ 𝑈2𝐴𝐹2: 𝑆𝑖𝑡𝑒!  

(1) 
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Each binding site can either be free or occupied by U2AF2, giving rise to the 
following conservation relations: 

[𝑆𝑖𝑡𝑒!]!"!#$ = 𝑆𝑖𝑡𝑒! + 𝑈2𝐴𝐹2: 𝑆𝑖𝑡𝑒!  
… … 

[𝑆𝑖𝑡𝑒!]!"!#$ = 𝑆𝑖𝑡𝑒! + 𝑈2𝐴𝐹2: 𝑆𝑖𝑡𝑒!  
(2) 

U2AF2 is distributed among all binding sites and thus follows a conservation 
relation given by  

[𝑈2𝐴𝐹2]!"!#$ = 𝑈2𝐴𝐹2 + 𝑈2𝐴𝐹2: 𝑆𝑖𝑡𝑒! + 𝑈2𝐴𝐹2: 𝑆𝑖𝑡𝑒! +⋯+ 𝑈2𝐴𝐹2: 𝑆𝑖𝑡𝑒!  +⋯
+ 𝑈2𝐴𝐹2: 𝑆𝑖𝑡𝑒!  

(3) 
Our modeling approach builds on data of in vitro iCLIP experiments. In these 
experiments, in vitro transcribed RNAs were incubated with recombinant 
U2AF2RRM12 for 10 min, suggesting that the U2AF2RRM12-RNA complexes 
reached equilibrium. We therefore neglected the temporal changes of the 
complexes using an equilibrium assumption for each binding site i: 

𝑑( 𝑈2𝐴𝐹2: 𝑆𝑖𝑡𝑒! )
𝑑𝑡 = 0 

(4) 
This yields the equilibrium concentration of bound complex on binding site i: 

𝑈2𝐴𝐹2: 𝑆𝑖𝑡𝑒! =
𝑆𝑖𝑡𝑒! !"!#$ ∙ 𝑈2𝐴𝐹2
𝑘!""#
𝑘!"#

+ 𝑈2𝐴𝐹2
=

𝑆𝑖𝑡𝑒! !"!#$ ∙ 𝑈2𝐴𝐹2
𝑘!" + 𝑈2𝐴𝐹2  

(5) 

Eq. 5 contains the dissociation constant of each RNA-protein complex 𝑘!" =
!!""#
!!"#

.  
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2. Linking the model to experimental in vitro iCLIP measurements 

The dissociation constant of each binding site was estimated by fitting the 
binding model (Eq. 5) to the in vitro iCLIP measurements (see Section 3). Model 
and experimental data were compared using the following relationship 

𝑆𝑖𝑔𝑛𝑎𝑙! = 𝑆𝐹! ∙ 𝑁 ∙ 𝑈2𝐴𝐹2: 𝑆𝑖𝑡𝑒! ∙ 𝑒!!! = 𝑆𝐹! ∙ 𝑁 ∙
𝑆𝑖𝑡𝑒! !"!#$ ∙ 𝑈2𝐴𝐹2
𝑘!" + 𝑈2𝐴𝐹2 ∙ 𝑒!!! 

(6) 
The iCLIP signal is assumed to be proportional to the concentration of the 
complex. A proportional experimental error (𝑒!!!) was considered (Zi being an 
independent normal random variable), because the standard deviation of 
biological quadruplicates scaled with the intensity of the in vitro iCLIP signal 
(Supplemental Fig. S7A). In further support for a proportional error, we 
observed that the logarithm of the iCLIP signal was normally distributed, with a 
standard deviation that was constant across U2AF2 concentrations 
(Supplemental Fig. S7B). 
The signal is also proportional to a “scaling factor” (SFi) that is specific for each 
binding site (i), but the same across all experimental runs. The scaling factor can 
be interpreted as the sum of binding site-specific biases, such as a UV 
crosslinking or PCR amplification efficiency.  
Finally, we assumed a normalization factor (N) that scales all binding sites for a 
given experimental replicate. This normalization factor reflects the batch effect of 
different sequencing depths. Our data contains such a batch effect, since the in 
vitro iCLIP signals of two replicates are highly correlated, but shifted by a global 
factor between replicates (Supplemental Fig. S6A). Importantly, these 
differences can be efficiently compensated for when normalizing the data to total 
library size (Supplemental Fig. S6B). However, the latter normalization also 
abolishes overall signal differences between U2AF2 concentrations, implying that 
the use of a fitted normalization factor is superior, as it allows for U2AF2 
concentration-dependent normalization. The use of a fitted normalization factor 
yielded comparable results to normalization of each sample by a spike-in (a 
U2AF2-bound RNA of known concentration) which we added to each sample 
before applying the in vitro iCLIP procedure (Supplemental Fig. S6C).  

3. Model calibration by maximum likelihood fitting  

The simulated iCLIP signal (Eq. 6) was fitted to the in vitro iCLIP titration 
experiment, in which known, constant concentrations of eleven in vitro transcripts 
were incubated with eight different concentrations of recombinant U2AF2RRM12 
(four replicates) in order to estimate the unknown parameters: SFi, N, kdi, σ. 
For all experiments, we assumed the same dissociation constant kdi, the same 
scaling factor SFi and the same binding site concentration 𝑆𝑖𝑡𝑒! !"!#$. In contrast, 
each experimental run (replicates or experiments with different U2AF2RRM12 
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concentrations) was characterized by a specific normalization factor (Nj) and a 
specific relative (log-constant) error (𝑒!!!"), as indicated by the subscript j: 

𝑆𝑖𝑔𝑛𝑎𝑙!" = 𝑆𝐹! ∙ 𝑁! ∙
𝑆𝑖𝑡𝑒! !"!#$ ∙ [𝑈2𝐴𝐹2!]
𝑘!" + [𝑈2𝐴𝐹2!]

∙ 𝑒!!!" 

(7) 
Our model assumes that the signal is normally distributed at log-scale (see 
above), giving rise to the following likelihood function: 
 

−2 ln 𝐿 𝜃 𝑆𝑖𝑔𝑛𝑎𝑙!" = ln 2𝜋𝜎!
!

!!!

!

!!!

+
1
𝜎!

ln 𝑆𝑖𝑔𝑛𝑎𝑙!" − ln 𝑆𝐹! ∙ 𝑁! ∙
𝑆𝑖𝑡𝑒! !"!#$ ∙ [𝑈2𝐴𝐹2!]
𝑘!" + [𝑈2𝐴𝐹2!]

!!

!!!

!

!!!

 

(8) 
Here, 𝜃 denotes the parameter set { SFi, Nj, kdi, σ }, I the total number of binding 
sites (I=795), and J the total number of experimental runs (J=31, different 
U2AF2RRM12 concentrations and/or replicates). 
By maximizing L, the maximum likelihood estimates of the unknown parameters 
can be obtained. It is more common, equivalent and numerically more efficient to 
minimize the negative logarithm of the likelihood function -2ln(L) instead (Eq. 8). 
Since the relative error σ in Eq. 8 is a constant, the minimization of -2ln(L) 
reduces to the minimization of the part f:  
 

𝑓 = ln 𝑆𝑖𝑔𝑛𝑎𝑙!" − ln 𝑆𝐹! ∙ 𝑁! ∙
𝑆𝑖𝑡𝑒! !"!#$ ∙ 𝑈2𝐴𝐹2!
𝑘!" + 𝑈2𝐴𝐹2!

!!

!!!

!

!!!

= ln 𝑆𝑖𝑔𝑛𝑎𝑙!" − ln 𝑆𝐹! − ln 𝑁! − ln
𝑆𝑖𝑡𝑒! !"!#$ ∙ 𝑈2𝐴𝐹2!
𝑘!" + 𝑈2𝐴𝐹2!

!!

!!!

!

!!!

 

(9) 
f is our cost function for maximum likelihood estimation of parameters, which is 
essentially a simple nonlinear least squares fit to the logarithm of the signal. 
Strategies for parameter estimation: In many cases, the parameters of a 
model cannot be unequivocally determined based on the available experimental 
data (“non-identifiability”), because the model contains too many independent 
parameters. An obvious non-identifiability problem can be observed when 
minimizing our objective function (Eq. 9): The normalization factor 𝑁! and scaling 
factor 𝑆𝐹! both enter the formula as a proportional factor, implying that the fitting 
result would be unchanged by simultaneously scaling all 𝑁! 2-fold up, and all 𝑆𝐹! 
2-fold down. To circumvent this problem and to allow for more efficient parameter 
estimation, we ensured identifiability of the scaling and normalization factors by 
considering the following arbitrary “sum-to-zero” constraint during the 
optimization: 

ln(𝑁!)
!

!!!

= 0 
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(10) 
In Eq. 9, there is a dissociation constant parameter (kdi) and a scaling factor 
parameter (SFi) for each of the 795 binding sites, and a normalization factor (Nj) 
for each experimental run, giving rise to a total of 795*2+31=1621 parameters 
that need to be estimated from fitting to 24,645 data points (795 binding sites; 
4 replicates, each with eight or nine U2AF2RRM12 concentrations). We introduced 
two simplification steps, described as I and II below, in order to reduce the 
complexity of the parameter space to 795 parameters (I) and to speed up the 
computation (II). 
 
