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Double uranium oxo cations derived from uranyl by borane or silane
reduction
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General Details

All manipulations were carried out under a dry, oxygen-free atmosphere of nitrogen using
standard Schlenk and glovebox technique. Pyridine was distilled from potassium and stored
over 4 A molecular sieves. THF, toluene and hexanes were degassed and purified by passage
through activated alumina towers and stored over 4 A molecular sieves. All gases were supplied
by BOC gases UK. All glassware items, cannulae and Fisherbrand 1.2 pm retention glass
microfibre filters were dried in a 150 °C oven overnight before use.

Deuterated solvents, C¢D¢ and ds-pyridine, were boiled over potassium,
freeze—pump—thaw degassed and vacuum-transferred prior to use. 'H, 3C{'H}, !'B and >°Si
NMR spectra were recorded on Bruker AVA400, AVAS500, or PRO500 spectrometers at 298
K. Chemical shifts are reported in parts per million, 5. All 'TH NMR and *C{'H} NMR spectra
were referenced relative to SiMe, through a resonance of the employed deuterated solvent or
proteo impurity of the solvent; C4Dg (7.16 ppm) and ds-pyridine (8.74, 7.58, 7.22 ppm) for 'H
NMR; C¢Dg (128.0 ppm) and ds-pyridine (150.35, 135.91, 123.87 ppm) for *C{'H} NMR. 'H
NMR data for complexes 2-4 are reported on isolated samples, whereas 'H NMR data for 5 is
reported on an in-situ generated sample due the poor solubility of this complex once isolated.
1B and ?°Si NMR spectra were referenced using an external standard of BF;(OEt,) (0.0 ppm)
and SiMe, (0.0 ppm), respectively. Infrared spectra were recorded on a Perkin Elmer Spectrum
65 FT-IR spectrometer as nujol mulls between NaCl disks. Elemental analyses were carried
out at Pascher Labor, Germany or at the London Metropolitan University.

Single crystal X-ray diffraction data for 2-2toluene and 3-THF was collected on a
Bruker SMART APEXII diffractometer fitted with a CCD area detector using MoKa radiation
(L =10.71073 A) at 150(2) K. Single crystal X-ray data for 4-5.5THF was collected using an
Oxford Diffraction Supernova instrument at 120(2) K, fitted with a CCD area detector using
MoKa radiation. Single crystal X-ray diffraction data for S-py and 5-:2THF were collected
using an Excalibur Eos diffractometer, fitted with a CCD area detector and using MoKa
radiation; data for S-py was collected at 120(2) K, whereas data for 5:2THF was collected at
173(2) K.

HN(SiMes),, B,pin,, B,cat,, HBpin, Ph,SiH, and BF;-OEt, were purchased from
Sigma-Aldrich; HN(SiMes), was used as was, B,pin, and B,cat, were stored in the glove box
prior to use, and Ph,SiH,, HBpin and BF;-OEt, were distilled and stored in the glove box prior
to use. HBcat was purchased from Alfa Aesar and stored in the glove box freezer prior to use.
LiN(SiMe;), was purchased from Sigma Aldrich and sublimed at 110 °C at 1x10~* Torr.
KH (suspension in oil) was purchased from Fischer Scientific, washed with hexanes to remove
the oil, and solid KH was stored in the glove box. KN(SiMej3),,! [UO,{N(SiMe3),},(THF),]?
and the H4LA ligand?® were prepared according to the literature procedures. The synthesis of
[{UOy(py)}2(L*)] (1) has been previously reported,* however an improved procedure is
provided below.



Syntheses

Improved Synthesis of [{UO,(py)},(LA)] (1)

[UO,{N(SiMes),}»(THF),] (3.04 g, 4.13 mmol) and H4LA (1.43 g, 1.65 mmol) were combined
in a 200 mL ampoule fitted with a Young’s tap, to which pyridine (100 mL) was added via
cannula. The reaction mixture was stirred for 3 days at room temperature. The reaction mixture
was then cannulated into a 200 mL Schlenk flask and evaporated to dryness under reduced
pressure. Hexanes (~100 mL) were added to the dark brown, oily residue and the resulting
slurry was sonicated and filtered. The remaining pale brown-green solid was washed with
hexanes (2x100 mL) and filtered, then dried under reduced pressure. Yield =2.05 g (80 %).

