
 
 

Supplementary Figure 1 

Overview of the systems biology platform. 

Raw LC-MS data is processed in XCMS Online. The XCMS output is directly used to identify dysregulated metabolic pathways with 
predictive pathway enrichment algorithm. Protein and gene data is then integrated to perform the systems-level analysis and generate 
the pathway cloud plot and systems biology results table (not shown in the figure). 
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Supplementary Figure 2 

Example of predictive pathway analysis 

Schematic display of predictive pathway analysis on G20 metabolomic data to decipher biological roles during the process of metal 
corrosion. 
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Supplementary Figure 3 

Percent pathway coverage using multi-omic analysis of colon cancer data. 

The bar graph presents gene, protein and metabolite overlap on dysregulated metabolic pathways identified using predictive pathway 
analysis. These pathways also have a previously known association with colon cancer. 

Nature Methods doi:10.1038/nmeth.4260



 

Supplementary Figure 4 

Integrated metabolomics and transcriptomics data analysis. 

Schematic of multi-omic analysis of Ercc1-/Δ mouse model using the XCMS Online systems biology platform in a study of XFE progeroid 
syndrome showing overlapping dysregulated pathways. 
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Supplementary Figure 5 

Pathway cloud plot for DvH nitrate stress with integrated omics. 
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Plot focuses on p-value < 0.05 illustrating 18 dysregulated pathways and three overlapping genes leuA (leucine biosynthesis), glmU 
and glmS (UDP-N-acetyl-D-glucosamine biosynthesis). Pathways are plotted as a function of FET pathway significance versus average 
metabolic pathway overlap, with the radius of the circle representing the size of the metabolic pathway. Significantly dysregulated 
pathways appear in the upper right-hand quadrant of the plot. Each circle presents overlapping gene, protein and metabolite data when 
cursor is hovered over, as demonstrated for UDP-N-acetyl-D-glucosamine biosynthesis pathway. Clicking on these table features gives 
additional specific pathway, gene, protein and metabolite information. 
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Supplementary Figure 6 

Pathway cloud plot presenting all dysregulated metabolic pathways under the effects of different carbon sources. 
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Here a total overview of the pathway cloud plot is presented to illustrate the all the identified pathways ranging from 0.0055 < p-value < 
1. Significance of the pathway overlap (-log(p-value)) versus the percent overlap of the metabolites found in each pathway shows 
dysregulated features of greater interest in the upper right-hand quadrant of the plot. The radius of the circles represents the overall 
size of the metabolic pathway. 
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Supplementary Figure 7 

Scalability of XCMS analysis with large sample cohort. 

Predictive pathway analysis generated from metabolomic data on the 1,600 human samples, two top pathways shown. 
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Supplementary Methods 

XCMS Systems Biology Platform Development and Multi-Omic Workflow 

The metabolomics guided multi-omic workflow (Supplementary Figure 1) builds upon XCMS 

analysis of metabolomics data to identify connections between metabolites, dysregulated pathways and 

overlapping genes and proteins involved in those pathways. Multi-omic analysis can be performed in 

pairwise, multi-group and meta XCMS jobs. Data files are uploaded into individual sample class 

datasets in order to perform retention time correction, peak alignment, feature selection and univariate 

statistical analysis based on user defined p-value (default = 0.01), generating a results table of 

significantly dysregulated features, which is then used to metabolic network and pathway analysis 

followed by multi-omic analysis with uploaded gene and/or protein data. Detailed video instructions are 

provided on how to use XCMS systems biology platform, including pathway analysis and integrated 

omics (https://xcmsonline.scripps.edu/landing_page.php?pgcontent=institute) as well as Pathway Cloud 

Plot (https://xcmsonline.scripps.edu/landing_page.php?pgcontent=institute). Complete documentation 

and instructions on how to use XCMS Online are provided 

(https://xcmsonline.scripps.edu/landing_page.php?pgcontent=documentation). The code for all the 

mentioned algorithms and computer programs are currently not available.  

Metabolite Pathway Analysis 

 The mummichog algorithm1 has been improved for use with XCMS including additional 

visualizations of the network results. In brief, the algorithm takes the accurate mass of significant 

metabolites from the results table and uses a Fisher’s exact test (FET) to assess the significance of the 

pathways with p-values, which can be specified for any of the >7600 metabolic models available on 

XCMS.  Meanwhile, a list of permutation features (equal length to the significant metabolite list) is 

generated by randomly sampling of the results table and used to calculate the p-values for all the 

pathways. This step is repeated to calculate a cumulative distribution function, which is used to adjust 

the p-value per pathway calculated from the significant list.  

Integrated Omics 

 Following the prediction of enriched metabolic pathways, the user uploads a list of significant 

genes and/or proteins from transcriptomic and proteomic data to perform multi-scale omics analysis. 