Simplification I: In Eq. 9, we let 𝑦!"  denote ln(𝑆𝑖𝑔𝑛𝑎𝑙!"), 𝑠𝑓!  denote ln(𝑆𝐹!), 𝑛! 
denote ln(𝑁!), 𝑐!" denote the log-transformed complex concentration of binding 
site i at protein concentration j: ln( !"#$! !"!#$∙[!!!"!!]

!!"![!!!"!!]
). Then, our objective function 

can be written as: 

𝑓 = (𝑦!" − 𝑠𝑓! − 𝑛! − 𝑐!")!
!

!!!

!

!!!

 

and the constraint is 𝑔 = 0, where 

𝑔 = 𝑛!

!

!!!

. 

(11) 

We want to find the maximum likelihood estimates 𝑘!", 𝑠𝑓!, 𝑛!. In the following, we 
will show that only the binding affinities of the 795 binding sites need to be 
estimated by fitting to data, because 𝑠𝑓! and 𝑛! can be directly calculated from 𝑘!",  

Let 𝑐!" = ln( !"#$! !"!#$∙[!!!"!!]
!!"![!!!"!!]

).  Since 

𝜕𝑓
𝜕(𝑠𝑓!)

= −2 𝑦!" − 𝑠𝑓! − 𝑛! − 𝑐!"

!

!!!

, 

the maximum likelihood estimates 𝑠𝑓!, 𝑛!, 𝑐!" must satisfy 

(𝑦!" − 𝑠𝑓! − 𝑛! − 𝑐!")
!

!!!

= 0. 

(12) 
Since 𝑠𝑓! does not depend on j, we can write: 

(𝑦!" − 𝑛! − 𝑐!")
!

!!!

− 𝐽 ∙ 𝑠𝑓! = 0 

 



	 7	

and solve it for 𝑠𝑓!: 

𝑠𝑓! =
1
𝐽 (𝑦!" − 𝑛! − 𝑐!")

!

!!!

 

From the above constraint, we have:  

𝑛!

!

!!!

= 0 

(13) 
then 𝑠𝑓! can be written as:  

𝑠𝑓! =
1
𝐽 (𝑦!" − 𝑐!")

!

!!!

 

(14) 

This demonstrates that 𝑠𝑓! can be directly determined from 𝑘!". 

Similar calculations can be done for 𝑛!. The method of Lagrange multipliers is 
employed in this case as a strategy for finding the local minima of a function 
subject to equality constraints (Eq. 11). Introducing a Lagrange multiplier 𝜆 for the 
constraint (Eq. 13), we seek solutions of 

𝜕𝑓
𝜕(𝑛!)

+ 𝜆 ∙
𝜕𝑔
𝜕 𝑛!

= 0. 

 
Thus, the maximum likelihood estimates must satisfy 

−2 𝑦!" − 𝑠𝑓! − 𝑛! − 𝑐!" + 𝜆 ∙ 1 = 0
!

!!!

. 

(15) 
Since 𝑛! does not depend on i, we can write: 

(𝑦!" − 𝑠𝑓! − 𝑐!")
!

!!!

− 𝐼 ∙ 𝑛! −
𝜆
2 = 0 

and solve it for 𝑛!: 

𝑛! =
1
𝐼 (𝑦!" − 𝑠𝑓! − 𝑐!")

!

!!!

−
𝜆
2  

(16) 
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We can solve for 𝜆 in the above equation by summing both sides of Eq. 15 with 
respect to all j: 

−2 𝑦!" − 𝑠𝑓! − 𝑛! − 𝑐!" + 𝐽 ∙ 𝜆 = 0
!

!!!

!

!!!

 

and hence 

−2 𝑦!" − 𝑠𝑓! − 𝑛! − 𝑐!"

!

!!!

= −𝐽 ∙ 𝜆
!

!!!

 

Together with Eq. 12, we get 

𝜆 = 0 
 
By replacing the 𝜆 in Eq. 16, we get 

𝑛! =
1
𝐼 (𝑦!" − 𝑠𝑓! − 𝑐!")

!

!!!

 

(17) 

This demonstrates that 𝑛!  can be directly determined from 𝑠𝑓!  and 𝑘!" . Thus, 
using Eqs. 14 and 17, the set of parameters to be estimated by fitting can be 
simplified from {SFi, Nj, kdi} to {kdi}.  
Simplification II: Eq. 5 describes the U2AF2RRM12-RNA complex concentration(s) 
as a function of free U2AF2RRM12, with the additional constraint that all 
U2AF2RRM12-containing model species need to sum up to the total U2AF2RRM12 
concentration (Eq. 3). The latter condition reflects the possible competition of 
U2AF2 binding sites for a limiting U2AF2RRM12 concentration. The optimization 
procedure can be greatly speeded up when neglecting this competition and 
assuming that the free U2AF2RRM12 concentration at experimental run j is given 
by the total protein concentration, i.e., 𝑈2𝐴𝐹2! !"!#$

= [𝑈2𝐴𝐹2!] . This 
assumption is justified for the in vitro titration experiments, since the RNA is 
present at a very low concentration of 0.2 nM, implying that only 0.1598 µM 
U2AF2RRM12 will be bound even if all 795 binding sites are fully occupied. Most of 
the U2AF2RRM12 concentrations used in the titration experiments (0.15 to 25 µM) 
largely exceed this level. For the potentially limiting lowest protein concentration 
(0.15 µM), we find little binding to RNA, and therefore apply this simplification 
during the optimization procedure.  
Treatment of low read counts: Our model assumes that the in vitro iCLIP signal 
is proportional to the concentration, scaling factor and normalization factors, but 
this basic proportionality assumption no longer applies if the signals are too low. 
In this case, the read count from sequencing exhibits a probabilistic component, 
as exemplified by the fact that most of the measured signals are 0 at very low 
U2AF2RRM12 concentrations (0.05 µM and below) which were therefore excluded 
from this study. More suitable error models like the Poisson model or negative-
binomial model could be explored to accurately describe this scenario (Bullard et 
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al. 2010). In our fitting procedure, we added a pseudocount of 1 to all signals 
which is negligibly small compared to binding signals at high U2AF2RRM12 
concentrations. This renders zero signals to be manageable by our logarithmic 
model. 
Parameter ranges: All model parameters are by definition non-negative. Thus, a 
log-scale is used in the parameter estimation in order to ensure that parameters 
being potentially different by orders of magnitude are handled with equal 
efficiency by numerical computations. The allowed search space for 
kd parameters is [0.1 µM, 1000 µM], i.e., [-1,3] on a log10-scale. In search for the 
minimum of the objective function (Eq. 9), we used the local optimization 
algorithm lsqnonlin in MATLAB, and tried 100 multi-start optimization with latin-
hypercube sampling from logarithmic space of the parameters, to ensure even 
sampling across all orders of magnitude. The Pearson correlation coefficient 
between model fit and data is 0.78 (p-value < 0.001; Supplemental Fig. S6D).  

4. Parameter uncertainty analysis 

The titration experiments were performed at a limited set of U2AF2RRM12 
concentrations, and even the highest of these concentrations will not be sufficient 
to completely saturate all low-affinity binding sites. Owing to these limitations, it is 
likely that the model fitting to the data may not allow us to precisely estimate all 
binding affinities, scaling factors and normalization factors (“non-identifiability”). 
As described in the following, we applied uncertainty analysis to better 
understand these uncertainties and to assign a confidence interval to each of the 
parameter estimates. 
Parameter uncertainties were assessed using the profile likelihood approach 
(Raue et al. 2009). These likelihood profiles break down the uncertainty 
contained in the high-dimensional likelihood to a footprint in one dimension: Each 
parameter is systematically perturbed around its best-fit value, and fixed to this 
perturbed value, while allowing all remaining parameters to change when refitting 
the model to the data. Using this approach, one obtains a two-dimensional profile 
for each parameter, the profile likelihood, in which the goodness-of-fit (here, it is 
the -2log(likelihood)) is shown as a function of the fixed parameter value. Profile 
likelihood-based confidence interval for each parameter could be calculated 
using the likelihood ratio test at a 95% confidence level (α=0.05, degrees of 
freedom=1) (Raue et al. 2009). 
Three outcomes are feasible when calculating the profile likelihood for a given 
parameter: (i) A profile that is completely flat with no unique minimum implies that 
the parameter confidence interval is infinitely extended in both increasing and 
decreasing directions of the (logarithmic) parameter space. This indicates that 
the parameter is structurally non-identifiable, i.e., that it determines the 
goodness-of-fit only in combination with functionally related parameters. 
(ii) There is a unique minimum on the likelihood profile, but the likelihood-based 
confidence region is infinitely extended in one or both directions of parameter 
space of the fixed parameter. This indicates that the parameter is practically non-
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identifiable, implying that there is not enough experimental data or that the 
experimental noise is too large. (iii) A convex profile, in which the goodness-of-fit 
drastically decreases when the parameter deviates from the best-fit value, 
indicates that the parameter can be well estimated based on the available 
experimental data. In this case, a finite upper and lower bound of the confidence 
interval can be identified. 
We obtained finite confidence intervals for 633 out of 795 parameters, indicating 
that most of the parameters are identifiable based on the available experimental 
data. The confidence interval of the estimated binding affinities (kd) gets larger for 
larger best-fit values of the kd (Fig. 2D). This reflects the expectation that kd can 
no longer be distinguished in Eq. 6 if the binding affinity exceeds the applied 
U2AF2RRM12 concentration. The kd values of the high-affinity and intermediate 
binding sites up to kd < 18 µM were well constrained by the data, as the upper 
and lower boundaries of the confidence intervals on average differed by a factor 
of 5.16. The other kd parameters are practically non-identifiable (according to the 
above definition), because they have only the lower boundary of the confidence 
interval well identified. The unclosed upper boundary is because of lack of 
experimental data at even higher U2AF2RRM12 concentrations which would allow 
these binding sites to go into saturation. 