[{(py)pinBO}UOU{OBpin(py)}(L*)] (2)

(a) From B,pin,: Complex 1 (356 mg, 0.229 mmol) and B,pin, (116 mg, 0.458 mmol) were
combined in a 200 mL ampoule fitted with a Young’s tap, to which pyridine (50 mL) was
added via cannula. The reaction mixture was stirred for 6 hours under a static argon atmosphere
at 80 °C. The reaction mixture was then cannulated into a 200 mL Schlenk flask and evaporated
to dryness under reduced pressure. Hexanes (~50 mL) were added to the dark brown, oily
residue by cannula and the resulting slurry was sonicated and filtered. The remaining light
brown solid was washed with hexanes (2x50 mL) and filtered; the hexanes washings took on
a yellow colour during each filtration, indicating that the desired 2 was hexanes-soluble. The
remaining solid was then dried under reduced pressure. Yield = 193 mg (47 %). X-ray quality
crystals of 2-2toluene were grown by slow evaporation of a toluene solution of 2 under an inert
atmosphere. Elemental Analysis: Found: C, 53.32; H, 4.83; N, 7.55. Calc. for
CgoHgoB,N19O,Us: C, 53.58; H, 4.61; N, 7.81 %. IR (Nujol Mull, vy,,/em™): 1599s, 1557s,
1454s, 1409s, 1378s, 1313m, 1282s, 1268s, 1252s, 1214m, 1116m, 1150s, 1105m, 1086m,
1056s, 1038m, 1014s, 919w, 905w, 877s, 852m, 786w, 766w, 752m, 742m, 720m, 704m,
696m, 679w, 650w, 626w, 605w, 566s (asym. OUO), 531w, 519w. §8'H NMR (500 MHz; ds-
pyridine; 298 K; SiMey): 28.64 (12H, s, BO,C,(CH3)s), 25.34 (2H, s, LA-CH,yy1), 21.06 (2H,
s, LA-CH,ry1), 16.69 (2H, br s), 10.40 (2H, s, LA-CH,y), 9.43 (12H, s, BO,C»(CHs)s), 8.83 (2H,
s), 6.38 (2H, s), 5.30 (2H, br s), 3.85 (2H, s, LA-CH,y1), 2.41 (3H, br s), 2.22 (3H, s), —0.32
(2H, brs), —2.62 (2H, s, LA-CHyyy1), —2.66 (2H, s), —4.17 (2H, br s), —6.01 (2H, s, LA-CH,yy), —
6.36 (2H, s), —12.56 (2H, s), —16.73 (2H, s), —17.19 (2H, br s), —20.40 (2H, s), —41.90 (2H, br
s). 813C{H} NMR (126 MHz; ds-pyridine; 298 K; SiMey): 221.6 (s), 177.7 (s), 176.4 (s),
151.4 (s), 141.2 (s), 138.5 (s), 129.9 (s), 129.1 (s), 127.7 (br s), 126.2 (s), 122.6 (s), 118.9 (s),
117.3 (s), 115.9(s), 111.8 (s), 105.6 (br s), 103.5 (s), 101.7 (s), 101.4 (s), 100.2 (s), 98.2 (br s),
93.9 (br s), 91.3 (s), 82.0 (s), 81.8 (br s), 68.7 (br s), 60.5 (br s), 59.7 (br s), 51.8 (br s), 50.1
(br s), 45.2 (br s), 37.2 (s), 32.2 (s), 31.9 (s), 29.8 (br s), 25.6 (s), 23.3 (s), 21.8 (5), 15.5 (8),
14.7 (s), 11.7 (brs), 7.9 (s), —1.1 (br s), —10.4 (br s). 6'"B NMR (161 MHz; ds-pyridine; 298
K; BF3(OEty)): 475 (brs), 221 (br s). 81'B NMR (161 MHz; C¢D¢; 298 K; BF;(OEt,)): 471
(brs), 213 (br s).

(b) From HBpin: Complex 1 (17.5 mg, 1.13x1072 mmol) and HBpin (14.5 mg, 0.113 mmol)
were combined in a J-Young NMR tube, to which ds-pyridine (~0.6 mL) was added. The



reaction mixture was heated for 3 days at 125 °C, and the successful synthesis of 2 was verified
by 'H and "B NMR spectroscopy.

[(py){(py)catBO}UOU{OBcat(py)HL")] (3)

