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Supplementary Note 1: Alternative approaches in Bayesian network
analysis.
We implemented one of many ways in which a Bayesian network could be designed, trained,
and used to infer information from eigengenes. We discuss some of the prominent alternative
approaches below.

1. The BN design: In this study, the disease type is modeled by the Effect node, which is
a binary random variable that cannot have any children by construction. An alternative
design could allow this node to have children but no parents. Our preliminary results suggest
that both of these designs lead to similar accuracy for the classification of AML vs. MDS
(data not shown). However, we believe this could be due the relatively strong features we
used (Fig 3); therefore, further experiments with other datasets are needed to determine the
superior design.

One argument in favor of the alternative design is that it can model the variables that are
independent conditioned on the disease type. For simplicity, assume that (a) the model
consists of only two eigengenes, each corresponding to a biological pathway that is inactive
in MDS, and (b) these two biological pathways are independently active in AML. Then,
the corresponding eigengenes are conditionally independent given the disease. While this
is a plausible biological scenario, the first design cannot model this kind of probabilistic
dependencies. In contrast, the alternative design can model a naı̈ve Bayes classifier, that
is, a network in which the two eigengenes are the children of the disease node and there
is no edge between them. In this model, eigengenes are conditionally independent because
they are d-separated.1 The learn.bn function of the Pigengene package can implement
the alternative design using use.Disease=TRUE and use.Effect=FALSE .



Supplementary Information

2. Discretization: Early attempts to use Bayesian networks for modeling gene expression data
involved discretizing the level of expression to avoid computationally prohibitive calcula-
tions over continuous distributions.2 Using current common computational resources, the
bnlearn package can learn the structure of a BN in which each node is a continuous, Gaus-
sian random variable. While this approach avoids the possible loss of information due to
discretization, applying it in this study required that we assumed that the distribution of the
eigengenes is Gaussian (normal). Furthermore, Friedman et al. reported that the two discrete
and continuous methods highlight different types of connections between genes.3 In apply-
ing our approach on other datasets that may be better modeled using continuous distributions,
we recommend that a normality test is applied first.4 If the distribution of the eigengenes
fails the test, then one should use a proper transformation,5, 6 such as the log transformation,
the Box-Cox transformation,7 quantile normalization,8 or rank normalization.9, 10

3. Inference: To predict the value of the Effect node, we used the bnlearn package (Version
4.0), and we set method=bayes-lw . With this setting, bnlearn uses likelihood weight-
ing,11, 12 which is an importance sampling algorithm.13 That is, bnlearn averages 500 like-
lihood weighting simulations performed using all the available nodes as evidence. An al-
ternative approach would be to export the BN model that was fitted by bnlearn, and use
it as an input to other tools that are more suited for exact or approximate inference, such
as JAGS,14 OpenBUGS,15 and Stan.16 Some of these powerful tools have very recent R
interfaces. Alternative approximate inference algorithms include stochastic Markov Chain
Monte Carlo (MCMC),17, 18 mini-bucket elimination,19 loopy belief propagation,20 gener-
alized belief propagation,21 and variational methods.22 In the specific BN design that we
presented here, inference is relatively simple. That is, because the Effect node has no chil-
dren by construction, conditioned on its parents, which are all observed random variables,
Effect is independent from the rest of the network. Therefore, we expect that similar results
would be obtained from our BN design if alternative inference algorithms were used.
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8. Bolstad, B. M., Irizarry, R. A., Åstrand, M. & Speed, T. P. A comparison of normalization
methods for high density oligonucleotide array data based on variance and bias. Bioinformat-
ics 19, 185–193 (2003).

9. Tsodikov, A., Szabo, A. & Jones, D. Adjustments and measures of differential expression
for microarray data. Bioinformatics 18, 251–260 (2002).

10. Szabo, A. et al. Variable selection and pattern recognition with gene expression data gener-
ated by the microarray technology. Mathematical Biosciences 176, 71–98 (2002).

11. Fung, R. M. & Chang, K.-C. Weighing and integrating evidence for stochastic simulation
in bayesian networks. In Proceedings of the Fifth Annual Conference on Uncertainty in
Artificial Intelligence, 209–220 (North-Holland Publishing Co., 1990).

12. Shachter, R. D. & Peot, M. A. Simulation approaches to general probabilistic inference on
belief networks. In Proceedings of the Fifth Annual Conference on Uncertainty in Artificial
Intelligence, 221–234 (North-Holland Publishing Co., 1990).

13. Rubinstein, R. Y. & Kroese, D. P. Simulation and the Monte Carlo method, vol. 10 (John
Wiley & Sons, 2016).

14. Denwood, M. J. runjags: An r package providing interface utilities, model templates, par-
allel computing methods and additional distributions for mcmc models in jags. Journal of
Statistical Software 71, 1–25 (2016).

15. Lunn, D., Spiegelhalter, D., Thomas, A. & Best, N. The bugs project: evolution, critique and
future directions. Statistics in medicine 28, 3049–3067 (2009).

16. Carpenter, B. et al. Stan: A probabilistic programming language. Journal of Statistical
Software 76, 1–32 (2017).

17. Pearl, J. Evidential reasoning using stochastic simulation of causal models. Artificial Intelli-
gence 32, 245–257 (1987).

18. Chavez, R. M. & Cooper, G. F. A randomized approximation algorithm for probabilistic
inference on bayesian belief networks. Networks 20, 661–685 (1990).

19. Dechter, R. & Rish, I. Mini-buckets: A general scheme for bounded inference. Journal of
the ACM (JACM) 50, 107–153 (2003).

20. Murphy, K. P., Weiss, Y. & Jordan, M. I. Loopy belief propagation for approximate inference:
An empirical study. In Proceedings of the Fifteenth conference on Uncertainty in artificial
intelligence, 467–475 (Morgan Kaufmann Publishers Inc., 1999).

21. Yedidia, J. S., Freeman, W. T. & Weiss, Y. Understanding belief propagation and its general-
izations. Exploring artificial intelligence in the new millennium 8, 236–239 (2003).

3/4



Supplementary Information

22. Jordan, M. I., Ghahramani, Z., Jaakkola, T. S. & Saul, L. K. Introduction to variational
methods for graphical models. Machine Learning 37, 183–233 (1999).

4/4


	References

