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Spectra for Many Interconnected IF-Networks

A characteristic feature of the synchronization mecha-
nism is that noise allows the slower network to speed up,
but it does not slow down the faster network (cf. Fig.
3). This is also seen in the spectra of the large inter-
connected network of Fig.2. For low noise the spectrum
of each network is broad (Fig.S1 top panels). However,
in the ordered regime at larger noise, the frequencies of
most networks has increased to the value of the fastest
network.

Two IF-Networks with Random Connectivity

To demonstrate the robustness of the synchronization
with respect to changes in the connectivity we also con-
sider the impact of uncorrelated noise on two coupled
IF-networks with random connectivity. As in the anal-
ysis of the Morris-Lecar networks (Fig.8) each oscillator
receives ε1Nα random inhibitory connections from its
own network and a smaller number ε2Nα of random in-
hibitory connections from the other network. Thus, all
oscillators have the same in-degree, but not the same
out-degree. We have avoided the heterogeneity that
would be associated with variable in-degree in order
to focus on the synchronization by temporal noise. As
shown in Fig.S2, the overall behavior of these random
networks is very similar to the networks with all-to-all
coupling with the noise synchronizing the two networks
(Fig.S2).

A Heuristic One-dimensional Map Model

The simplicity of the mechanism identified in our sim-
ulations (Fig.5) suggests that its essence may be cap-
tured in a simplified model. The temporal evolution
of the voltage distribution of the neurons in network
2 shows that the voltage distribution is quite sharply
peaked. Moreover, shortly before the times when the
periodic inhibition arrives in network 2 the distribution
is close to unimodal and can be characterized by the
LFP of network 2 and its lag relative to network 1 or
the periodic inhibition. This allows us to develop a phe-
nomenological Poincare map for the lag θ.

Supplementary Figs.S4,S5 indicate that the synchro-
nization mechanism is not very sensitive to the voltage
dependence of the inhibition. For simplicity we there-
fore assume that the inhibition resets the voltage of an
oscillator by an amount proportional to its voltage and
write the evolution of a normalized mean voltage (LFP)
V̄ as

˙̄V = ρmap − g1 V̄ (t)

∞∑
n=−∞

δ (t− (n+ τd)) (16)

−g2 P (V̄ (t− τd)) V̄ (t),
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FIG. S1. Uncorrelated noise synchronizes the networks at
the frequency of the fastest network. Upper panels: for
low noise, σ2 = 0.04s−1, the networks are not synchronized.
Fourier spectra of the LFPs V̄ (α) of 25 of the 100 inter-
connected IF-networks shown in Fig.2 vary significantly in
frequency. Lower panels: For stronger noise, σ2 = 2s−1, all
networks are essentially synchronized, showing only a weak
subharmonic component (note the logarithmic scale). Left
(right) panels show the spectra for the networks with weaker
(α > N/2) and stronger (α ≤ N/2) injected current. Pa-
rameters as in Fig.2.

with V̄ being reset to V̄ = 0 instantaneously when it
reaches V̄ = 1. The second term in equation (16) repre-
sents a periodic external forcing with strength g1 and pe-
riod 1. The third term models the self-inhibition of the
network. Its strength depends on the number P (V̄ (t))
of oscillators that are at the spike threshold when the
LFP has the value V̄ . The evolution of V̄ (t) is shown
in supplementary Fig.S3A.

P (V̄ (t)) reflects the voltage distribution of the oscil-
lators, which results in a heterogeneity in the spike
times of the oscillators in network 2. The simulations of
the integrate-fire model indicate that this heterogeneity
plays a central role (Fig.5). Instead of considering an
evolution equation for the voltage distribution, for our
minimal model we consider it time-independent and of
the form

P (V̄ ) =

{ 1
σmap

V̄ ∈ [0, 1
2σmap] ∪ [1− 1

2σmap, 1)

0 otherwise.
(17)

Thus, for V̄ ∈ [0, σmap/2] neurons in the trailing half of
the distribution are firing, while for V̄ ∈ [1−σmap/2, 1)
neurons in the leading half are firing.