In-Situ Generation: Complex 1 (28.9 mg, 1.86x102 mmol) and Bjcat, (13.3 mg, 5.59x102
mmol) were combined in J-Young NMR tube, to which ds-pyridine (~0.6 mL) was added. The
reaction mixture was heated for 6 hours at 80 °C without agitation. Note: Physical mixing of
the solution of 1 and B,cat, during the reaction period resulted in the formation of a mixture of
3, 4 and unreacted 1. X-ray quality crystals of 3-THF were obtained by vapour diffusion of
hexanes into a solution of 3 in THF at room temperature. Yield = ~10 mg. IR (Nujol Mull,
Vmay/em™): 1717w, 1591m, 1552m, 1536m, 1482s, 1459s, 1378s, 1354m, 1337m, 1311m,
1299m, 1282m, 1236m, 1219m, 1170m, 1149m, 1098m, 1054s, 1007m, 972m, 963m, 907m,
873m, 865m, 839m, 827m, 804w, 786w, 735s, 722s, 702w, 681w, 664w, 656w, 635w, 623w,
605w, 595w, 580m (asym. OUOQ; tentative), 562w, 531m (asym. OUQO; tentative). 8'H NMR
(500 MHz; ds-pyridine; 298 K; SiMe,): 63.01 (1H, br s), 27.71 (3H, s), 17.90 (4H, s), 12.90
(3H, s), 5.52-5.11 (12H, m), —0.39 (4H, br s), —2.04 (4H, s), —3.63, —3.77 (4H, 2xbr s), —6.75
(3H, s), —7.37 (3H, s), -9.67 (4H, s), —10.71 (4H, s), —14.87 (4H, s), —17.07 (2H, s), —24.12
(4H, s), —26.04 (2H, br s). §13C NMR (126 MHz; ds-pyridine; 298 K; SiMey): 217.8 (s),
158.9 (s), 154.2 (s), 152.9 (s), 152.7 (s), 152.6 (s), 147.7 (br s), 138.9 (s), 137.8 (br s), 137.5
(brs), 129.1 (s), 126.2 (s), 122.5 (2xs), 121.7 (s), 120.9 (s), 120.7 (s), 120.6 (s), 120.5 (s), 120.0
(s), 119.5 (s), 118.5 (s), 116.1 (s), 114.5 (s), 112.1 (s), 111.2(s), 111.1 (s), 111.0 (s), 110.9 (s),
110.5 (s), 109.3 (2xs), 108.9 (s), 107.9 (s), 106.1 (s), 105.2 (s), 103.5 (s), 102.4 (s), 99.6 (s),
98.4 (s), 88.3 (s), 84.6 (brs), 73.2 (br s), 70.6 (s), 68.3 (s), 63.4 (brs), 57.1 (br s), 45.6 (s), 45.6
(s), 32.1 (s), 30.1 (s), 27.6 (), 26.2 (s), 25.3 (s), 23.3 (8), 21.8 (s), 21.1 (br 8), 17.7 (s), 15.7 (br
s), 14.7 (s), —0.64 (br s), —3.9 (br s), —29.9 (br s). 81'B NMR (161 MHz; ds-pyridine; 298 K;
BF3(OEt,)): 5 496 (br s), 126 (br s). 81'B NMR (161 MHz; C¢Dg; 298 K; BF3(OEt,)): 6 493
(brs), 130 (br s).

[(py)UOU(p-0,CsHa)(py)(LA)] (4)

(a) From Bjcat,: Complex 1 (294 mg, 0.189 mmol) and Bjcat, (135 mg, 0.567 mmol) were
combined in a 200 mL ampoule fitted with a Young’s tap, to which pyridine (50 mL) was
added via cannula. The reaction mixture was stirred for 3 days under a static argon atmosphere
at 105 °C, after which the reaction mixture was cannulated into a 200 mL Schlenk flask and
evaporated to dryness under reduced pressure. Toluene (~30 mL) was added to the dark brown,
oily residue by cannula and the resulting slurry was sonicated and filtered. The remaining light
brown solid was washed with toluene (2x30 mL) and filtered. The remaining solid was then
dried under reduced pressure. Yield = 235 mg (77 %). X-ray quality crystals of
4-4THF-hexanes were grown by vapour diffusion of hexanes into a THF solution of 4 at room
temperature. Elemental Analysis: Found: C, 54.04; H, 4.06; N, 8.74. Calc. for C74H¢N19O3U5:
C, 55.02; H, 3.87; N, 8.67 %. IR (Nujol Mull, v,,,,/em): 1594s, 1558s, 1482s, 1457s, 1378s,
1353w, 1317w, 1286s, 1275s, 1265s, 1251s, 1238s, 1213m, 1172w, 1151w, 1102w, 1087w,
1056m, 1046m, 1036m, 1016w, 1006w, 979w, 967w, 959w, 905w, 893w, 878w, 866w, 832m,
791w, 760m, 754m, 737s, 722m, 698m, 658w, 628w, 617m, 607w, 590w, 581w, 565w, 556w,

3



521w. 8'H NMR (500 MHz; ds-pyridine; 298 K; SiMe,): 70.58 (2H, s), 46.59 (2H, br s),
41.30 (2H, s), 27.53 (4H, s), 26.64 (4H, s), 20.88 (2H, s), 20.55 (6H, s), 15.79 (4H, s), 13.58
(6H, s), 8.25 (4H, br s), 6.94 (4H, s), 3.01 (4H, s), —18.91 (2H, br s), —24.57 (4H, s), —60.36
(2H, s). 813C{'H} NMR (126 MHz; ds-pyridine; 298 K; SiMe,): 256.4 (br s), 254.4 (br s),
187.0 (s), 185.8 (s), 177.7 (br s), 176.5 (br s), 156.9 (s), 154.0 (s), 153.0 (s), 152.7 (s), 151.6
(s), 151.4 (s), 145.9 (s), 145.5 (s), 145.3 (s), 145.1 (s), 143.8 (br s), 137.6 (s), 137.0 (br s), 127.6
(s), 124.6 (s), 122.2 (s), 121.6 (s), 120.6 (s), 119.6 (s), 118.6 (s), 111.2 (s), 110.2 (s), 109.4 (s),
102.3 (brs), 99.4 (br s), 64.8 (s), 56.6 (t,J 120 Hz), 40.2 (s), 32.6 (br s), 27.4 (s), 23.3 (s), 14.7
(s), 2.4 (s), 5.8 (br s), —6.9 (br s).