5. Absence of cooperativity in U2AF2 binding 

Nucleic acid-binding proteins frequently bind nearby target sequences with (anti-) 
cooperativity, i.e., the binding of a protein to the first site strongly enhances 
(reduces) the binding of a second protein to the neighboring binding site. In our in 
vitro assays, we characterized the binding of the truncated U2AF2RRM12 protein to 
RNA. Given that the truncation of the U2AF2RRM12 protein eliminates the RS 
domain as prominent protein-protein interaction interface, we considered 
cooperation of two molecules as unlikely. To support this notion, we compared 
the fitting results of our simple model to the fits of a more complex (anti-
)cooperative binding model. 
In mathematical terms, (anti-)cooperativity was implemented by fitting a Hill 
equation which represents an extension of Eq. 5 to the binding data: 

𝑈2𝐴𝐹2: 𝑆𝑖𝑡𝑒! =
𝑆𝑖𝑡𝑒! !"!#$ ∙ 𝑈2𝐴𝐹2 !

𝑘!" + 𝑈2𝐴𝐹2 !  

For n>1, this equation gives rise to a steep, sigmoidal dose-response curve, 
reflecting cooperativity. During fitting, it was assumed that the Hill coefficient n is 
a fitted parameter that is estimated separately for each binding site (within the 
range of n = [0.5;5]). 
A direct comparison shows that the goodness-of-fit is similar for the two binding 
models (Supplemental Fig. S7C), with the exception of stronger deviations for 
few binding sites (off-diagonal points) for which the model predicts                  
(anti-)cooperative regulation. The total cost function over all binding sites, i.e., the         
-2log(likelihood), is -2Ln=37816 and -2L1=39347 for n≠1 and n=1, respectively. 
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This is consistent with a better goodness-of-fit for the more complex model 
incorporating cooperativity. 
We calculated the Akaike Information Criterion to estimate whether the addition 
of the Hill coefficient as a parameter resulted in a significant improvement, or 
merely reflected an overfitting of the data (model selection problem). In support 
of the one-step model, we find that (AIC)n > (AIC)1 (or specifically Δ(AIC)= -2Ln-(-
2L1)+2*799=66.6), i.e., there is no obvious improvement by introducing new 
parameters n. Taken together, this suggests that a simple one-step model is 
sufficient to describe the data with an accuracy close to measurement noise, 
whereas the cooperative model yields no significant further improvement, except 
for very few binding sites. 

II. Model-based analysis of in vivo binding landscapes 
The intrinsic binding behavior of recombinant U2AF2RRM12 in ‘in vitro iCLIP’ 
showed no specific enrichment of high-affinity binding at 3' splice sites (Fig. 2G). 
In contrast, we found U2AF2 to be enriched at these sites when performing in 
vivo iCLIP measurements from living cells (Fig. 1E). This suggests that U2AF2 
binding is modulated in vivo by auxiliary RNA-binding proteins (RBPs) 
recognizing sequence elements nearby the 3' splice site. 
We employed our in vitro binding model to systematically identify differences 
between the in vitro and in vivo binding landscapes. We restricted these analyses 
to the nine in vitro transcripts that are derived from protein-coding genes and 
display well-defined splicing patterns in vivo, corresponding to 571 binding sites. 
Specifically, we asked for which binding sites we can assume the binding affinity 
to be unchanged, and where we have to assume additional regulation in vivo. To 
this end, we searched for the best overlap by fitting the in vitro model to the in 
vivo iCLIP landscape under the assumption that the in vitro binding affinities 
continue to hold, whereas the RNA and protein concentrations can be different in 
vivo. This in vivo modeling approach is described in more detail below. 

1. Model extension and fitting to in vivo iCLIP landscapes 

The model describing in vivo U2AF2 binding essentially corresponds to the in 
vitro model, as U2AF2-RNA binding and the iCLIP signals are still described by 
Eqs. 5 and 6, respectively. Some biophysical parameters such as the intrinsic 
U2AF2 binding affinity for RNA and the crosslinking efficiency at each binding 
site are assumed to be the same in vitro and in vivo. Furthermore, the same set 
of transcripts (and thus binding sites) is analyzed. 
However, there are also several differences between the in vitro and in vivo 
situations: 

a) The U2AF2 protein and transcript concentrations in living cells are not 
known. Furthermore, the transcripts are spliced and degraded in living 
cells, and each intron may be turned over with a different half-life. Thus, 
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different parts of the transcripts (i.e., sets of neighboring binding sites) 
may have different concentrations in living cells. 

b) Living cells do not only contain the eleven tested transcripts, but a large 
number of additional binding sites in the transcriptome that may sequester 
U2AF2. Analytical calculations demonstrated that the presence of such 
additional binding sites only affects the free U2AF2 concentration that 
diffuses in the cell, but does not affect the general structure of the simple 
binding model in Eq. 5 (not shown). We therefore continued to use this 
model in vivo. 

Considering all the above points, the in vivo binding signal is a modification of 
Eq. 6 and given by: 

𝑆𝑖𝑔𝑛𝑎𝑙!,!"#!#$ = 𝑆𝐹! ∙ 𝑁!"#!#$ ∙
𝑆𝑖𝑡𝑒!,!"#$%" !"!#$ ∙ [𝑈2𝐴𝐹2!"#!#$]

𝑘!" + [𝑈2𝐴𝐹2!"#!#$]
∙ 𝑒!!!,!"#!!" 

(18) 
Each of the three in vivo iCLIP replicates is normalized by the median over all 
signals in the respective replicate. Therefore, the three replicates will get the 
same in vivo normalization factor (Ninvivo) as in Eq. 18. Since this normalization 
factor enters Eq. 18 as an overall proportionality factor, it also introduces 
“structural non-identifiability” (a change in Ninvivo could be compensated by a 
change in all [Sitei,intron]total). To address this problem, we lumped the product of 
Ninvivo and [Sitei,intron]total into one identifiable parameter (𝑆𝑖𝑡𝑒!,!"#$,!"#$%" ), and 
obtain 
 

𝑆𝑖𝑔𝑛𝑎𝑙!,!"#!#$ = 𝑆𝐹! ∙
𝑆𝑖𝑡𝑒!,!"#$,!"#$%" ∙ [𝑈2𝐴𝐹2!"#!#$]

𝑘!" + [𝑈2𝐴𝐹2!"#!#$]
∙ 𝑒!!!,!"#!#$ 

(19) 
The parameters common to the in vitro and in vivo situation (SFi, kdi) were 
estimated from the previously described fitting to the in vitro iCLIP titration 
experiments (Section I.3), and were fixed to these values. The remaining 
parameter values were determined by fitting Eq. 19 to the in vivo iCLIP signals 
using a maximum likelihood approach and a local multi-start optimization strategy 
(see above). In contrast to the in vitro model fitting, we did not assume the free 
pool of U2AF2 to be present in excess over the transcripts, and hence allowed 
for protein sequestration effects between the binding sites.  
We restricted the following analyses to the nine in vitro transcripts (excluding 
MALAT1 and MIRLET7A2) that are derived from protein-coding genes and 
display well-defined splicing patterns in vivo. The nine in vitro transcripts contain 
571 U2AF2 binding sites on 29 introns that were used for fitting. The remaining 
free parameters are the free U2AF2 protein concentration ([U2AF2invivo]), 29 
lumped binding site concentrations (𝑆𝑖𝑡𝑒!,!"#$,!"#$%") - each corresponding to one 
intron, and the in vivo noise factor (σ). During fitting, the free U2AF2 protein 
concentration was allowed to vary on a range of 0.01 – 1000 µM, and the lumped 
binding site concentration between 10-2 - 106 µM.  
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A profile likelihood analysis showed that the fitted parameters could be well 
identified from the available experimental data. Furthermore, the best-fit 
parameters are physiologically reasonable: For instance, the concentration of the 
free (unbound) U2AF2 level in vivo (~11 µM) is only slightly above the total 
U2AF2 concentration reported for NIH3T3 cells (~7 µM) (Schwanhӓusser et al. 
2011).  