With n + τd the time at which the periodic inhibition

arrives in the nth-cycle and letting tn be the time at
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FIG. S2. Uncorrelated noise synchronizes population
rhythms of two coupled IF-networks with random connec-
tivity. Phase diagram showing transitions between differ-
ent phase-locked and synchronized states as a function of
noise and input ratio. Color hue and saturation indicate
frequency ratio and logarithmic power ratio of the domi-
nant Fourier modes (cf. Fig.3). Parameters: Nα = 500,
ε1 = 0.56, ε2 = 0.24, τ = 20ms, τ1 = 4ms, τ2 = 5ms,
τd = 2ms, Vrest = −55mV, Vθ = −45mV, Vr = −65mV,
Vrev = −85mV, gsyn = 0.015, γ0 = 1.5, µ = 200s−1.

FIG. S3. The synchronization via reverse period-doubling
can be captured in a heuristic map model. A) Temporal
evolution of the normalized mean voltage V̄ , with lag θ̄n
indicated and plotted in terms of the cycles of the periodic
inhibition. B) Map given by equation (19). The fixed point
becomes stable with increasing noise level σ2

map.

which V̄ reaches threshold, V̄ (tn) = 1, we focus on the
situation in which the external inhibition arrives before
any of the self-inhibition sets in that is triggered by the
oscillators in network 2,

n+ τd < tn −
σmap
2ρmap

+ τd.

The external inhibition induces a reset

V̄ (n+ τd)→ e−g1 V̄ (n+ τd).

For sufficiently strong coupling g1 it keeps the trailing
oscillators from spiking and from contributing to the
self-inhibition. Thus, self-inhibition lasts from

t<n = tn −
σmap
2ρmap

+ τd

to

t>n = min

(
n+ 2τd, tn +

σmap
2ρmap

+ τd

)
.

During that time ∆t ≡ t>n − t<n it induces a voltage
change that leads to

V̄ (t>n ) = e
−g2

ρmap
σmap

∆t
V̄ (t<n ) +

σmap
g2

(1− e−g2
ρmap
σmap

∆t
).

(18)

Combining equation (18) with the voltage evolution dur-
ing the remaining time yields a Poincare map for the lag
θ̄n ≡ 1− V̄ (n) of network 2 relative to the periodic in-
hibitory input (supplementary Fig.S3B),

θ̄n+1 = F (θ̄n). (19)

The fixed point θ̄FP = F (θ̄FP ) corresponds to a 1:1
synchronized state. Its stability depends on the slope
F ′(θ̄FP ). It is only stable (

∣∣F ′(θ̄FP )
∣∣ < 1) for large

widths σmap of the distribution P , i.e. for suffi-
ciently strong noise, and becomes unstable via a period-
doubling bifurcation at F ′(θ̄FP ) = −1 as the noise is
reduced.

Thus, this simple map model extracts the key role of the
noise-induced heterogeneity of the spike times in net-
work 2 in the synchronization of the population rhythms
found in the full network simulations (Figs.3,4,8) and
gives further support for the mechanism that we ex-
tracted from our simulations (Figs.5,8).

Dependence of Synchronization on the Duration of
Inhibition and the Reversal Potential

To assess the generality of the synchronization mecha-
nism we vary key aspects of the inhibition: its tempo-
ral evolution and its reversal potential Vrev. To vary
the effective delay and the duration of the inhibition we



4

g0=1
Fast κ=1
Vrev=-50mV

g0=2

Vrev=-40mV
Slow κ=3

g0=1
Fast κ=1
Vrev=-80mV

g0=0.5

Vrev=-80mV
Slow κ=3

ρρ

σ
σ

FIG. S4. Phase diagrams for networks of type-2 Morris-
Lecar neurons demonstrate that increasing noise synchro-
nizes the rhythms for fast (κ = 1) and slow inhibition (κ = 3)
and over a large range in reversal potential Vrev. Parameters
as in Fig.8 with Vθn = 2mV.