(b) From HBcat: Complex 1 (20.1 mg, 1.29x10~2 mmol) and HBcat (15.6 mg, 0.130 mmol)
were combined in a J-Young NMR tube, to which ds-pyridine (~0.6 mL) was added. The
reaction mixture was heated for 7 days at 105 °C, and the successful synthesis of 4 was verified
by "H NMR spectroscopy (500 MHz; ds-pyridine; 298 K; SiMey).

[{(py)HPh,SiO}UOU{OSiPh H(py)HLA)] (5)

Complex 1 (306 mg, 0.197 mmol), Ph,SiH, (544 mg, 2.95 mmol) and KN(SiMej3), (10.0 mg,
5.01x1072 mmol) were combined in a 200 mL ampoule fitted with a Young’s tap, to which
pyridine (100 mL) was added via cannula. The reaction mixture was stirred for 48 hours under
a static argon atmosphere at 125 °C. The reaction mixture was then cannulated into a 200 mL
Schlenk flask and evaporated to dryness under reduced pressure, yielding a dark brown oil.
Hexanes (~40 mL) were added and the resulting slurry was sonicated and filtered. The
remaining light brown solid was washed with hexanes (2x40 mL) and filtered. The remaining
solid was then dried under reduced pressure. Yield = 234 mg (62 %). X-ray quality crystals of
5-THF were grown by vapour diffusion of hexanes into a THF solution of 5§ at room
temperature, and X-ray quality crystals of 5-py were grown from a concentrated solution of 5
in pyridine at room temperature. Elemental Analysis: Found: C, 58.05; H, 4.32; N, 7.14. Calc.
for CooHgoN1903Si,Uy: C, 57.98; H, 4.23; N, 7.35 %. IR (Nujol Mull, v, /cm™1): 2126w,
1706w, 1588s, 1552m, 1458s, 1376m, 1296w, 1274m, 1114m, 1068m, 1052m, 1016m, 922m,
870m, 840m, 816m, 750w, 736m, 700m, 658w, 630w, 598w, 569w. §'H NMR (500 MHz; ds-
pyridine; 298 K; SiMe,): 63.96 (8H, s), 24.82 (12H, s), 20.51 (6H, s), —7.06 (4H, s), —7.45
(5H, s), —9.12 (2H, br s), —11.10 (3H, s), —16.25 (6H, s), —20.76 (4H, br s), —31.91 (8H, s), —
41.28 (3H, brs).

From Other MX Salts, BF3(OEt;) and B(C¢F5);3

(a) From LiN(SiMe;),: Complex 1 (26.9 mg, 1.73x1072 mmol), Ph,SiH, (47.8 mg, 0.259
mmol) and LiN(SiMe3), (0.7 mg, 4.18x1073 mmol) were combined in a J-Young NMR tube,
to which ds-pyridine (~0.6 mL) was added. The reaction mixture was heated overnight at 125
°C and analysed by 'H NMR spectroscopy (500 MHz; ds-pyridine; 298 K; SiMe,). The
resulting 'H NMR spectrum appeared the same as that of 5.

(b) From KOBu: Complex 1 (27.3 mg, 1.76x10~2 mmol), Ph,SiH, (48.5 mg, 0.263 mmol)
and KO'Bu (0.5 mg, 4.46x1073 mmol) were combined in a J-Young NMR tube, to which ds-
pyridine (~0.6 mL) was added. The reaction mixture was heated overnight at 125 °C and



analysed by 'H NMR spectroscopy (500 MHz; ds-pyridine; 298 K; SiMey). The resulting 'H
NMR spectrum appeared the same as that of 5.

(c) Attempted Synthesis from BF;(OEt;): Complex 1 (26.1 mg, 1.68x10-> mmol), Ph,SiH,
(46.4 mg, 0.252 mmol) and BF;(OEt,) (0.6 mg, 4.23x10-3 mmol) were combined in a J-Young
NMR tube, to which ds-pyridine (~0.6 mL) was added. The reaction mixture was heated
overnight at 125 °C and analysed by '"H NMR spectroscopy (500 MHz; ds-pyridine; 298 K;
SiMe,). The resulting NMR spectrum appeared the same as that of 1, indicating that no reaction
had occurred

(d) Attempted Synthesis from B(C4Fs); in pyridine: Complex 1 (23.6 mg, 1.52x1072 mmol),
Ph,SiH,; (42.0 mg, 0.228 mmol) and B(C¢F5); (1.9 mg, 3.71x1073 mmol) were combined in a
J-Young NMR tube, to which ds-pyridine (~0.6 mL) was added. The reaction mixture was
heated overnight at 125 °C and analysed by "H NMR spectroscopy (500 MHz; ds-pyridine; 298
K; SiMey). The resulting NMR spectrum appeared the same as that of 1, indicating that no
reaction had occurred.