2. Identification of regulatory hotspots in vivo  

The fitting procedure described above yielded the maximal overlap between in 
vitro and in vivo binding behaviors that can be obtained by arbitrarily choosing 
the RNA and protein concentrations, while fixing the U2AF2-RNA binding 
affinities. This overlap generates hypotheses at which binding sites U2AF2 
binding is regulated in vivo beyond simple RNA sequence recognition. In order to 
identify these regulatory hotspots, we needed to quantify at which binding sites 
the “expected in vivo signal” given by the model fit differs from the in vivo 
measurement. 
We quantified this difference for binding site i and normalized it to the 
experimental variation to obtain a z-score: 
 

𝑧! =
ln(𝑆𝑖𝑔𝑛𝑎𝑙!,!"#!#$)− ln(𝑆𝑖𝑔𝑛𝑎𝑙!,!"#$%)

𝜎!"#!#$
 

(20) 
Here, σinvivo is the relative (log-constant) error estimated as the standard 
deviation of the three in vivo iCLIP replicates. We called binding sites as 
regulatory hotspots if the difference between model fit and experiment was 
bigger than the experimental variation (|zi| > 1). The sign of the z-score indicates 
whether a binding site showed higher or lower binding affinity in vivo when 
compared to the in vitro situation (z > 1 and z < -1, respectively). 
Based on this strategy, we estimated 57% (324 out of 571) of the binding sites to 
be regulated in vivo, with 26% (151) and 30% (173) being stabilized and cleared, 
respectively. The distribution of z-scores is symmetric around z = 0. Most 3’ 
splice sites show enhanced binding in vivo, whereas the z-scores are 
symmetrically distributed for intronic sites (Supplemental Fig. S3A). We 
validated the set of predicted regulatory hotspots using a step-wise fitting 
approach described in the following. 
Step-wise fitting approach: We asked whether the assumption that dissociation 
constants are identical between in vitro and in vivo may be too stringent, possibly 
introducing a bias in the identification of regulatory hotspots. Therefore, we 
implemented a more realistic fitting approach in which subsets of the kdi values 
were allowed to change during fitting the in vivo landscape. These changes 
reflect that auxiliary RBPs acting in vivo will affect the apparent U2AF2 binding 
affinity at some sites, thereby also influencing the fitting result. 
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To this end, we employed a step-wise, greedy hill-climbing approach, in which 
the model was repeatedly fitted to the in vivo binding landscape, while allowing 
an increasing number of kdi values to be distinct from their in vitro-derived 
estimate. The fitting sequence started with the above-mentioned fit, where all kdi 
values corresponded to the in vitro estimates. At each subsequent iteration, we 
additionally allowed the affinity of the binding site that had the greatest z-score in 
the previous iteration (i.e., was most different from the in vivo signal) to have a kdi 
that deviates from its in vitro value. In this way, additional degrees of freedom 
allowed the model fit to improve in a step-wise manner, and the distance 
measurement (z-score) was recalculated adaptively in each iteration. The 
procedure was terminated if the model exhibited too many degrees of freedom 
and overfitted the data according to the Bayesian Information Criterion (BIC). The 
list of in vivo regulated binding sites retrieved from this approach strongly 
overlapped with the set from the simpler approach (see above), especially for the 
100 top-ranked binding sites (Supplemental Fig. S6E), suggesting that our 
predictions of in vivo regulated binding sites are robust. 
	



 
Supplemental methods 
Preparation of recombinant proteins  

6xHis-tagged U2AF2RRM12, full-length U2AF2 and hnRNPC1 recombinant 
constructs were overexpressed in a Escherichia coli BL21-CodonPlus(DE3)-RIL 
strain under IPTG induction for 3-4 hours (h). The recombinant proteins were 
then purified with affinity purification by using Ni Sepharose 6 Fast Flow (GE 
Healthcare). Eluted recombinant proteins were concentrated in binding buffer 
(10 mM HEPES pH 7.2, 100 mM KCl, 3 mM MgCl2, 5% glycerol, 1 mM DTT) with 
Spin-X UF 500 5K MWCO columns (Corning). Additional purification with size 
selection chromatography was applied for the recombinant full-length U2AF2 and 
hnRNPC1 protein preparation to achieve higher purity. Recombinant FLAG-
tagged PTBP1 expressed and purified from mammalian cells was obtained from 
Kelifa Arab (Heidelberg University). For the co-factor experiments, all GST-
tagged recombinant RBPs except hnRNPC1 and PTBP1 (CELF6, ELAVL1, 
FUBP1, KHDRBS1, MBNL1, PCBP1, RBM24, RBM41 and SNRPA) were 
purchased from Abnova as in vitro translation products (Supplemental Fig. S4). 
We noted that the preparations for PTBP1, RBM41, RBM24, PCBP1 and SNRPA 
showed small amounts of additional minor bands which could potentially impact 
on the in vitro iCLIP co-factor assays. 

Preparation of in vitro transcripts 

In total, eleven different in vitro transcripts were used for the in vitro iCLIP 
experiments (Supplemental Table S1). The transcripts were chosen to harbor a 
diverse set of constitute and alternative exons as well as to show high coverage 
with U2AF2 in vivo iCLIP reads which facilitated comparative in vitro – in vivo 
analysis. Briefly, vectors harboring genes for the transcript set were in vitro 
transcribed by using Riboprobe System-T7 (Promega) according to the 
manufacturer’s instructions. The in vitro transcripts were then treated with 
TURBO DNase (Ambion) and purified with the RNeasy MinElute Cleanup Kit 
(Qiagen). Concentrations of each purified transcript were determined with a 
NanoDrop 2000 system to estimate the required volume for making the stock of 
the equimolar in vitro transcript mix.  

in vivo iCLIP library preparation and sequencing 

in vivo iCLIP libraries were prepared from HeLa cells under U2AF2 KD and wild-
type conditions according to the previously published protocol (Huppertz et al. 
2014; Sutandy et al. 2016). HeLa cells were obtained from ATCC (number: CCL-
2). For immunoprecipitation, we used 7.5 µg monoclonal anti-U2AF2 antibody 
produced in mouse (Sigma cat. no. U4758) per sample. Each condition was done 
in triplicates. The libraries were sequenced as single-end reads on an Illumina 
HiSeq 2500 and an NextSeq 500 sequencing system. An overview of the in vivo 
iCLIP libraries is given in Supplemental Table S7. 
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In vitro iCLIP library preparation and sequencing 