Differentially expressed gene and protein data should be in the form of a comma separated (.csv) or tab 

separated (.tsv) file and data format should be in gene name (gene or protein data) and UniProt accession 

ID (protein data). The integrated omics analysis on XCMS Online then performs gene/protein matching 

onto the previously predicted pathways. A matching algorithm was developed in our lab to perform the 
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analysis. Gene and protein data are uploaded in tab separated value format using gene symbol accession 

IDs for genes and either gene symbol or Uniprot accession IDs for proteins. The user defines the type of 

list and runs the matching sub-job. The matching algorithm reads the user input data and known 

pathway associated data in the format of strings and considers it a match if the strings are identical. The 

matched genes and/or proteins are displayed and compared with the total number of associated genes 

and/or proteins to obtain pathway overlap. Once the integrated omics job is completed, the result will be 

presented in a table, showing both the overlapped and total number of gene/protein/metabolite for each 

pathway. A web link is provided for each overlap/total number to list the detailed 

genes/proteins/metabolites. Further, clicking each listed gene/protein/metabolite links to database 

sources for more information (gene information from BioCyc, protein information from UniProt, and 

metabolite information from KEGG and METLIN). Each pathway also has a web link connected to 

BioCyc that allows the user to view more detailed information about the pathway.   

Pathway Cloud Plot 

Once the pathway prediction and/or multi-omic overlap analysis is completed, a multi-omic 

cloud plot is generated to provide simple visualization of all the dysregulated metabolic pathways in a 

single plot. Statistical significance of the pathway match is plotted versus the percent pathway overlap; 

the trend towards significant pathways with more coverage are in the upper right-hand quadrant and the 

radius of the bubble represents the size of pathway in terms of its metabolites. The bubble size can be 

adjusted to present the best plot view by tuning the bar on the top right side of the plot.  Clicking the 

bubble allows the user to see a table of the overlapped genes, proteins and metabolites, linking to 

database sources for more information. The user can also adjust the p-value threshold on the top left side 

of the plot to refine and display only certain pathways with their p-values smaller than the threshold. 

Databases Queried 

Species-specific pathway information was archived from BioCyc (version 19.5 – 20.0) together 

with their associated genes, proteins, and metabolites. For pathway analysis, the metabolite information 

queries BioCyc. For multi-omic integration, Uniprot is archived to get the correlations between Uniprot 

protein accession IDs and BioCyc protein accession IDs so that the user can upload protein data with 

either Uniprot or BioCyc formats. In the display of pathway/multi-omic analysis, detailed gene/protein 

information is from BioCyc and metabolite information is from both KEGG and METLIN. Currently, 

over 7600 metabolic species are provided in the platform 

(https://xcmsonline.scripps.edu/pathway/biosources.php). These pathway databases are organized into 

tiers according to the amount of manual review and updating they have received. Among them, Tier 1 

(http://biocyc.org/biocyc-pgdb-list.shtml#tier1) databases have been created through intensive manual 

efforts and received at least a year of literature-based curation. In comparison, Tier 2 and Tier 3 
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databases (http://biocyc.org/biocyc-pgdb-list.shtml#tier2) contain computational predicted metabolic 

pathways and underwent less than one year of literature-based curation (typically 1-4 months). Data are 

stored in a relational database management system and accessed with structured query language 

(SQL). The user interface of the analytical platform was programmed in PHP, HTML5, and JavaScript. 

Once the user uploads transcriptomic and/or proteomic data, sub jobs are created to search against the 

same identified pathways to tabulate the overlapping genes and proteins by pathway. The background 

processing can be monitored by the users with log files available to confirm the job has processed 

correctly. Distinct genes and proteins are counted after removing duplicates and are displayed on the 

pathway summary table. Total genes and proteins are counted provided they occur at least once in the 

pathway of interest. 
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Supplementary Note 
 

 Below we describe seven examples of the new XCMS Online workflow for performing systems 

biology using predictive pathway analysis and integrated omics. All examples include predictive 

pathway analysis, which is now performed automatically after XCMS metabolomic data processing for 

retention time alignment, peak picking and statistical analysis. Additional examples are presented with 

transcriptomic and proteomic data integration. As XCMS Online continues to grow, so does the demand 

for processing power. To illustrate the scalability of this workflow, we also present an example on a 

large dataset containing a 1600 samples. 

 

S1. Progenitor Cell Proliferation Study 
Multiple sclerosis is a demyelinating disease in which the insulating covers of nerve cells in the 

brain and spinal cord are progressively damaged. Previous studies have revealed that the primary 

mechanism of multiple sclerosis involves the failure of the precursor oligodendrocyte cells (OPCs) to 

proliferate and differentiate, which further leads to the defect of its remyelination2. In this study, OPC 

differentiation is investigated on a metabolomics level to understand its molecular mechanisms, which 

potentially allows to identify active small molecules to promote the myelination of the OPCs.  

Cell culture and global metabolomics.  

 Rat primary optic nerve OPCs were isolated by panning (>99% A2B5+) and cultured in poly-D-

lysine (10 mg⋅mL-1) coated tissue culture dishes in OPC culture media (Neurobasal Media, Invitrogen) 

supplemented with B27-without vitamin A (Invitrogen), non-essential amino acids, L-glutamine, 

penicillin/streptomycin, β-mercaptoethanol and PDGF-AA (50 ng⋅mL-1; Peprotech)) at 37°C with 5% 

CO2. The culture medium was replaced every 48h and cells were collected before the confluency 

reached 60% to maintain a naive state. For differentiation, OPCs with 1.7 × 105 cells/well were plated in 

differentiation media (Neurobasal Media (Invitrogen) supplemented with B27-without vitamin A 

(Invitrogen), non-essential amino acids, L-glutamine and PDGF-AA (2 ng⋅mL-1; Peprotech)). 

Triiodothyronine (T3) and DMSO were used as the positive and negative controls, respectively. Cells 

were collected at different times for in vitro myelination and metabolomics studies.  