(e) Attempted Synthesis from B(C¢Fs); in iodobenzene/C¢Dg (anticipated high-boiling,
inert, non-coordinating solvent): Complex 1 (22.1 mg, 1.42x10-2 mmol), Ph,SiH; (39.3 mg,
0.213 mmol) and B(C4Fs); (1.8 mg, 3.52x10~3 mmol) were combined in a J-Young NMR tube,
to which iodobenzene (~0.5 mL) and C¢Dg (~0.1 mL) were added. The reaction mixture (a
barely-soluble suspension) was heated overnight at 125 °C and analysed by 'H NMR
spectroscopy (500 MHz; ds-pyridine; 298 K; SiMey). The resulting 'H NMR spectrum
indicated that no reaction had occurred.

pin(py)BOBpin/pin(py)BOB(py)pin

B,pin, (22 mg, 8.7x1072 mmol) and Me;NO (6.6 mg, 8.8x10~2 mmol) were combined in a J-
Young NMR tube, to which ds-pyridine (~0.6 mL) was added. The reaction mixture was
allowed to sit at room temperature for 30 minutes and then analysed by 'H and ''B NMR
spectroscopy. 8'H NMR (500 MHz; ds-pyridine; 298 K; SiMey): 1.20 (24H, s, BO,Co(CH3)4
x 2). 8'"B NMR (161 MHz; ds-pyridine; 298 K; BF;(OEt,)): 23 (s, BO,C,(CH;),), 16 (s,
B(py)O2Ca(CHs)a).

cat(py)BOBcat/cat(py)BOB(py)(cat)

Bscat, (24 mg, 0.10 mmol) and Me;NO (7.6 mg, 0.10 mmol) were combined in a J-Young
NMR tube, to which ds-pyridine (~0.6 mL) was added. The reaction mixture was allowed to
stand at room temperature overnight and then analysed by 'H and "B NMR spectroscopy. 6'H
NMR (500 MHz; ds-pyridine; 298 K; SiMey): 7.02 (minor product (~25 %), dd, *Jyy 6, 3
Hz, Bcat), 6.91 (4H, dd, *Jyy 6, 3 Hz, B(py)cat), 6.80 (minor product (~25 %), dd, *Jyy 6, 3
Hz, Bcat), 6.78 (4H, dd, *Jyu 6, 3 Hz, B(py)cat). 8''B NMR (161 MHz; ds-pyridine; 298 K;
BF;(OEty)): 15 (s, Bcat), 9 (s, B(py)cat).



Crystallographic Details
General X-ray Experimental Details

The molecular structures of 2-2toluene, 3-THF, 4:5.5THF, S-py and 5:2THF were
solved using SHELXT? and least-square refined using SHELXL® in Olex2.” Hydrogen atoms
were treated by constrained refinement, except for H(80) and H(80'") in S-py and 5-2THF,
which were located in the difference map.

The axially coordinated OBpin ligand in 2-2toluene (O(1), B(1), O(4), O(5), C(69),
C(70), C(71),C(72), C(73), C(74)) was positionally/rotationally disordered over two positions,
so was split into two parts and refined with an occupancy ratio of 0.79:0.21. The minor
component is rotated nearly 90 degrees to the major component, and anisotropic refinement of
the thermal parameters of the minor component resulted in unstable refinement. As a result,
they were refined isotropically. The thermal parameters of both parts were also restrained
through the use of the RIGU command, and the thermal and positional parameters of B(1) and
B(1A) were refined to be equal to one another through the use of the EADP and EXYZ
commands, respectively. Second, C(8) was positionally disordered over two positions, so was
split into two parts and refined anisotropically with an occupancy ratio of 0.67:0.33. The
thermal parameters of C(8) and C(8A) were refined to be similar to one another through the
use of the SIMU command. Finally, both molecules of toluene within the lattice were
positionally disordered over two positions. Both were split into two parts and refined
anisotropically in a 0.54:0.44 (C(100)-C(106):C(110)-C(116); C(120)-C(126):C(130)-C(136))
ratio. Furthermore, the aryl C- and H-atoms of toluene C(130)-C(135) were restrained to lie in
a common plane through the use of the FLAT command, the thermal parameters of the toluene
molecules C(120)-C(126) and C(130)-C(136) were restrained using the RIGU command, and
the C(100)-C(106), C(110)-C(116) and C(120)-C(126) bond lengths were fixed at 1.52 A
using the DFIX command. In terms of 3:-THF, we attempted to split the thermal parameters of
C(92) of the lattice THF molecule into two parts to model the positional disorder, however this
resulted in unstable refinement of the THF molecule. As a result, the thermal parameters of the
THF carbon atoms were restrained to be similar to one another using the SIMU command.
With respect to 4-5.5THF, in the solid-state it has crystallographically
imposed mirror symmetry, with the central oxygen atom of the complex (O(3)) and the oxygen
atom of lattice THF (O(30)) positioned on the mirror plane. C(8) was positionally disordered
over two positions, so it’s thermal parameters were split into two parts with an occupancy set
to 0.5 and refined anisotropically. As a result, H(8B) was positionally disordered, so it’s
thermal parameters were also split into two parts and refined with an occupancy of 0.5.
Furthermore, 2.5 molecules of THF were SQUEEZED from the lattice of 4-5.5THF through
the use of the SQUEEZE routine® due to unresolvable disorder. Two of the lattice THF
molecules (O(10), C(100), C(101), C(102), C(103), and O(20), C(200), C(201), C(202),
C(203)) were disordered, so the C—O bond lengths in each molecule of THF were restrained
using the SADI command, and the overall geometry of both THF molecules were constrained
to have a similar geometry to the third molecule of lattice THF (O(30), C(300), C(300"), C(301),
C(301")) through the use of the SAME command. The THF lattice solvent in 5-2THF was
positionally disordered over two positions, so it’s thermal parameters were split into two parts
and refined anisotropically in a 0.31:0.69 ratio. In addition, the thermal parameters of the THF
molecule were restrained to be similar to one another through the use of the SIMU and DELU
commands. This complex also possesses crystallographically imposed two-fold symmetry,
with the central oxygen O(3) located on the two-fold axis. Lastly, the pyridine lattice solvent
in 5-py was positionally disordered, so it’s occupancy was set to 0.5 and refined over two