The in vitro iCLIP protocol was developed by modifying the early steps of the 
standard iCLIP protocol (Huppertz et al. 2014; Sutandy et al. 2016). Briefly, 
beads were prepared by twice washing 40 µl of protein-G Dynabeads per sample 
with dilution buffer (50 mM Tris-HCl pH 7.4, 100 mM NaCl, 1% Igepal CA-630, 
0.1% SDS, 0.5% sodium deoxycholate; corresponding to the lysis buffer in the in 
vivo iCLIP protocol). After the second wash, 40 µl dilution buffer was added to 
resuspend the beads and followed by mixing with 3 µg anti-U2AF2 antibody. The 
beads were rotated at room temperature for 30-60 minutes (min). One-time high-
salt buffer (50 mM Tris-HCl pH 7.4, 1 M NaCl, 1 mM EDTA, 1% Igepal CA-630, 
0.1% SDS, 0.5% sodium deoxycholate) and twice dilution buffer washes were 
applied to wash the beads before proceeding with immunoprecipitation. 
The in vitro transcripts were preheated for 5 min at 70°C to reduce large-scale 
RNA secondary structures. Titrated concentrations of U2AF2RRM12 (150 nM, 
250 nM, 450 nM, 750 nM, 1.5 µM, 3 µM, 5 µM, 15 µM) and 2.2 nM in vitro 
transcript mix (eleven transcripts) were used for the Kd measurements. For the 
initial hnRNPC1 titration experiment, 1 µM U2AF2RRM12 was mixed with 6.75 nM 
in vitro transcript mix (nine transcripts; excluding MALAT1 and MIRLET7A2) and 
different concentrations of recombinant hnRNPC1 (200 nM, 500 nM, and 1 µM) 
in binding buffer. For the co-factor experiments, 500 nM U2AF2RRM12 was mixed 
with 6.75 nM in vitro transcript mix (nine transcripts) and different concentrations 
of eleven recombinant RBPs in binding buffer. In addition, 500 nM BSA was 
added to 500 nM U2AF2RRM12 and 6.75 nM in vitro transcript mix as a control. 
Moreover, to test the linearity between input material and output of the in vitro 
iCLIP experiment, five different dilutions (1x, 2x, 4x, 8x and 16x) of a mixture of 
2.5 µM U2AF2RRM12 and 6.75 nM in vitro transcripts (nine transcripts) were 
prepared. 
All in vitro mixtures were incubated for 10 min at 37°C. After the incubation, the 
mixtures were placed on a parafilm-coated plate on top of an ice plate and UV-
irradiated with 5 mJ/cm2 250 nm UV wavelength (Stratalinker 2400). Since only a 
minor fraction of the overall interactions (<5%) are expected to be crosslinked 
during this time, the irradiation should not dramatically shift the binding 
equilibrium. The irradiated in vitro mixtures were pooled back to the tubes, and 
dilution buffer was added to fill the samples to a volume of 1 ml. To normalize the 
final in vitro iCLIP libraries, 10 µl crosslinked mixture containing 250 nM 
U2AF2RRM12 and 6 nM NUP133 in vitro transcript was spiked in to each sample. 
Partial RNase digestion was performed by adding 10 µl of 1:1500 diluted RNase I 
(Ambion) to each sample. In addition, 2 µl TURBO DNase was added to each 
sample to avoid DNA contamination. The sample mixtures were incubated for 
3 min at 37°C, added to the prepared beads and incubated for 2 h at 4°C. Beads 
were washed twice with high-salt buffer and twice with wash buffer (20 mM Tris-
HCl pH 7.4, 10 mM MgCl2, 0.2% Tween-20).  
Henceforth, we followed the steps of the standard iCLIP protocol. Briefly, 3' end 
RNA dephosphorylation was performed by resuspending the beads in 20 µl of a 
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mixture containing 4 µl 5x PNK buffer (350 mM Tris-HCl pH 6.5, 50 mM MgCl2, 
5 mM DTT), 0.5 µl PNK (NEB), 0.5 µl RNasin Ribonuclease Inhibitor (Promega), 
and 15 µl water, followed by incubation for 20 min at 37°C. The beads were 
washed once with wash buffer, once with high-salt buffer and twice with wash 
buffer. 
For the linker ligation, pre-adenylated L3 linker (5’-App-
AGATCGGAAGAGCGGTTCAG-dideoxycytidine-3') was ligated by resuspending 
the beads in the ligation mixture containing 5 µl 4x ligation buffer (200 mM Tris-
HCl pH 7.8, 40 mM MgCl2, 4 mM DTT), 1 µl T4 RNA ligase (NEB), 0.5 µl RNasin, 
1.5 µl pre-adenylated L3 linker (20 µM), 4 µl PEG400, and 8 µl water. The 
samples were incubated at 16°C overnight. The next day, the samples were 
washed twice with high-salt buffer and twice with wash buffer.  
Interacting RNAs were radioactively labeled by resuspending the beads in hot 
PNK mix (0.2 µl PNK [NEB], 0.4 µl 10x PNK buffer [NEB], 0.4 µl 32P-γ-ATP, and 
3 µl water). The beads were incubated at 1,100 rpm for 5 min at 37°C. 
Supernatants were removed and the beads were boiled in 20 µl 1x NuPAGE 
loading buffer (Invitrogen) for 5 min at 70°C. Boiled beads were placed on a 
magnetic rack. The supernatants were then loaded into the 4-12% NuPAGE Bis-
Tris gel (Invitrogen) and run in 1x MOPS buffer for 50 min at 180 V. Protein-RNA 
complexes from the gel were transferred to a nitrocellulose membrane for 1 h at 
30 V. 
To extract the interacting RNAs, the membrane was cut into pieces and digested 
with 10 µl proteinase K (Roche) in 200 µl PK buffer (100 mM Tris-HCl pH 7.4, 
50 mM NaCl, 10 mM EDTA) for 20 min at 37°C. Another 200 µl PK buffer 
containing 7 M urea were added for further 20 min incubation at 37°C. The RNA-
containing mixtures were transferred to Phase Lock Gel Heavy tubes and mixed 
with 400 µl phenol/chloroform by shaking with 1,100 rpm for 5 min at 30°C. RNAs 
were extracted by centrifugation for 5 min at 16,000 xg to separate the phases 
followed by transferring the top aqueous phase containing RNAs to new tubes. 
The samples were then mixed with 0.75 µl GlycoBlue (Ambion), 40 µl 3 M 
sodium acetate pH 5.5 and 1 ml ethanol absolute, and incubated overnight at      
-20°C. To precipitate the RNAs, the samples were centrifuged with 21,000 xg for 
20 min at 4°C, washed with 80% ethanol and resuspended in 5 µl water. 
cDNA synthesis was performed by adding 1 µl dNTP mix and 1 µl RT primers 
containing different barcode sequences to each sample (Supplemental 
Table S7), and incubating them for 5 min at 70°C. The reaction was started by 
adding RT mixture (4 µl 5x RT buffer [Invitrogen], 1 µl 0.1 M DTT, 0.5 µl RNasin, 
0.5 µl Superscript III [Invitrogen], 7 µl water) to the samples and incubating them 
for 5 min at 25°C, 20 min at 42°C, 40 min at 50°C, 5 min at 80°C, and hold at 4°C. 
To hydrolyze hot RNA templates, 1.65 µl 1 M NaOH was added, followed by 
20 min incubation at 98°C. After the incubation, 20 µl 1 M HEPES-NaOH was 
added to neutralize the samples’ pH. The cDNA libraries were mixed with 0.75 µl 
GlycoBlue, 40 µl 3 M sodium acetate pH 5.5 and 1 ml ethanol absolute, and 
incubated overnight at -20°C. The next day, the cDNA libraries were precipitated 
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by spinning the samples with 21,000 xg for 20 min at 4°C, washing with 
80% ethanol, and resuspension in 6 µl water. 
cDNA libraries were mixed with 6 µl 2x TBE-urea loading buffer (Invitrogen), 
heated for 5 min at 80°C, and then loaded and run in a 6% TBE-urea gel for 
40 min at 180 V. DNA low molecular weight size marker (NEB) was used as the 
ladder. The libraries were size-selected by cutting out the gel within the range of 
80-100 nt based on the ladder. Each piece of the gel was then crushed into 
smaller pieces and mixed with 400 µl diffusion buffer (0.5 M ammonium acetate, 
10 mM magnesium acetate, 1 mM EDTA, 0.1% SDS). The mixtures were 
incubated for 30 min at 50°C, and moved to a Costar SpinX column (Corning) 
prepared with two 1 cm glass pre-filters (Whatman). To extract the cDNA libraries, 
the mixtures were spun at 16,000 xg for 5 min, and the eluates were added 
together with 400 µl phenol/chloroform into a Phase Lock Gel Heavy tube. The 
samples were incubated for 5 min at 30°C, and spun at 16,000 xg for 5 min to 
separate the phases. The aqueous top layers containing the libraries were 
moved to new tubes, mixed with 1 µl GlycoBlue, 40 µl 3 M sodium acetate pH 5.5 
and 1 ml ethanol absolute, and then stored at -20°C overnight. 
For circularization, libraries were centrifuged with 21,000 xg for 20 min at 4°C, 
washed with 80% ethanol, and resuspended in 8 µl ligation mixture (0.8 µl 10x 
CircLigase buffer II [Epicentre], 0.4 µl 50 mM MnCl2, 0.3 µl CircLigase II 
[Epicentre], 6.5 µl water). The libraries were transferred into PCR tubes and 
incubated for 1 h at 60°C. To re-linearize the libraries, 30 µl oligo annealing mix 
containing 3 µl FastDigest buffer (Thermo Fischer), 1 µl 10 µM cut_oligo (5’-
GTTCAGGATCCACGACGACGACGCTCTTCaaaa-3'), and 26 µl water were 
added. The annealing program was performed by running the samples in 
successive cycles of 20 seconds from 95°C to 25°C with decreasing the 
temperature by 1°C in each cycle. After the end of the program, 2 µl of BamHI 
was added to each sample followed by incubation for 30 min at 37°C and heat 
inactivation for 5 min at 80°C. The samples were mixed with 350 µl TE, 0.75 µl 
GlycoBlue, 40 µl 3 M sodium acetate pH 5.5 and 1 ml ethanol absolute, and then 
precipitated overnight at -20°C. The next day, the libraries were extracted by 
spinning the samples with 21,000 xg for 20 min at 4°C, washing with 
80% ethanol, and resuspension in 20 µl water. 
The libraries were amplified by mixing the cDNA libraries in a PCR reaction 
containing 0.5 µM P3/P5 Solexa primers mix and 1x Accuprime Supermix 1 
enzyme (Invitrogen). The PCR mixes were run with a program comprising a 
2 min denaturation step at 94°C, 17-25 cycles of 15 seconds at 94°C, 
30 seconds at 65°C and 30 seconds at 68°C, and a final elongation step for 
3 min at 68°C. Several pre-PCR steps were performed to estimate the minimal 
number of cycles that is necessary to amplify the libraries. The amplified libraries 
were pooled together by purification with the MinElute PCR purification kit 
(Qiagen). The purified libraries were size-selected with LabChip XT DNA 300 kit 
(Perkin Elmer) to remove residual P3/P5 Solexa primers. The final libraries were 
quantified with the Qubit dsDNA HS assay kit (Invitrogen) and sequenced as 



	 19	

single-end reads on an Illumina MiSeq sequencing system. An overview of the in 
vitro iCLIP libraries is given in Supplemental Table S7. 

Initial processing and genomic mapping of iCLIP sequencing reads 

Basic quality checks were applied to all sequenced reads using FastQC  
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Afterwards, iCLIP 
reads were filtered based on sequencing quality (Phred score) in the barcode 
region. Only reads with at most one position with a Phred score < 20 in the 
experimental barcode (positions 4 to 7) and without any position with a Phred 
score < 17 in the random barcode (positions 1 to 3 and 8 to 9) were kept for 
further analysis. The reads were then de-multiplexed based on the experimental 
barcode at positions 4 to 7 using Flexbar (version 2.4) without allowing 
mismatches (Dodt et al. 2012). 

The following analysis steps were applied to all individual samples: Remaining 
adapter sequences were trimmed from the read ends using Flexbar (version 2.4) 
allowing one mismatch in 10 nt, requiring a minimal overlap of 1 nt between read 
and adapter as well as removing all reads with a remaining length of less than 
24 nt (including the 9-nt barcode). After adapter trimming, quality checks were 
repeated on individual samples using FastQC. Afterwards, the first 9-nt of each 
read containing the barcode were trimmed off and added to the header of the 
read in the fastq file, such that the information is kept for downstream analysis. 