 Cells incubated in the differentiation medium were collected at day 6 for both the T3 and DMSO 

treated OPC. The cells were rinsed twice with PBS to completely remove the culture medium and then 

scraped into a 1.5 mL Eppendorf vial using 500–1000 μL PBS. Subsequently, the cells were collected by 

aspirating the supernatant after centrifugation at 12,000 rpm at 4°C for 15 min. The metabolites were 

extracted from cell pellets by a methanol:acetonitrile:water (2:2:1, v/v) solvent mixture. A volume of 

600 μL of cold solvent was added to each pellet, vortexed for 30 s, and soaked in liquid nitrogen for 1 
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min. The samples were then allowed to thaw at room temperature and then sonicated for 10 min. This 

freeze-thaw process was repeated for additional 2X. To further precipitate proteins, the samples were 

incubated for 1 h at −20°C, followed by centrifugation at 16,000 × g and 4°C for 15 min. The protein 

concentrations of the cell pellets were measured after centrifugation using a bicinchoninic acid assay 

(BCA assay). The resulting supernatant was removed and evaporated to dryness in a vacuum 

concentrator (LABCONCO CentriVap Benchtop). The dry extracts were then reconstituted in the 

appropriate volume of acetonitrile/water (1:1, v/v), normalized by the protein concentration with the 

lowest concentration approximately 50 μL, sonicated for 10 min, and centrifuged for 15 min at 16,000 × 

g and 4°C to remove insoluble debris. The supernatants were transferred to HPLC vials with inserts and 

stored at −80°C prior to LC-MS analysis.  

Cell extracts were analyzed on a 6550 iFunnel QTOF mass spectrometer (Agilent Technologies) 

coupled with a 1290 UPLC system (Agilent Technologies). HPLC was carried out on a Luna NH2, 

3 μm, 150 mm × 1.0 mm I.D. HILIC column (Phenomenex). The mobile phase was composed of A = 20 

mM ammonium acetate and 40 mM ammonium hydroxide in 95% water (v/v) and B = 95% acetonitrile. 

The remaining 5% components were either acetonitrile or water, respectively. A linear gradient from 

100% B (0–5 min) to 100% A (50–55 min) was applied. A 10 min re-equilibration time was applied to 

the HILIC column for re-equilibration and maintenance of reproducibility. The flow rate was 50 μL/min, 

and the sample injection volume was 5 μL. Electrospray ionization source conditions were set as 

follows: dry gas temperature, 200 °C; flow, 11 L/min, fragmentor, 380 V; sheath gas temperature, 300 

°C; flow, 9 L/min; nozzle voltage, 500 V; capillary voltage, −500 V in ESI negative mode. The 

instrument was set to acquire data over the m/z range 50–1000, with the MS acquisition rate of 1 

spectra/s. The sample sequence was randomized to avoid systematic decreases in signals over sample 

sets. For the MS/MS of selected precursors, the default isolation width was set as narrow (∼1.3 m/z), 

with MS acquisition rate set at 2 spectra/s and MS/MS acquisition at 2 spectra/s to acquire over the m/z 

range 50–1000 and 25–1000; respectively. MS/MS data were acquired at the collision energy of 20 V. 

LC-MS data were converted to mzXML files using MassHunter Acquisition Software (Agilent 

MassHunter 6.0B). The mzXML files were uploaded to XCMS Online for data processing including 

peak detection, retention time correction, profile alignment, and isotope annotation. Data were processed 

using both pairwise and multigroup comparison and the parameter settings were as follows: centWave 

for feature detection (Δ m/z = 15 ppm, minimum peak width = 10 s, and maximum peak width = 60 s); 

obiwarp settings for retention time correction (profStep = 0.5); parameters for chromatogram alignment, 

including mzwid = 0.015, minfrac = 0.5, and bw = 5. The relative quantification of metabolite features 

was based on extracted ion chromatogram (EIC) areas. Paired parametric two-way t-test and one-way 

ANOVA (post hoc Tukey test) were used to test the variation pattern of metabolite features between and 
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across cell samples collected at different times after being treated with T3 and DMSO. Multigroup 

analysis and pairwise comparisons between DMSO and T3 at individual incubation times were 

conducted. The results output, including EICs, pairwise/multigroup cloud plot, multidimensional scaling 

plots, and principle components were exported directly from XCMS Online. Generally, the numbers of 

total pairwise dysregulated features and significantly altered features (statistically defined as p < 0.01, 

including both upregulated and downregulated features) were reported in this study.  

Pathway analysis results.  

 Bypassing the time-consuming metabolite identification prior to metabolic pathway analysis, our 

systems biology platform allowed for the rapid identification of dysregulated metabolic pathways, 

providing instant and useful guidance for further analytical and biological experiments. In this particular 

case, we observed the significant changes of several metabolic pathways in the process of OPCs 

differentiation induced by T3. These pathways include glutamate metabolism, glutathione metabolism 

and tryptophan metabolism. To the best of our knowledge, there are very few literature reports on the 

metabolomic profiling of OPCs during cell differentiation. However, it is worth noting that those 

pathway-related metabolites are also found in several metabolomic studies on the pluripotent stem cell 

proliferations3, 4, suggesting the progenitor cells might share similar metabolic patterns with the stem 

cell during differentiation. Currently, studies are undergoing to understand the key metabolites and 

underlying biological mechanisms that contribute to these significantly dysregulated metabolic 

pathways.   