positions. This complex possesses crystallographically imposed two-fold symmetry, with the
central oxygen O(3) positioned on the two-fold axis.



Standard X-Ray Details for Each Complex
Table S1. Crystallographic data summary for complexes 2-2toluene, 3-THF and 4-5.5THF.
CCDC codes 1812761-1812765.

[{(py)pinBO}UOU{OBpin(py)} (L] [(py){(py)catBO}UOU {OBcat(py)} (L] [(py)UOU(1-CsHs0,)(py)(LA)]

Complex
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system, space
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Bruker SMART APEXII
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1.758,28.316

192088, 20508, 17854

0.0284

0.0247, 0.0569, 1.134

20508

1145

253

2.23,-1.52

(3-THF)
3.THF
po17028

CgsH71B,N,;,0,U,, C4HgO

1928.36

Triclinic, P-1

150(2)

14.8167(3), 15.0681(3), 18.9308(4)
68.593(1), 79.072(1), 86.228(1)
3863.52

2

Mo Ka

4.253

0.210x0.160x0.160

Bruker SMART APEXII diffractometer

SADABS 2014/5

0.469, 0.549
3.01, 28.02

88345, 18474, 14137

0.0501

0.0298, 0.0586, 1.013

18474

1009

18

1.10,-1.07

(4'5.5THF)
4.5.5THF
pol17018_refinalized_sq

C74HgN1005U,-5.5(C4H50)

2011.9573

Monoclinic, P2,/m

120(2)

14.0794(3), 21.2409(5), 14.5407(4)
90, 105.116(3), 90

4198.1(2)

2

Mo Ka

3.908

0.331x0.240%0.105

SuperNova, Dual, Cu at zero, Atlas

Gaussian CrysAlis PRO 1.171.38.42b
(Rigaku Oxford Diffraction, 2015)
Numerical absorption correction based on
gaussian integration over a multifaceted
crystal model Empirical absorption
correction using spherical

harmonics, implemented in SCALE3
ABSPACK scaling algorithm.

0.3579, 0.6953
3.05,26.37

86045, 8803, 7308

0.0703

0.0432, 0.0978, 1.056

8803

517

103

2.18,-1.12



Table S2. Crystallographic data summary for complexes 5-py and 5:2THF.

Complex

Name in cif
Local code
Chemical formula
M,

Crystal system,
space group

Temperature (K)
a, b, c(A)

a B,y (°)

V(A3

Z

Radiation type

p (mm')

Crystal size (mm)

Diffractometer

Absorption
correction

Tmina Tmax
9mim emax

No. of measured,
independent and
observed [/ >

26(1)] reflections

Rinl

R[F2 > 20(F2)],
WR(F?), S

No. of reflections
No. of parameters

No. of restraints

[{(py)HPh,SiO} UOU{OSiPh,H(py)}(L*)] (5-py)
Spy-py

P17134a_mono_80 2

CoyHgoN903Si,U,-CsHsN

1985.00

Monoclinic, C2/c

120(2)

23.8381(5), 17.7807(2), 21.4711(4)
90, 114.099(2), 90

8307.5(3)

4

Mo Ka

3.982

0.198x0.085x0.062

Xcalibur, Eos

Analytical CrysAlis PRO 1.171.38.42b (Rigaku Oxford
Diffraction, 2015) Analytical numeric absorption
correction using a multifaceted crystal model based on
expressions derived by R.C. Clark & J.S. Reid. (Clark, R.
C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
Empirical absorption correction using spherical harmonics,
implemented in SCALE3 ABSPACK scaling algorithm.