Filtered and trimmed reads were mapped to the human genome (hg19/GRCh37) 
and its annotation (GENCODE release 19) (Harrow et al. 2012) using STAR 
(version 2.4.0h) (Dobin et al. 2013). Since the new genome version (GRCh38) 
was reported to only moderately improve the average mapping rate (0.0017%) 
(Guo et al. 2017), we do not anticipate an impact on the results. When running 
STAR, up to two mismatches were allowed, soft-clipping was prohibited and only 
uniquely mapped, unspliced reads were kept for further analysis. Unspliced 
reads were defined as reads mapping without N-stretches longer than 5 in the 
CIGAR string. The nucleotide position upstream of each aligned read was 
considered as the ‘crosslink nucleotide’, with each read counted as individual 
‘crosslink event’. The total number of reads for all in vitro and in vivo iCLIP 
libraries can be found in Supplemental Table S7. 
After mapping and filtering, duplicate reads were marked in selected samples 
using the dedup function from bamUtil (version 1.0.7), which defines duplicates 
as reads whose 5' ends map to the same position in the genome 
(https://github.com/statgen/bamUtil). We then removed all marked duplicates with 
an identical random barcode representing technical duplicates, while biological 
duplicates with different random barcodes were kept. 

Samtools (Li et al. 2009) was used to sort and index the resulting bam files. 
Based on the bam files, bedgraph files were created, considering only the 
position upstream of the 5' mapping position of the read. bedgraph files were 
then transformed to bigWig format using bedGraphToBigWig of the UCSC tool 
suite (Kent et al. 2010). 
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iCLIP peak calling on in vitro transcripts 

In order to comprehensively identify all U2AF2 binding sites within the eleven in 
vitro transcripts, peaks were called on combined in vitro and in vivo iCLIP data: 
From the in vitro iCLIP data, the experiment with 3000 nM U2AF2RRM12 was taken 
as representative in vitro condition (libraries no. 39-42; Supplemental Table S7). 
For in vivo iCLIP, we used two previously published datasets from untreated and 
mock transformed HeLa cells (Zarnack et al. 2013) plus a newly produced 
dataset (libraries no. 1-3; Supplemental Table S7; replicates were summed up). 
Peak calling was performed on iCLIP counts, i.e., crosslink events per crosslink 
nucleotide (corresponding to the position upstream of each read start as decribed 
above). In order to restrict the analyses to pre-mRNAs, only reads mapping in a 
unspliced manner were taken into account. Due to the high sequencing depth of 
the in vitro iCLIP experiments, we omitted duplicate removal since the number of 
possible random barcodes runs into exhaustion. 
For merging in vivo and in vitro iCLIP data, data were first normalized for each 
replicate/dataset, then separately combined within in vitro and in vivo and finally 
summed up as follows: In order to account for differences in sequencing depth, 
the data within each sample were normalized per intron and transcript by the 
85% quantile of the nucleotide-wise signal. For introns shorter than 100 nt, the 
median of 85% quantiles of all other introns in the same transcript was taken. 
The nucleotide-wise median was taken as summary statistics within the four in 
vitro replicates as well as within the three in vivo datasets, and subsequently 
summed up to combine in vivo and in vitro data. Peaks were then called on the 
summed normalized in vitro and in vivo iCLIP counts in a sequential manner 
using a window-based approach: We iteratively identified the 9-nt peak window 
with the highest cumulative signal. Peaks were separated by at least 1 nt and 
called exhaustively, until no further peak of width 9 nt could be placed. 
In order to retain only relevant peaks, we assessed their iCLIP count enrichment 
over a uniform background distribution per intron and transcript. The background 
signal was calculated by randomly distributing the same number of crosslink 
events across the respective region. Only those peaks were kept which 
exceeded the uniform background distribution per intron and transcript in at least 
3 out of 4 in vitro and all 3 in vivo experiments. This procedure yielded a total of 
795 binding sites (Supplemental Table S2).  
These and all following computations were done with R version 3.3.1 (R Core 
Team 2016). 

Peak calling on in vivo iCLIP data 

For the 4-mer comparison (Fig. 1D), we identified all U2AF2 binding sites in the 
in vivo iCLIP dataset with the highest sequencing depth (library no. 3, 
Supplemental Table S7). Peak calling was done on merged replicates using 
ASPeak (Kucukural et al. 2013), taking only non-spliced reads after duplicate 
removal and restricted to annotated introns. Gencode v19 (Harrow et al. 2012) 
was used as annotation, considering only entries with ‘support level 3’ and gene-
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type/transcript-type ‘protein-coding’. The predicted peaks were centered on the 
position at which half of the total peak signal is reached and then extended to 
9 nt. Overlapping peaks were merged and newly centered on the position with 
the half maximum signal. This procedure yielded a total of 406,671 in vivo U2AF2 
binding sites. For the GraphProt analysis, we repeated the ASPeak procedure on 
the combination of all three in vivo U2AF2 iCLIP datasets yielding a total 458,942 
U2AF2 binding sites. 
Using the same approach, we identified a total of 82,127 hnRNPC binding sites 
from merged replicates of previously published in vivo iCLIP data from HeLa cells 
(Harrow et al. 2012). Within the region of the in vitro transcripts, 126 U2AF2RRM12 
binding sites overlap with in vivo hnRNPC binding sites (Fig. 4C). 

RNA sequence composition at U2AF2 binding sites 

In order to compare the RNA sequence composition at U2AF2 binding sites, we 
counted all 4-mers in the 9-nt peak region. In order to not provide advantage for 
simple motifs such as homopolymer runs, identical 4-mers within the same 
binding site were counted twice at most. We considered all 795 binding sites 
within the region of the eleven in vitro transcripts and compared these to the top 
100,000 peaks with highest iCLIP count in the in vivo iCLIP dataset with the 
highest sequencing depth (library no. 3; Supplemental Table S7). Relative       
4-mer frequencies are depicted in Fig. 1D. 
For Fig. 2F, the occurrence of pyrimidine-rich motifs within the 9-nt peak region 
of the 795 U2AF2 binding sites within the eleven in vitro transcripts was screened 
in the following decreasing hierarchy: TTTT-TTTT, TTTT-YYYY, YYYY-YYYY, 
TTTT-YYYR, YYYY-YYYR, TTTT-NNNN, YYYY-NNNN and NNNN-NNNN. The 
order of the two half-sites within each motif is commutative, i.e. TTTT-YYYY and 
YYYY-TTTT are assigned to the same motif class. Y refers to T or C, YYYR to 
exactly one A or G at any position among otherwise just Y. NNNN refers to at 
least two A or G. 

Calculation of binding site accessibility 

RNAplfold (Bernhart et al. 2006) was used to compute local sequence 
accessibility considering potential mid-range interactions (W = 240, L = 160). The 
underlying idea is that the most likely secondary structure formed by a stretch of 
RNA is of less importance than its accessibility derived from the ensemble of 
structures which this RNA stretch can form. In order to determine accessibility, 
RNAplfold splits a sequence into windows of defined size (W) and searches for 
base pairs within this window with a maximum span between the bases (L). This 
allows to efficiently scan large sequences for their base-pair probabilities which 
yields the nucleotide-wise accessibility profile of the scanned sequence. The 
probability value for each binding site to be unpaired was then calculated as the 
mean of nucleotide-wise probabilities across the 9-nt peak region. We observe 
that the majority of U2AF2 binding sites have a low probability of being unpaired. 
Binding sites with a probability of being unpaired greater/smaller than the 
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75% quantile of the probability distribution (0.15) were classified as 
accessible/unaccessible. According to this classification, 596 U2AF2 binding 
sites are unaccessible, and 199 accessible (Fig. 2F). 

Assignment of U2AF2 binding sites to transcript regions 

Transcript regions were defined as follows: (i) The 5' splice site comprises the 
first 40 nt at the 5’ end of each intron. (ii) For defining the extent of the 3' splice 
site, we scanned for the boundaries of the polyprimidine tract (Py-tract). To this 
end, a 39-nt region upstream of the AG dinucleotide at the 3' splice site was 
screened by means of sliding windows (width 5-30 nt), to identify the window with 
the highest Py-tract strength. The Py-tract strength of each window was 
calculated as the Χ!  test statistic with 1 degree of freedom, comparing the 
observed number of pyrimidines with the expected number based on the 
assumption of uniform nucleotide distribution. Additionally, candidate Py-tracts 
were required to end within 10 nt upstream of the AG dinucleotide. Using this 
approach, the median length of identified Py-tracts is 17 nt. Together, the 
maximum achievable length of the 3' splice site region was thus 41 nt, consisting 
of 2 nt (AG) + 9 nt (max. allowed distance to AG) + 30 nt (max. allowed width of 
Py-tract). The median length of identified 3' splice site regions (start of Py-tract to 
end of intron) was 21 nt. This is in agreement with a recent report showing that 
90% of all human branch points occur within 39 nt upstream of the 3' splice site 
(Mercer et al. 2015). (iii) The remainder of the intron body was considered as 
‘intronic’. 
For calculating the distribution of in vivo and in vitro iCLIP signal across transcript 
regions in the eleven in vitro transcripts (Fig. 1E), only introns longer than 85 nt 
were considered (40 nt and 21 nt 5' splice site and average 3' splice site length, 
respective, leaving 24 nt for the intervening intron). In addition, we only used 
‘complete’ introns of which both the 5' and the 3' splice site were contained within 
the in vitro transcript boundaries, leaving 17 introns in total. The iCLIP signal 
distribution was calculated as the number of normalized iCLIP reads per intron 
and transcript scaled by the width of the underlying transcript region. 
In order to investigate the genome-wide distribution of in vivo U2AF2 iCLIP signal 
upon partial U2AF2 knockdown (Fig. 3D), we used Gencode v19 (Harrow et al. 
2012) annotation as described above. For this analysis, introns overlapping with 
exonic or UTR sequences as well as introns shorter than 100 nt were removed, 
resulting in a final number of 169,872 introns. Replicates from control and partial 
U2AF2 knockdown conditions were summed up, and signal distribution was 
calculated as for Fig. 1E. Read numbers can be found in Supplemental 
Table S7. 