 

S2. Desulfovibrio alaskensis G20 Induced Metal Corrosion  
 Microbially Induced Corrosion (MIC) is a major concern for industrial ferrous metal pipelines 

and can result in pipeline failure. Sulfate Reducing Bacteria (SRB) have been implicated in contributing 

to MIC due to their production of corrosive H2S gas and elemental sulfur along with metal-microbe 

interactions. This study focuses on the effects of Electron Acceptor Limitation (EAL) and Electron 

Donor Limitation (EDL) on biofilm physiology and corrosion rate on various surface types, including 

1018 carbon steel, 316 stainless steel, and borosilicate glass.  Desulfovibrio alaskensis G20 was grown 

under steady-state conditions in sulfate-reducing biofilm reactors.  Batch cultures grown under EAL and 

EDL conditions had similar maximum growth rates, but differed significantly in final cell yields at 37°C. 

Under EAL conditions, biofilms on glass and 1018 steel had elevated biomass levels, both in terms of 

protein and hexose levels. Under EDL conditions, biofilms on 1018 steel had the highest protein and 

hexose levels. Differential corrosion rates were observed between EDL and EAL conditions on 1018 

carbon steel.  The results indicated that different ratios of respiration substrates contributed to altered 

rates of corrosion, and the difference in corrosion rates could not be explained solely by sulfide, acetate, 
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or carbohydrate levels. Protecting the 1018 metal coupon from biofilm colonization while maintaining 

exposure to sulfide was shown to dramatically reduce corrosion.  

G20 metabolome extraction and LC-MS based metabolomic profiling.  

 For the metabolomics analysis, 4-5 replicates of each group of cell samples (electron donor 

limited and electron acceptor limited G20) were lyophilized then weighed before doing the extraction. 

The lyophilized cell samples were extracted using a methanol:acetonitrile:water (2:2:1, v/v) solvent 

mixture. A volume of 1 mL of cold solvent was added to each pellet, vortexed for 30 s and incubated in 

liquid nitrogen for 1 min. Samples were thawed and sonicated for 10 min. This cycle of cell lysis in 

liquid nitrogen together with sonication was repeated additional twice times. To precipitate proteins, the 

samples were incubated for 1 hour at −20 °C, followed by 15 min centrifugation at 13,000 rpm and 4°C. 

The resulting supernatant was removed and evaporated to dryness in the vacuum concentrator at 10°C. 

The dry extracts were then reconstituted in acetonitrile:water (1:1, v/v) based on normalization by 

weights, sonicated for 2 min and centrifuged for 15 min at 13,000 rpm and 4°C to remove insoluble 

debris. The supernatants were transferred to HPLC vials and stored at −80°C prior to LC-MS analysis. 

            The LC-MS analysis was performed on an Agilent iFunnel QTOF mass spectrometer (Billerica, 

MA, USA) linked to an Agilent 1200 series capillary HPLC system (Palo Alto, CA, USA). 8 µL sample 

was injected after injection volume optimization. A Phenomenex Luna NH2 column (1 mm × 150 mm, 3 

µm particle size, 100 Å pore size) was used for LC separation. Mobile phase A was 20 mM ammonium 

acetate, 40mM ammonium hydroxide in water with 5% acetonitrile, and mobile phase B was acetonitrile 

with 5% water. The gradient elution profile was as follows: t = 0 min, 100%B; t = 5 min, 100%B; t = 50 

min, 0%B; t = 55 min, 0%B; t = 57 min, 100% B; t = 60 min, 100%B. The flow rate was 50 µL/min 

with 10 min post acquisition time added at 100%B to re-equilibrate the LC column. The m/z scan range 

was 50−1000, ionization was in negative mode and the scan rate was 2 spectra/sec. All data files were 

converted to mzXML format and uploaded to XCMS Online to perform a pairwise analysis on non-

stressed (n = 5) and HgCl2 stressed (n = 5) using Welch’s t-test. For pathway analysis, statistically 

significant features with fold change > 2.0 and p-value < 0.01 were used, resulting in 84 identified 

pathways, 47 of which had a p-value < 0.01. 

G20 pathway analysis results.  

 A total of 12 metabolic pathways were generated using the metabolomic data. Among them, the 

metabolites L,L-diaminopimelate and (S)-2,3,4,5-tetrahydropicolinate were in the lysine biosynthesis 

pathway were confirmed with MS/MS data from an autonomous workflow. Of particular interest were 

the lysine biosynthesis and pyrimidine deoxyribonucleotide de novo biosynthesis, which are currently 

under further study (Supplementary Figure 2).  
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S3. Ercc1–/Δ Mouse Model to Study Progeria Syndrome  

 XPF-ERCC1 endonuclease is required for repair of helix-distorting DNA lesions and cytotoxic 

DNA interstrand crosslinks5. Mild mutations in XPF cause the cancer-prone syndrome xeroderma 

pigmentosum. Mice Ercc1-/Δ have a hypomorphic mutation that is used to model the human XFE 

progeroid syndrome caused by a mutation in XPF, which encodes one subunit of the DNA repair 

endonuclease XPF-ERCC1. These mice show many aging-related symptoms and a short lifespan. In 

particular, these mice develop progeroid symptoms in early prepubescence, causing death before sexual 

maturation and presents an old appearance, weight loss, epidermal atrophy, visual and hearing loss, 

ataxia, cerebral atrophy, hypertension, liver dysfunction, anemia, osteopenia, kyphosis, sarcopenia and 

renal insufficiency5. Here, we examined the transcriptomic and metabolomic effects caused by a 

mutation in XPF on the liver tissue of Ercc1-/Δ mouse model by performing global transcriptomic and 

metabolomic analyses of whole liver tissue samples of seven 12-week old Ercc1-/Δ and seven of their 

wild-type littermates (C57Bl/6J mice).  

