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Supplementary Figure S1. The distribution of module sizes.
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Supplementary Figure S2. Graphical presentation of the steps for learning the BN
structure using the bnlearn package. Observed random variables (input data) are the
eigengene values obtained from the training (MILE) dataset. Eigengenes are discretized using
Hartemink’s method (the discretize function). The discretized eigengenes were used to learn
500 BNs with random restarts (the bn.boot function). The BDe scores are calculated for all
learned BNs (the score function). The consensus network is inferred based on the top third
networks with the best scores (the averaged.network and pdag2dag functions).
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Supplementary Figure S3. Score improvement. For any number of learned BNs in the
range of 1 to 500 (the x-axis), the BDe score of the best BN is shown on the y-axis. Scores did
not improve beyond 300 networks.
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(A) MILE dataset (B) BCCA dataset

Supplementary Figure S4. Expression of the 33 top differentially expressed genes on the
MILE and BCCA dataset. These genes are clearly differentially expressed in the MILE
dataset (A) but not in the BCCA dataset (B). This illustrates the normalization and
standardization challenges in comparing the microarray and RNA-seq data, and highlights the
significance of eigengenes as robust features with respect to the profiling platform.
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Supplementary Figure S5. The scale-free topology values.
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Supplementary Figure S6. Graphical presentation of the steps for performing
cross-validation on the training (MILE) dataset.
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