Prediction of branch point motifs 

For the analysis of branch point locations, only introns were considered which 
had their 3' splice site within the boundaries of the nine protein-coding in vitro 
transcripts (26 introns harboring 496 of 571 U2AF2 binding sites). Prediction of 
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branch points was done using SVM-BP finder requiring a support vector machine 
score > 0 (Corvelo et al. 2010). 25 out of 26 introns were predicted to host at 
least one predicted branch point. Intronic U2AF2 binding sites were considered 
to be associated with a branch point if the distance to the next upstream branch 
point is smaller than the 75% quantile (24 nt) of distances of U2AF2 binding sites 
at 3' splice sites to their closest upstream branch point. Based on this definition, 
Fig. 3F includes 55 U2AF2 binding sites at 3' splice sites and 230/191 intronic 
U2AF2 binding sites with\without upstream branch point, respectively. 

Kd measurements by MST and ITC 

For the microscale thermophoresis (MST) experiment (Figs. 2E, S2D), RNA 
oligonucleotides were selected based on the in vitro iCLIP binding landscape. 
Each selected RNA oligonucleotides contained a U2AF2 binding site plus a few 
nucleotides upstream and downstream of the corresponding site (sequences in 
Supplemental Table S3). 5’-Cy5-labeled RNA oligonucleotides were chemically 
synthesized from IDT. Briefly, 5’-Cy5-labeled RNA oligonucleotides were mixed 
to obtain a final reaction containing 150 nM RNA and titrated concentrations of 
recombinant U2AF2RRM12 in MST buffer (50 mM Tris-HCl, 150 mM NaCl, 10 mM 
MgCl2, 0,05% Tween-20). Each mixture was loaded into an MST capillary. The 
Kd measurements were then performed with Monolith NT.115 (NanoTemper 
Technologies) at room temperature according to manufacturer’s instructions and 
fitted with a Hill equation (Goutelle et al. 2008). For each RNA oligonucleotide, 
the measurements were done in triplicate. 
Isothermal titration calorimetry (ITC; Supplemental Fig. S2C,D) was performed 
using MicroCal PEAQ-ITC (Microcal) at 25°C. Briefly, 300 µl 20 µM U2AF2RRM12 
protein sample (20 mM sodium phosphate, pH 6.5, 50 mM NaCl) in the ITC cell 
was titrated with 50 µl of 100/100/150/200 µM OR1, 200/200/200 µM OR2, 
200/400 µM OR4, 250/300 µM OR5, 200/250 µM OR6, 150/200 µM OR7, and 
115/115/130 µM OR8 RNA (IBA) in the same buffer (Supplemental Table S3). 
The data was further analyzed using Origin v5.0 from Microcal.  

Random Forests analysis 

Random Forests (RF) machine learning (Breiman 2001) was used as a 
classification tool to learn whether a binding site is cleared in vivo (z-score < -1) 
or stabilized in vivo (z-score > 1). Each binding site was characterized by a 
collection of features (k-mers, position-specific scoring matrices [PSSMs] and 
positional information; see below) which is used by RF to predict the direction of 
regulation. RF grow many classification trees, and to be classified each new 
binding site is put down each tree of the forest. Each tree returns a classification, 
and the majority vote of all trees is the final classification of the forest. 
Feature Selection: Three types of features were considered: k-mers, PSSMs and 
positional information. k-mers and PSSMs were evaluated at three regions: an 
extended binding site region (9 nt peak + 5 nt up-/downstream) as well as two 
adjacent regions (40-nt windows flanking the extended binding site region). 
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Counts were normalized by the width of the underlying transcript region. In order 
to avoid an advantage for simple motifs such as homopolymer runs, only non-
overlapping hits were counted. 6 nt was chosen as reasonable k-mer size to 
neither detect too degenerate nor too complex motifs. PSSMs for 120 unique 
RBPs were extracted from CISBP-RNA (Ray et al. 2013) and scored requiring at 
least 90% identity. If multiple PSSMs were available for a certain RBP, the 
highest scoring PSSM was taken. Additionally, the following features describing 
positional information were considered: 3' and 5' splice site score calculated by 
the Maximum Entropy method (Yeo and Burge 2004), the Py-tract score (as 
described above), as well as the length of Py-tract, AG exclusion zone and the 
distance to the next downstream AG, 5’ splice site and 3’ splice site. 
Out-of-bag (OOB) error estimate: The training set for each tree is selected by 
sampling with replacement from the input data leaving about one third of the data 
unused. This out-of-bag data is used to get an unbiased estimate of the 
classification error. Each binding site left out in the construction of the k-th tree is 
put down the k-th tree to get a classification. Take j to be the class that got most 
of the votes every time that binding site n was OOB. The proportion of times that 
j is not equal to the true class of n averaged over all binding sites is the OOB 
error estimate. We achieve a misclassification rate of ~12% (133/151 and 
152/173 binding sites being classified correctly as stabilized and cleared, 
respectively), indicating a high classification accuracy of our machine learning 
approach. 
Feature importance: Importance informs about the relevance of each feature in 
discriminating between binding sites that are stabilized in vivo vs. cleared in vivo. 
Importance of individual features is assessed via random permutation of the 
values of each feature. The difference in the OOB when using the original and 
the permuted feature is averaged over all trees, resulting in a raw importance 
score for each variable.  
RF parameters: Features exceeding a correlation cutoff of 0.85 were merged. 
Merging was done separately for each feature class. Two runs of RF with each 
20,000 trees were done. The top 30% features of the first run were input to the 
second run. The resulting mean OOB rate was 12.6%, i.e. 21/18 out of 172/151 
cleared/stabilized binding sites were misclassified, respectively. Moreover, 
control runs (10 repetitions) comparing two sets of randomly picked non-
regulated U2AF2 binding sites (|z-score| < 0.5; 70 binding sites each) resulted in 
an average overlap of 3/100 for the top 100 features. Computation was done with 
the R package randomForest (v4.6-12) for R 3.3.1 (Liaw and Wiener 2002). 

Identification of relevant regulatory groups 

In order to identify putative regulators of U2AF2 binding in vivo, we considered 
the top 100 features ranked by importance (Supplemental Table S4). To 
increase their interpretability, k-mers were mapped to RBPs as follows: Starting 
from the available PSSMs (length 6-9 nt), each k-mer was positioned in all 
possible registers (e.g. position 1-6, 2-7, ...) and checked for an PSSM match 
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with at least 80% of the maximum possible score. This results in a loose 
assignment of k-mers to RBPs. No PSSM information is so far available for 
FUBP1, yet there is evidence for a TG-rich motif to be recognized by FUBP1 
(Miro et al. 2015). Thus, all k-mers containing only T and/or G were considered 
as candidate FUBP1 motifs. 
RBPs were combined into regulatory groups to simplify analysis (Supplemental 
Table S5). In total, we defined 13 regulatory groups with the following number of 
members: CELF (4), ELAV (2), FUBP (1), HNRNPC (3), ‘other HNRNP’ (16), 
MBNL (3), PCBP (4), PTB (3), RBFOX (3), RBM (18), SF (other splice factors, 6), 
‘SR proteins’ (11) and ‘other’ (47). For each RBP in a regulatory group, the 
highest observed importance was taken as representative value. Importance 
scores of all RBPs in each regulatory group were summarized by the 
75% quantile (‘majority vote’), and scaled to the maximum observed importance 
of any feature in the RF analysis. In order to capture the specificity to bind at 
either stabilized or cleared U2AF2 binding sites, we further assigned a ‘purity’ 
score for each RBP. To this end, we counted the number of stabilized and 
cleared U2AF2 binding sites that harbor a feature of the RBP (either a PSSM 
match or an associated k-mer) within the extended 99-nt window (see above), 
and calculated the ratio of the difference of binding sites in both groups over the 
number of binding sites in the larger group. Purity thus reflects the percentage of 
binding sites unique to one direction of regulation, such that a purity of 1 is 
achieved when an RBP binds only at either cleared or stabilized binding sites, 
while a purity of 0.5 indicates that the RBP binds at 2 times more stabilized than 
cleared binding sites or vice versa (Fig. 4B). Purity was first calculated for each 
RBP, and then summarized for RBPs within a regulatory group by taking the 
75% quantile. 
For Fig. 4B, the number of regulated U2AF2 binding sites associated with a 
given regulatory group was calculated as follows: For each RBP, the total 
number of predicted binding sites within the extended 99-nt window was summed 
over all U2AF2 binding sites that are stabilized\cleared in vivo, and then scaled 
by the size of the respective group. The 75% quantile over all RBPs was taken 
as summary statistics for each regulatory group. Since a total of 64 k-mers are 
considered as possible FUBP1 motifs, the median rather than the 75% quantile 
was taken as a summary statistics for the FUBP regulatory group. The same 
approach was followed for calculating the summarized importance and purity 
scores for this group. 