The transcriptome dysregulations were monitored using qRT-PCR and 1362 significant gene 

expression changes were extracted with a fold change > 1.5 and p-value < 0.05. The metabolomic data 

was generated from HILIC LC-MS analysis on an Agilent iFunnel 6550 in negative mode and processed 

with XCMS Online using pairwise analysis for wild type (n = 7) and Ercc1-/Δ mice (n = 7). The 

parameter settings were as follows: centWave for feature detection (Δ m/z = 15 ppm, minimum peak 

width = 10 s, and maximum peak width = 60 s); obiwarp settings for retention time correction (profStep 

= 1.0); parameters for chromatogram alignment, including mzwid = 0.015, minfrac = 0.5, and bw = 5. 

Pathway analysis was performed on statistically significant features (Welch’s t-test) with fold change > 

1.5 and p-value < 0.01. Transcriptomic and metabolomic data were overlaid using the multi-omic 

platform in XCMS Online. 

 The liver was selected as it shows well-defined aging-related changes and DNA repair defects. 

In our study, a total of 127 dysregulated metabolic pathways were observed with mummichog-based 

analysis of untargeted metabolomic data and 30 of them have evidence of correlating transcriptomic 

data. Along with the effect of DNA repair defects, we observed several clear metabolic dysregulations 

on the systems-level (shown in Supplementary Figure 3). Remarkably, these systems-level changes 

due to XPF-ERCC1 deficiency were also associated with normal aging5.   
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S4. Human Colon Cancer Study (XCMS Online job ID # 1100254) 

Colorectal cancer metabolomic data.  

 The “one-click” multi-omic approach was applied to an untargeted metabolomic study using 

patient samples of colon cancer and normal tissues (paired analyses with n=30)6 (XCMS Online public 

job ID# 1100254). In brief, metabolites were extracted from tissue samples with organic solvents and 

analyzed using C18 reverse-phase liquid chromatography (RPLC) coupled to quadrupole time-of-flight 

mass spectrometry in positive ESI mode. The data was processed in XCMS Online using pairwise 

analysis and the parameter settings were as follows: centWave for feature detection (Δ m/z = 15 ppm, 

minimum peak width = 10 s, and maximum peak width = 60 s); obiwarp settings for retention time 

correction (profStep = 1.0); parameters for chromatogram alignment, including mzwid = 0.015, minfrac 

= 0.5, and bw = 5. A total of 3908 significant metabolites were discovered with fold change ≥ 1.2 and 

p-value ≤ 0.05.  

Colorectal cancer transcriptomic data.  

A comprehensive set of RNAseq transcriptomic data was downloaded from NetGestalt7. This 

data was originally generated from The Cancer Genome Atlas (TCGA) in a study of 22 colon cancer 

tissue samples vs. 22 normal tissue samples8. The gene expression profile was measured using Agilent 

244K custom gene expression G4502A-07-3 microarrays and normalized by the LOWESS method. The 

detailed experimental methods can be found in the supplemental materials of the reference8. A total of 

10,238 genes with p-value ≤ 0.01 and fold change ≥ 1.2 were selected as dysregulated genes and used 

for multi-scale omics analysis.  

Colorectal cancer proteomic data.  

 A comprehensive set of shotgun proteomic data was downloaded from netgestalt7. The data was 

originally generated from Clinical Proteomic Tumor Analysis Consortium (CPTAC) in a study of 90 

colon cancer tissue samples vs. 30 normal tissue samples9. Proteins were extracted from samples and 

peptides were analyzed on a Thermo LTQ Orbitrap Velos instrument. The detailed experimental 

methods can be found in the supplemental materials of the reference9. A total of 2,545 proteins with 

p-value ≤ 0.01 and fold change ≥ 1.2 were considered as overexpressed and used for multi-scale omics 

analysis.  

Colorectal cancer multi-omic study results.  

 In this study, over 7,000 metabolic features were detected; among them over 700 features were 

statistically significant (p-value < 0.01) and used to predict associated metabolic pathways on 

mummichog. These data were originally analyzed by hand over several days to confirm metabolite 

features, run additional MS/MS experiments to confirm metabolite identity and interpret the pathways. 
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The automated systems biology platform identified the same significant pathways in a matter of 

minutes. 

Ten metabolic pathways were identified with statistical significance (p-value ≤ 0.01); among 

them five of the pathways (Supplementary Figure 4, Supplementary Table 1) have been previously 

implicated in the progression of cancer including 1,25-dihydroxyvitamin D3 biosynthesis10, bile acid 

biosynthesis11, zymosterol biosynthesis12,  and ubiquinol-10 biosynthesis13 and the spermine and 

spermidine pathway isolated from the original study6. Using MS/MS data, we validated three 

metabolites putatively identified in the predictive pathway analysis, confirming the involvement and 

upregulation of the spermine and spermidine pathway. 