0.850, 0.947
2.96, 26.37

125163, 8502, 7300

0.0977
0.0299, 0.0565, 1.059

8502
540
0

APraxs Apmin (¢ A%)0.90, -0.64

[{(THF)HPh,SiO}UOU{OSiPh,H(THF)}(L*)] (5-2THF)
STHF.2THF

P16085_mono_c¢

CooHgsNgOsSi,U,2(C4H;O)

2036.12

Monoclinic, C2/c

173(2)

22.5124(2), 19.8405(2), 20.1410(2)
90, 110.283(1), 90

8438.3(1)

4

Mo Ko

3.925

0.35%0.23x0.08

Xcalibur, Eos

Analytical CrysAlis PRO 1.171.38.42b (Rigaku Oxford
Diffraction, 2015) Analytical numeric absorption
correction using a multifaceted crystal model based on
expressions derived by R.C. Clark & J.S. Reid. (Clark, R.
C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897)
Empirical absorption correction using spherical harmonics,
implemented in SCALE3 ABSPACK scaling algorithm.

0.3404, 0.7442
3.0660, 28.693

88911, 8628, 7290

0.0598
0.0267, 0.0573, 1.040

8628

586

132
1.21,-0.50
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Figure S1. Solid-state structure of 2-2toluene with thermal ellipsoids drawn at 50%
probability, carbon atoms of the L* ligand and U-coordinated solvent drawn wireframe, and
hydrogen atoms and lattice solvent omitted for clarity. C(8) is positionally disordered over
two positions, so it’s thermal parameters are split into two parts (labelled as C(8) and C(8A)
above). The OBpin ligand coordinated in the axial position is also positionally/rotationally
disordered, so it’s thermal parameters are split into two parts (0.79:0.21 ratio); the minor
component was refined isotropically. Key bond lengths [A] and angles [°]: U(1)-O(1),
2.161(2); U(2)-0(2), 2.172(2); U(1)-0(3), 2.139(2); U(2)-0(3), 2.112(2); O(1)-B(1),
1.334(4); O(2)-B(2), 1.341(4); U(1)—Nayg, 2.535(5); U(2)~Nayg, 2.559(5); O(1)-U(1)-0O(3),
169.05(8); O(2)-U(2)-0(3), 96.51(7); U(1)-O(3)-U(2), 176.2(1); B(1)-O(1)-U(1), 145.7(2);
B(2)-0(2)-U(2), 166.9(2).
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Figure S2. Solid-state structure of 3-THF with thermal ellipsoids drawn at 50% probability,
carbon atoms of the LA ligand and U-coordinated solvent drawn wireframe, and hydrogen
atoms and lattice solvent omitted for clarity. Key bond lengths [A] and angles [°]: U(1)-O(1),
2.092(2); U(2)-0(2), 2.219(2); U(1)-0(3), 2.176(2); U(2)-0O(3), 2.068(2); O(1)-B(1),
1.400(5); O(2)-B(2), 1.315(5); U(1)-Nayg, 2.545(7); U(2)-Nayg, 2.557(7); O(1)-U(1)-0O(3),
170.7(1); O(2)-U(2)-0(3), 99.2(1); U(1)-O(3)-U(2), 177.6(1); B(1)-O(1)-U(1), 158.8(3);
B(2)-0(2)-U(2), 171.1(3).
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Figure S3. Solid-state structure of 4-5.STHF with thermal ellipsoids drawn at 50%
probability, carbon atoms of the LA ligand and U-coordinated solvent drawn wireframe, and
hydrogen atoms and lattice solvent omitted for clarity. C(8) is positionally disordered over
two positions, so it’s thermal parameters are split into two parts (labelled as C(8A) and C(8B)
above) with an occupancy set to 0.5 for each. Key bond lengths [A] and angles [°]: U(1)—
O(1), 2.128(3); U(1)-0(3), 2.090(2); U(1)-Nayg, 2.56(1); C(64)-0O(1), 1.340(6); O(1)-U(1)-
0(3), 91.9(2); N(5)-U(1)-0O(3), 176.8(2); U(1)-O(3)-U(1"), 142.3(3).
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Figure S4. Solid-state structure of 5-py with thermal ellipsoids drawn at 50% probability,
carbon atoms of the L” ligand, U-coordinated solvent and SiHP%,-phenyl groups drawn
wireframe, and hydrogen atoms (except for H(80) and H(80')) and lattice solvent omitted for
clarity. Key bond lengths [A] and angles [°]: U(1)-O(1), 2.142(2); U(1)-O(3), 2.1486(3);
U(1)Navg, 2.546(7); Si(1)-0O(1), 1.623(3); O(1)-U(1)-0O(3), 172.09(9); U(1)-O(3)-U(1"),
173.1(2); Si(1)-O(1)-U(1), 146.9(2).
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Si(1') eh—=H(80")