Analysis of in vitro iCLIP co-factor assays 

In order to facilitate direct comparisons, reads from each in vitro iCLIP co-factor 
replicate were downsampled to 100,000 reads, followed by removal of PCR 
duplicates by means of random barcodes and spike-in normalization to account 
for differences in sequencing depth. iCLIP counts were summed up per binding 
site and represented as ‘signal-over-background’ (SOB). Background was 
defined as the 75% quantile of signal on all nucleotides within introns (minus 
binding sites +/- 2 nt) per in vitro transcript. Binding sites with a ratio of 
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Kd confidence interval boundaries greater than 10 were removed, leaving 420 
binding sites. SOB values from replicate experiments were averaged. Only 
binding sites with a SOB greater than the 10% quantile of the SOB distribution 
(combined U2AF2RRM12 and U2AF2RRM12+co-factor samples) were taken into 
consideration. 
For Fig. 5B, binding sites were assigned to regulatory categories as follows:      
(i) Based on the model-based comparison of in vivo and in vitro U2AF2 binding 
landscapes (see ‘Model-based analysis of in vivo regulatory hotspots’), U2AF2 
binding sites were classified as not regulated (|z-score| < 0.5), stabilized in vivo 
(z-score > 1) or cleared in vivo (z-score < -1). (ii) in silico prediction of associated 
RBP binding sites was done as described for the Random Forests analysis, 
considering the 99-nt extended binding site region. For each category, the data 
was centered such that the control group of U2AF2 binding sites with no 
overlapping RBP motifs had a median log2 fold change (log2FC) of 0. Each set 
was tested against the control group using a two-sided Student's t-test, followed 
by multiple testing correction (Benjamini-Hochberg). For Fig. 5A, binding sites 
were required to show an SOB greater than the 25% of the SOB distribution as 
well as an absolute log2FC > 2 in at least one co-factor experiment. log2FC 
values were centered on zero for each co-factor to make data comparable. For 
Fig. 7A, we used all U2AF2 binding sites within 600 nt upstream of the 3' splice 
site. Note that the preceding introns of MYL6 exon 6 and PCBP2 exon 9 are only 
304 nt and 510 nt in length. Binding sites that are lowly covered (SOB smaller 
than the 25% quantile of the SOB distribution) are not shown for the respective 
condition (indicated by dark gray color) or completely removed if present in less 
than half of the eleven KD experiments. log2FC values were centered on zero for 
each co-factor to make data more easily comparable. 

Analysis of in vivo U2AF2 binding upon HNRNPC knockdown 

In order to validate the hnRNPC-mediated regulation in our in vitro iCLIP co-
factor assay, we compared the results to changes in in vivo U2AF2 binding upon 
HNRNPC knockdown (Fig. 4C,E). To this end, we used our previously published 
in vivo U2AF2 iCLIP data from control (lujh23a) and HNRNPC knockdown 
(lujh21a) HeLa cells (Zarnack et al. 2013) to calculate SOB values for both 
conditions. Binding sites which showed a log2 fold change (log2FC) in SOB < -1 
(control over knockdown) and harbored at least one SOB value in control or 
knockdown condition that exceeds the mean SOB of all binding sites were 
defined as ‘downregulated upon HNRNPC knockdown in vivo’ (Fig. 4C). For 
Fig. 4E, we restricted the analysis to 126 U2AF2 binding sites which are located 
within 40 nt from an in vivo hnRNPC binding site in the regions of the nine in vitro 
transcripts. In addition, binding sites must exceed the 10% quantile of the SOB 
distribution in all conditions. 

GraphProt analysis 

A GraphProt sequence model (version 1.1.2, default parameters) (Maticzka et al. 
2014) was trained on 20,000 U2AF2 binding sites that were randomly selected 
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from 458,942 intronic in vivo U2AF2 binding sites and 20,000 unbound sites. The 
9-nt binding sites were set as viewpoint regions and flanked by 10 nt of non-
viewpoint context on either side. The model was then used to score the 438,942 
in vivo U2AF2 binding sites that were not used for training, a corresponding 
number of unbound sites, and the 571 U2AF2RRM12 binding sites measured by in 
vitro iCLIP. Supplemental Fig. S1D compares the distribution of scores for the 
top 50 in vivo U2AF2 binding sites with most crosslink events and the top 50 in 
vitro U2AF2RRM12 binding sites with highest affinity within the nine protein-coding 
in vitro transcripts. 

Knockdown of RBPs 

HeLa cells were grown in 6-well plate until they reached about 25% confluence. 
For all RBP knockdowns, siRNAs were transfected with Lipofectamine RNAiMax 
reagent according to manufacturer’s instructions. All siRNAs are listed in 
Supplemental Table S8. The cells were grown for 48 h post-transfection and 
then harvested by scrapping and centrifugation. The cell pellets were stored at    
-80°C for subsequent experiments. 
For the partial U2AF2 knockdown, confirmation of the knockdown efficiency was 
done with Western blot. For the detection, we used a monoclonal mouse anti-
U2AF2 antibody (Sigma cat. no. U4758) and a monoclonal mouse anti-Actin beta 
(ACTB) antibody (Sigma cat. no. A5316) as primary antibodies, and anti-mouse 
IgG HRP-linked antibody (NEB cat no. #7076) as secondary antibody. 
For the knockdown of all other RBPs in the context of the in vivo alternative 
splicing quantifications, confirmations were done by measuring mRNA levels with 
Luminaris HiGreen Low ROX qPCR Master Mix (Thermo Fisher) in a ViiA 7 Real-
time PCR system (Thermo Fisher) according to manufacturer’s instructions. All 
primers that were used for the measurements are listed in Supplemental 
Table S9. 

Minigene reporter assays 

All minigene reporters were constructed by using pCDNA5 backbone via ligation 
of a 2,727 bp insert containing exons 9-11 of PTBP2 (Chr1, 96804170  - 
96806896 nt). Mutations introduced to different constructs are listed in 
Supplemental Table S6. Mutant constructs were generated by using the Q5® 
Site-Directed Mutagenesis Kit (NEB) according to manufacturer’s instructions. All 
primers used for the minigene construction are listed on Supplemental Table S9. 
The FUBP1 KD and the PTBP1/2 double-KD were performed for 48 h as 
described above. The media were discarded and the cells were further 
transfected with 2 µg of different minigene constructs (wild type and mutant 
variants). Cells were harvested on the next day and total RNA was extracted with 
RNeasy Plus Mini Kit. cDNAs were synthesized with Revert Aid First Strand 
cDNA Synthesis by using oligo(dT)18 primer. The resulting cDNAs were amplified 
with up to 25 cycles with One Taq polymerase (NEB), and the PCR products 
were visualized in 2200 Tape station system with D1000 DNA screen tape kit 
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(Agilent) to obtain the molar ratio of each splicing product. All primers used in 
these experiments are listed in Supplemental Table S9. The relative inclusion 
(‘percent spliced in’, PSI) in each sample was calculated with the following 
formula: 

𝑃𝑆𝐼 =
𝑚𝑜𝑙𝑎𝑟 𝑐𝑜𝑛𝑐. 𝑜𝑓 𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡

𝑚𝑜𝑙𝑎𝑟 𝑐𝑜𝑛𝑐. 𝑜𝑓 𝑖𝑛𝑐𝑙𝑢𝑠𝑖𝑜𝑛 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 +  𝑚𝑜𝑙𝑎𝑟 𝑐𝑜𝑛𝑐. 𝑜𝑓 𝑠𝑘𝑖𝑝𝑝𝑖𝑛𝑔 𝑝𝑟𝑜𝑑𝑢𝑐𝑡  

In vivo splicing assays 

Splicing assays were done by monitoring inclusion of four different alternative 
exons from PTBP2, MYL6, CD55, and PCBP2 via RT-PCR under control 
conditions and knockdowns of twelve different RBPs (CELF6, ELAVL1, FUBP1, 
HNRNPC, KHDRBS1, MBNL1, PCBP1, PTBP1/2, RBM24, RBM41 and SNRPA). 
Total RNA was extracted 48 h post-transfection with RNeasy Plus Mini Kit 
(Qiagen), and cDNAs were synthesized with Revert Aid First Strand cDNA 
Synthesis by using oligo(dT)18 primer. The resulting cDNAs were amplified with 
up to 35 cycles with One Taq polymerase (NEB), and the PCR products were 
visualized in 2200 Tape station system. PSI values for each sample were 
calculated as described above. All primers used in these experiments are listed 
in Supplemental Table S9. 
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