 

S5. Desulfovibrio vulgaris Hildenborough Nitrate Stress 
 Sulfate reducing bacteria (SRB) have been shown to be useful in heavy-metal bioremediation, 

yet the presence of nitrate in many contaminated sites result in hindered SRB activity. Previous gene 

expression and proteomic studies14 have implicated osmotic stress and nitrite stress response to growth 

inhibition by upregulation of the glycine/betaine transporter genes and relief of nitrate inhibition of 

osmoprotectants. Here we look at the model SRB bacterium Desulfovibrio vulgaris Hildenborough 

(DvH) to identify connections between the metabolome of nitrate induced growth inhibition and 

previous reports to help identify mechanistic response pathways. 

 DvH cells were prepared in five separate cultures for each non-stressed and HgCl2 stressed 

sample class. Cultures of DvH were grown up from freezer stocks in 7.5 mL of lactate/sulfate (60 

mM/30 mM) medium containing 1% (w/v) yeast extract15. The starter cultures were subcultured at 

OD600 of 0.8 after 16 h of growth by transferring 0.5 mL into 10 mL of defined lactate/sulfate medium. 

Non-stressed subcultures were grown only on defined medium, and nitrate stressed cells were grown on 

the same medium with the addition of 100 mM sodium nitrate. Non-stressed cells reached mid-late log, 

OD600 of 0.5, after 40 h and were harvested, pelleted and decanted. Pellets were immediately flash 

frozen in liquid nitrogen and stored on dry ice or at -80˚C. Nitrate stressed cells reached mid-late log 

after 100 h and were harvested in the same manner.  

Metabolomic and Pathway Analysis 

 Metabolomic analysis was performed in triplicate for each sample on an Agilent 1100 series 

HPLC coupled to a Bruker Impact II QTOF mass spectrometer (Billerica, MA, USA). A Phenomenex 

Luna NH2 column (1 mm × 150 mm, 3 µm particle size, 100 Å pore size) was used for LC separation. 

Mobile phase A was 20 mM ammonium acetate, 40mM ammonium hydroxide in water with 5% 

acetonitrile, and mobile phase B was acetonitrile with 5% water. The gradient elution profile was as 

follows: t = 0 min, 100%B; t = 2.5 min, 100%B; t = 50 min, 0%B; t = 55 min, 0%B; t = 57 min, 100% 
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B; t = 60 min, 100%B. The flow rate was 50 µL/min with 10 min post acquisition time added at 100%B 

to re-equilibrate the LC column. The m/z scan range was 50−1000, ionization was in negative mode and 

the scan rate was 2 Hz. All data files were converted to mzXML format and uploaded to XCMS Online 

to perform a pairwise analysis on non-stressed (n = 5) and HgCl2 stressed (n = 5) using Welch’s t-test. 

For pathway analysis, statistically significant features with fold change > 1.5 and p-value < 0.01 were 

used, resulting in 84 identified pathways, 47 of which had a p-value < 0.01. 

Multi-omics Analysis 

 A compilation of gene and protein data from previous studies14, 16 were used to generate 

dysregulated lists for comparison with the metabolomic data. In this data set, there was little overlap 

between highly significant genes and proteins identified in microarray expression and proteomics 

experiments and the dysregulated metabolic pathways (Supplementary Figure 5). Only leuA 

overlapped with the significantly (p-value < 0.01) dysregulated leucine biosynthesis pathway. This may 

be due to different growth stages of cells at the time harvested and length of nitrate exposure. In this 

study, cells were grown and stressed with nitrate in the most recent method used to determine gene 

fitness17, 18. The microarray and proteomic data set took cells that were at mid-log and only exposed the 

cells to nitrate stress for four to eight hours, representing a more immediate response to nitrate stress, but 

the cultures were unlikely to be actively growing14, 16. The cells in this metabolomic data set have 

‘adapted’ to nitrate stress and are actively growing.  

 Despite the small multi-omics overlap, the pathways that were functioning in a significantly 

different manner all point to a similar phenomenon. The dysregulation of amino acid biosynthesis and 

central metabolism cycles can be attributed to nitrate stress via the assimilatory nitrate reduction 

pathway, which reduces nitrate to ammonium and adds the amine to amino acid precursors. Assimilatory 

nitrate reduction is not thought to be active in DvH, but these data suggest that it may be functional. The 

possibility of an active nitrate reductase is further corroborated in the multi-omics data by the increased 

expression of the second enzyme of the nitrate reduction pathway, nitrite reductase, DVU0625. For 

pathways with less significant p-values, more amino acid biosynthesis was dysregulated corresponding 

with the above pattern, but also dissimilatory sulfate reduction. The nitrate stressed cells do not grow as 

well, so we expect to see the sulfate reduction pathway down regulated. If the assimilatory nitrate 

reduction pathway is inactive, the stress response could also be attributed to energy limitation. Nitrate 

may compete with sulfate for uptake and transport leaving the cells energy limited. When energy is 

limiting, cells decrease amino acid biosynthesis and some of the central metabolism pathways. The 

multi-omics data (dysregulation of leucine biosynthesis, sulfate reduction V, Glycolysis I, and nitrate 

biosynthesis IV) agree with larger observed responses of DvH to nitrate stress, but pose questions about 

active metabolic pathways that demand further experimentation.  
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S6. Bacterial Stress Response Study (XCMS Online job ID # 1133019) 
E. coli culture.  