Figure S5. Solid-state structure of 5-:2THF with thermal ellipsoids drawn at 50% probability,
carbon atoms of the L* ligand, U-coordinated solvent and SiHP/%,-phenyl groups drawn
wireframe, and hydrogen atoms (except for H(80) and H(80')) and lattice solvent omitted for
clarity. Key bond lengths [A] and angles [°]: U(1)-O(1), 2.135(2); U(1)-O(3), 2.1425(3);
U(1)-Nayg, 2.533(6); Si(1)-O(1), 1.620(2); O(1)-U(1)-0(3), 169.23(9); U(1)-O(3)-U(1"),
172.0(2); Si(1)-O(1)-U(1), 154.0(2).
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Figure S8. Expanded view of the 'H,'H-COSY NMR spectrum of 2 (600 MHz; ds-pyridine;
298 K; SiMey), displaying 1 of 2 sets of LA-CH,y; coupling observed within the anthracenyl
ligand backbone. Each signal integrates to two protons (as opposed to four), indicating there
is side-to-side symmetry but not both side-to-side and top-bottom symmetry, consistent with
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Figure S14. ''B NMR spectrum of 2 stored in ds-pyridine for one week (161 MHz; ds-
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Figure S16. '"B NMR spectrum of pin(py),BOB(py),pin (n =0, 1), generated by adding

Me;NO to B,pin, and used to identify the byproducts produced during the formation of 2
(161 MHz; ds-pyridine; 298 K; BF;(OEt,)).
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Figure S17. "TH NMR spectrum of pin(py),BOB(py),pin (n = 0, 1), generated by adding
Me;NO to B,pin, and used to identify the byproducts produced during the formation of 2
(500 MHz; ds-pyridine; 298 K; SiMey).
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Figure S23. ''B NMR spectrum of cat(py),BOB(py),cat (n = 0, 1), generated by adding
Me;NO to Bjcat, and used to identify the byproducts produced during the formation of 3
(161 MHz; ds-pyridine; 298 K; BF3(OEt,)).
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Figure S25. '"B NMR spectrum of 3 generated in-situ; cat(py),BOB(py).cat (n = 0, 1) are the
byproducts observed during the formation of 3 (161 MHz; ds-pyridine; 298 K; BF5(OE,)).
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Figure S30. Expanded view of the "TH NMR spectrum of 1 + 3 equiv. B,cat, heated to 80 °C
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Figure S31. Expanded view of the 'TH NMR spectrum of 1 + 3 equiv. B,cat, heated to 80 °C
for 24 hours (500 MHz; ds-pyridine; 298 K; SiMe,). A mixture of 1, 3 and 4 is observed.
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Figure S32. Expanded view of the 'H NMR spectrum of 1 + 3 equiv. B,cat, heated to 80 °C
for 24 hours (500 MHz; ds-pyridine; 298 K; SiMe,). A mixture of 1, 3 and 4 is observed.
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Figure S33. '"H NMR spectrum of 1 + 3 equiv. Bycat, heated to 80 °C for 48 hours (500 MHz;
ds-pyridine; 298 K; SiMe,4). A mixture of 1, 3 and 4 is still observed, however the quantity of

4 is significantly greater than after 24 hours.
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Figure S34. Expanded view of the 'H NMR spectrum of 1 + 3 equiv. B,cat, heated to 80 °C
for 48 hours (500 MHz; ds-pyridine; 298 K; SiMe,). A mixture of 1, 3 and 4 is observed.
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Figure S35. Expanded view of the 'H NMR spectrum of 1 + 3 equiv. B,cat, heated to 80 °C
for 48 hours (500 MHz; ds-pyridine; 298 K; SiMe,). A mixture of 1, 3 and 4 is observed.
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Figure S36. Expanded view of the 'H NMR spectrum of 1 + 3 equiv. B,cat, heated to 80 °C
for 48 hours (500 MHz; ds-pyridine; 298 K; SiMe,). A mixture of 1, 3 and 4 is observed.
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Figure S37. '"H NMR spectrum of 1 + 3 equiv. B,cat, heated to 80 °C for 72 hours (500 MHz;

ds-pyridine; 298 K; SiMe,). Complete consumption of 1, and complete conversion of 3 to 4 is
observed.
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Figure S38. Stacked '"H NMR spectra of 1 + 3 equiv. B,cat, heated to 80 °C for 24, 48 and 72
hours (500 MHz; ds-pyridine; 298 K; SiMe,).
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Figure S39. "H NMR spectrum of 5 generated in-situ (500 MHz; ds-pyridine; 298 K; SiMey).
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Figure S41. Expanded view of the IR spectrum of 2 in nujol mull.




IR Spectrum of 2 in Nujol Mull
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Figure S42. Expanded view of the IR spectrum of 2 in nujol mull.
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Figure S43. IR spectrum of 3 in nujol mull.
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IR Spectrum of 3 in Nujol Mull
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Figure S44. Expanded view of the IR spectrum of 3 in nujol mull.
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Figure S45. Expanded view of the IR spectrum of 3 in nujol mull.
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IR Spectrum of 4 in Nujol Mull
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Figure S46. IR spectrum of 4 in nujol mull.
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Figure S47. Expanded view of the IR spectrum of 4 in nujol mull.
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IR Spectrum of 4 in Nujol Mull
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Figure S48. Expanded view of the IR spectrum of 4 in nujol mull.
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Figure S49. IR spectrum of 5§ in nujol mull.
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IR Spectrum of 5 in Nujol Mull
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Figure S50. Expanded view of the IR spectrum of 5 in nujol mull.
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