rescale the rise and decay times τ1,2 by a common factor
κ,

Ȧ
(1,2)
i = −A

(1,2)
i

κ τ1,2
+

N∑
j=1

∑
k

Wij δ
(
t− t(k)

j − τd
)
. (20)

For κ > 1 this shifts the decay and the peak of the inhi-
bition to later times. The latter amounts to an increase
in the effective delay. The reversal potential Vrev deter-
mines the dependence of the inhibition on the voltage
of the cell receiving the inhibition,

I
(syn)
i = g0

gsyn
R

(
A

(2)
i −A

(1)
i

)
(Vrev − Vi) . (21)

We have included a factor g0 in Eq.(21), which indicates
the change in the synaptic strength used in Figs.S4,S5
compared to the main part of the paper.

If the reversal potential is significantly below the resting
potential of the cell, the conductance-based inhibition is
very similar to inhibition by a fixed negative current. It
shifts the voltage of the fixed point that corresponds
to the non-spiking state to more negative (hyperpolar-
ized) values. However, if the reversal potential is at the
resting potential, inhibition vanishes for the non-spiking
cell and the location of the fixed point is not affected.
Nevertheless, synaptic input increases the conductance
of the cell and functions as a shunt for any excitatory
inputs, stabilizing the fixed point. With respect to the
formation of a γ-rhythm within an individual network
it is known that with shunting inhibition type-2 neu-
rons tend to synchronize only poorly and the γ-rhythms
themselves tend to be ffragile [64].

We find that uncorrelated noise synchronizes the
rhythms over a wide range of the time scale of the inhibi-
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FIG. S5. Phase diagrams for networks of type-1 Morris-
Lecar neurons demonstrate that increasing noise synchro-
nizes the rhythms for fast (κ = 1) and slow inhibition (κ = 3)
and over a large range in reversal potential Vrev. Parameters
as in Fig.8 with Vθn = 12mV.

tion and of the reversal potential for networks of type-1
neurons (supplementary Fig.S5) and of type-2 neurons
(supplementary Fig.S4). Here we use the Morris-Lecar
model for both types of neurons. Interestingly, in some
cases the synchronization does not involve a period-
doubling bifurcation (supplementary Figs.S4A, S5A,C).
For values of the reversal potential close to the rest-
ing potential synchronization does not occur for type-2
Morris-Lecar neurons, reflecting the fragility of the γ-
rhythms themselves [64].

Correlations

The synchronization of the population rhythms does not
imply the synchronization of individual oscillators. To
demonstrate this we measure the equal-time correlation
between the voltages of the individual neurons within

network 2 (〈V (2)
j , V

(2)
k 〉) and compare it with the corre-

lation between the LFP of network 2 and the periodic
forcing (〈V̄ (2), V̄ (1)〉). For the latter we determine the
phase shift between the two signals from the difference
in the phases of their dominant Fourier modes and plot
in supplementary Fig.S6A the correlation for that de-
lay as a function of the noise and the input ratio ρ(2).
Mirroring the phase diagram of the periodically forced
network (Fig.4) the correlation between the LFP of net-
work 2 and the periodic forcing increases with noise.
However, the voltage correlations between the individ-
ual neurons within network 2 decrease monotonically
with increasing noise strength (supplementary Fig.S6B),
reflecting the decrease in the local order parameters in
Fig.2B.
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FIG. S6. Correlations between rhythms and between individual oscillators respond oppositely to noise. A) The correlation

〈V̄ (1), V̄ (2)〉 between the LFP of network 2 and the periodic inhibition increases with increasing noise (cf. Fig.4). B) The

average of the equal-time correlations 〈V (2)
j , V

(2)
k 〉 between individual neurons j and k in network 2 decreases monotonically

with increasing noise strength. Parameters as in Fig.4.