 To test the efficacy of the multi-omic platform, a standard method for probing changes in 

metabolomics was developed using E. coli K12 MG1655 cultures grown in different carbon sources 

(glucose and adenosine carbon sources). Glucose and adenosine were prepared with equimolar 

concentrations of carbon in 10 mL aliquots of M9 minimal media in triplicate. Carbon concentration was 

based on a final concentration of 20 mM glucose or 0.12 M carbon. All carbon sources were prepared in 

sterile water, then filtered through a 0.22 µm syringe filter prior to addition to M9 salts. A 10 mL culture 

of E. coli was grown in LB media overnight at 37°C. To inoculate each condition, which was prepared 

in triplicate, a 1 mL aliquot of cells was centrifuged at 13,000 rpm for 1 minute, the supernatant media 

was removed and the pellet was washed 3X with sterile water. The cells were made up to a final volume 

of 1 mL in sterile water and a 1 µL aliquot was added to 8 mL of each carbon source. The cultures were 

grown until an OD600 ~1, or stopped after 72 hours if the growth rate was plateaued. Triplicate 1 mL 

aliquots were taken for each replicate for metabolomics analysis and duplicate 1 mL samples were taken 

for RNA sequencing. 

E. coli RNA extraction and mRNA-seq.  

 RNA in E. coli samples were extracted using RNeasy Mini Kit (50, Cat. No. 74104) and the 

extraction procedures followed the protocols inside the extraction kit. In brief, cells were lysed with the 

working solution and then centrifuged. The supernatants were loaded onto spin column and spun down 

multiple times to purify RNAs. RNA-seq experiment was performed with 75 bp reads generated on the 

NextSeq Analyzer located at the Scripps DNA Sequencing Facility. The Genome Analyzer Pipeline 

Software (currently bcl2fastq/2.16.0.10) is used to perform the early data analysis of a sequencing run, 

which does the image analysis, base calling, and demultiplexing. Cutadapt software19 was used to trim 

the adapter and low base-pair called scores.  For mRNA-Seq, STAR 2.3.0 was used to align to genome 

using the E. coli K12 genome reference. EdgeR as used with the method finds number of Differentially 

Expressed transcripts (DE) significantly changed for the comparisons of different carbon sources.  The 

results are first filtered with False Discovery Rate (FDR) >0.15 and then by log Counts Per Million 

(log2(CPM)) > 1.0. The log2 counts-per-million (log2 CPM) cutoff used to avoid undefined values and 

the poorly defined log-fold-changes for low counts shrunk towards zero. Further the deviation of the 

normalized counts within groups can be used to filter out the transcripts with higher variance. We noted 

that almost all the transcripts were significantly up or down changed. 

E. coli metabolome extraction and LC-MS based metabolomic profiling.  
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 For the metabolomics analysis, triplicates of 1 mL of E. coli cells (OD600 = 1.0) were prepared at 

each treatment condition (i.e., glucose and adenosine).  E. coli cells were pelleted by centrifugation at 

4°C and 3,200 RCF for 15 min. Subsequently, cell pellets were extracted using a 

methanol:acetonitrile:water (2:2:1, v/v) solvent mixture. A volume of 1 mL of cold solvent was added to 

each pellet, vortexed for 30 s and incubated in liquid nitrogen for 1 min. Samples were allowed to thaw 

and sonicated for 10 min. This cycle of cell lysis in liquid nitrogen together with sonication was repeated 

additional twice times. To precipitate proteins, the samples were incubated for 1 hour at −20 °C, 

followed by 15 min centrifugation at 13,000 rpm and 4°C. The resulting supernatant was removed and 

evaporated to dryness in the SpeedVap at 4°C. The dry extracts were then reconstituted in 100 μL of 

acetonitrile:water (1:1, v/v), sonicated for 10 min and centrifuged for 15 min at 13,000 rpm and 4°C to 

remove insoluble debris. The supernatants were transferred to HPLC vials and stored at −80°C prior to 

LC-MS analysis. 

 The LC-MS analysis was performed on each sample in triplicate using a Bruker Impact QTOF 

mass spectrometer (Billerica, MA, USA) linked to an Agilent 1200 series capillary HPLC system (Palo 

Alto, CA, USA). 2 µL sample was injected after injection volume optimization. A Phenomenex Luna 

NH2 column (1 mm × 15 cm, 3 µm particle size, 100 Å pore size) was used for LC separation. Mobile 

phase A was 20 mM ammonium acetate in H2O with 5% acetonitrile (ACN), and mobile phase B was 

ACN with 5% H2O. The gradient elution profile was as follows: t = 0 min, 95%B; t = 5 min, 95%B; t = 

50 min, 5%B. t = 63min, 5%B. The flow rate was 50 µL/min. 20 min post acquisition time was also 

added with 95%B to re-equilibrium the LC column. Injection of 1 µL sodium formate (250 mM) 

occurred at t = 57 min and eluted on t = 61min. This calibration peak was used to internally calibrate the 

LC-MS data and also served as the MS peak intensity quality control. The m/z scan range was 25–1500, 

ionization was in negative mode and acquisition speed was 2 Hz. All data files were converted to 

mzXML format and uploaded to XCMS Online to perform a pairwise analysis on non-stressed (n = 3) 

and HgCl2 stressed (n = 3) using Welch’s t-test. For pathway analysis, statistically significant features 

with fold change > 1.5 and p-value < 0.01 were used, resulting in 84 identified pathways, 47 of which 

had a p-value < 0.01. 

