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Supplementary Figure S1 - Basenji increases peak call accuracy over Basset. 

We trained a Basset model to predict peak calls in 949 DNase-seq experiments (Methods).  

For Basset and Basenji, we plotted the area under the precision-recall curve (AUPRC) for each 

experiment’s predictions. The advances introduced in the Basenji model increase the average 

AUPRC from 0.435 to 0.577 and median from 0.449 to 0.591. 

 

 

 

 



 

Supplementary Figure S2 – Basenji predictions within-replicate match replicate concordance. 

For all replicated experiments, we plotted log-log Pearson correlation between the replicate 

experiments versus the correlation between the experiment and prediction (averaged across 

replicates). On the right, we make the same plots, faceted by experiment type. 

 

 



 

Supplementary Figure S3 – Basenji predictions cross-replicate match replicate concordance. 

For all replicated experiments, we plotted log-log Pearson correlation between the replicate 

experiments versus the correlation between the experiment and its replicate’s prediction (averaged 

across replicates). On the right, we make the same plots, faceted by experiment type. 

 

 



 

Supplementary Figure S4 - Dilated layers improve predictive accuracy. 

We trained models for a range of dilated convolution layer number. (A) We plotted the distribution of 

test R2 for each experiment, by data type. Test accuracy increases with each additional layer for all 

data types. (B) We plotted the test R2 of each experiment for the 6 layer versus 7 layer model. 

Adding the 7th layer improves test accuracy for 93.7% of the datasets. An 8th layer would reach 

outside the bounds of the sequence too frequently for this input length, but may add value for larger 

sequences. 



 

Supplementary Figure S5 - Predictions maintain cell type-specific expression clusters. 

On the far left, we performed hierarchical clustering and plotted as a heat map the experimental 

gene expression matrix across cell types after quantile normalization. On the far right, we similarly 

plotted the Basenji gene predictions matrix. In the center, we froze the row and column order from 

the experimental data clustering on the left and substituted in Basenji predictions. Although the 

sharp definitions smear, the clusters remain visible. We used Euclidean distance and average 

linkage in the hierarchical clustering. 

 

 

 

 

 

 

 



 



Supplementary Figure S6 – Cell type-specific gene accuracy. 

We established a set of 5198 with sufficient expression to compute meaningful variance statistics 

as those with mean > 0.5 and max > 3 expression across CAGE samples after log transform and 

quantile normalization. We ranked these genes by their coefficient of variation across samples and 

formed four quantile sets containing ~1300 genes each. For each CAGE sample, we computed the 

Pearson correlation between the normalized experimental measurements and Basenji predictions 

within each quantile set. (A) We plotted each CAGE sample’s quantile correlations as a line, and 

used violin plots to represent the four distributions. Correlation is stable until the most variable gene 

set, where the mean correlation decreases from 0.3673 (median 0.3592) in the third quantile to 

0.2708 (median 0.2562) in the fourth. (B) We ranked the CAGE samples by the ratio of this 

decrease and chose the median sample to scatter plot the genes’ normalized experimental 

measurements and predictions in each quantile. 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure S7 – Predictions reflect alternative TSS usage. 

We delineated a set of 201 genes with multiple distinct TSSs >500 bp, each with variance across 

CAGE samples >1 (for log-transformed, quantile normalized values). For each gene, we computed 

the log ratio of the most variable TSS’s activity versus the second most variable TSS’s activity. 

Then, we computed the Pearson correlation of this statistic for the experimental measurements and 

Basenji predictions across all CAGE samples. (A) We plotted a histogram of these correlations. The 

set has greater mean than zero by T-test with p-value <1x10-90. (B) We plotted the log ratio of 

TSS1/TSS2 activity for the experimental measurement versus prediction for the median correlation 

gene GALE (C) and the 75th percentile gene RAB23. 



 

Supplementary Figure S8 – SNP expression difference predictions relate to GTEx eQTL statistics. 

We distributed SED by the LD correlation matrix to more readily compare to eQTL measurements in 

human populations (Methods). |SED-LD| shows a strong relationship with eQTL statistics from 

GTEx. (A) For each tissue, we ranked the variants by the difference between their regression 

predictions including and excluding |SED-LD| and formed five quantiles. We computed the 

proportion of significant eQTLs in each quantile and divided by the proportion of all variants called 

eQTLs in that tissue to normalize the tissues to a level plane. The line plots show those normalized 

significance proportions in each quantile, which rise to 3.2-5.8x over the average of the bottom 

three quantiles in all 19 tissues. (B) We observed that TSS distance also related to variant eQTL 

statistics and recomputed the regression-based ranking and quantiles including TSS distance 

covariates (Methods). The highest SED-LD quantile remains highly enriched for eQTLs. Enrichment 

of the lowest quantile may be attributable to variants that influence gene expression via 

mechanisms beyond the transcriptional regulation that Basenji focuses on (GTEx Consortium 2017; 

Battle et al. 2015). Variants that affect post-transcriptional mechanisms such as splicing would 

collect in the lowest quantile where the SNPs tag substantial variation near the gene, but have low 

|SED-LD| predictions. 



 

Supplementary Figure S9 – Basenji predictions exceed previous methods for GWAS classification. 

We computed Basenji SNP scores for a dataset containing 12,296 bi-allelic SNPs taken from the 

NIH GWAS Catalog database (MacArthur et al. 2017) and a negative set with matched minor allele 

frequency. We trained a logistic classifier to predict presence in the GWAS catalog. The Basenji 

model matches DeepSEA, whose authors included conservation statistic features, too. A joint 

model adding DeepSEA’s predictions as a feature to ours achieves significantly greater accuracy 

than either alone 
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