E. coli multi-omic analysis result.  

 A total of 217 dysregulated metabolic pathways were generated from metabolomic data and 195 

(89.9%) of them were putatively confirmed with the analysis of E. coli transcriptome. These 195 

metabolic pathways show significant changes at both transcriptomic and metabolomic levels. 

Supplementary Table 2 lists the system-wide interpretation of 8 top-ranked metabolic pathways. These 

metabolic pathways were observed to be significantly interrupted and dysregulated after changing the 

carbon source from glucose to adenosine. As we can see, the most significantly disrupted pathways are 
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glucose and adenosine related, reflecting the complicated response and molecular regulation of E. coli 

upon the extracellular aberration. In addition, we provided a list of differentially expressed proteins 

compiled from the studies based on alterations in carbon sources in E. coli.20-23 There is a significant 

amount of overlap with glycolysis I and II pathways, indicating that our observations are consistent with 

results from the literature. Most importantly, our systems biology platform provides an opportunity to 

quickly reveal and understand global molecular changes on a multi-omic level with a convenient “one-

click” as demonstrated by both the tabulated results and pathway cloud plot (Supplementary Figure 6). 

We also noticed that there are another 187 metabolic pathways confirmed from the transcriptomic 

analysis results. These metabolic pathways contain comprehensive details about how E. coli response to 

the change of carbon source and worth further investigation to understand the underlying biology on the 

systems biology level.  

 

S7. Analysis of 1,600 Serum Samples  
The analysis of 1,600 reversed phase LC-MS human plasma serum samples demonstrates the robust 

capacity of the cloud-based platform. Data was kindly allowed for use from an XCMS user with few 

experimental details provided. In brief, including pooled quality controls, 1,600 serum samples were 

analyzed on an Orbitrap-XL MS (Thermo Finnigan – Bremen) coupled to an Accela UHPLC running in 

positive ionization mode. Chromatographic separation was carried out on a Hypersil-gold C18 column 

(100 mm x 2.1 mm x 1.9 µm) running a 30 minute gradient from 100% water to 100% methanol. Both 

mobile phases contained 0.1% formic acid. Raw data files generated were converted in to the mzXML 

format using the Proteowizard software24 and up loaded from the University of Manchester onto the 

XCMS online servers. Data were processed using the centWave algorithm at 3 ppm mass deviation and 

peak widths ranging from 3–20 s. The obiwarp retention time correction tool using profStep = 1 m/z was 

also applied alongside the alignment settings of mzwid = 0.015, minfrac = 0.5, and bw = 2. All 

identifications were detected with a 5 ppm maximum tolerance focusing only on [M+H]+, [M+Na]+, 

[M+H-H2O]+ and [M+K]+ adducts. 

The predictive pathway analysis algorithm provided two highly significant pathways: omega-6 

fatty acid metabolism (p-value = 0.00093) and mono-unsaturated fatty acid beta-oxidation (p-value = 

0.00099) (Supplementary Figure S7). These pathways are identified by matching high resolution mass 

spectrometry data to both precursor and adduct ions of the potential metabolites, with more matched 

features increasing the probability of an accurate pathway match. Additionally, metabolic networking 

was performed on these putative metabolites, illustrating potential enzymatic activity in one or multiple 

steps between them. 
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Supplementary Tables 
 
Supplementary Table 1. Colon cancer pathway analysis 

 Metabolic Pathway  Metabolites Biological significance 

1 Spermine and spermidine 
degradation 

N1-acetylspermine, N1-
acetylspermidine, spermidine 

Polyamines are associated with 
increased cellular proliferation in 

colon cancer tissues6 

2 1,25-dihydroxyvitamin D3 
biosynthesis 

1,25-dihydroxy vitamin D3 Vitamin D3 deficiency leads to cancer 
development10 

3 Bile acid biosynthesis Bile acids Bile acid interact with epithelial cells 
causing mutations that lead to cancer 

4 Zymosterol biosynthesis Zymosterol Increased cholesterol arising from 
zymosterol metabolism is correlated 

with colon cancer23, 24 

5 Ubiquinol-10 biosynthesis Ubiquinol-10 Ubiquinol-10 is an antioxidant that 
can prevent cancer13 
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Supplementary Table 2. E. coli K12 MG1655 multi-omics analysis. 

 

Pathway Dysreg. 
gene 

Tot. 
gene 

Dysreg. 
prot. 

Tot. 
prot. 

Dysreg. 
metab. 

Tot. 
metab. 

p-value 

Pyrimidine 
deoxyribonucleoside de novo 

biosynthesis I 

3 7 0 7 12 15 0.012 

Glycolysis I 12 18 7 18 11 14 0.016 
Glycolysis II 11 18 6 18 11 14 0.016 

Puring deoxyribonucleoside 
degradation I 

2 2 0 2 7 8 0.020 

UDP-N-acetyl-D-glucosamine 
biosynthesis I 

2 4 1 4 8 10 0.027 

Galactose degradation I 1 5 0 5 8 10 0.027 

4-aminobutanoate   
degradation I 

1 2 0 2 6 7 0.034 

Pyrimidine deoxyribo-
nucleosides degradation 

1 2 0 2 6 7 0.034 
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