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Manifold learning framework
Recently, manifold learning, such as t-SNE [1], has been successfully applied as a general
framework for nonlinear dimensionality reduction in machine learning and pattern recognition
[2, 3, 4, 5]. It aims to reconstruct the underlying low-dimensional manifolds from the abstract
representations in the high-dimensional space, that is, it uncovers the intrinsic low-dimensional
manifolds which preserve the local neighbourhoods of high-dimensional data (Supplementary
Figure S1).

In practice, many high-dimensional data of interest lie on the structures that are intrinsically
embedded from a low-dimensional manifold. For example, in computer vision, images of
faces can be regarded as points in a high-dimensional vector space, in which each dimension
corresponds to the brightness of every pixel in the image. All the images can be considered to lie
on an intrinsic 3D manifold parameterized by two pose variables and and an azimuthal lighting
orientation angle [2]. In our chromatin structure modeling problem, the meaningful spatial
organizations of chromosomes can be interpreted as the geometry of manifolds in 3D Euclidean
space. The Hi-C interaction frequency data can be regarded as a specific representation of the
neighboring affinities reflecting the spatial arrangements of genomic loci, which is intrinsically
determined by the underlying manifolds embedded in Hi-C space. Thus, manifold learning can
be used here to uncover the meaningful geometry of manifolds in low-dimensional space based
on a process of neighborhood embedding, which preserves the local neighborhood of genomic
loci in Hi-C space.

Modeling the conformational energy of chromatin structures
According to our known biophysical knowledge of a polymer model [6, 7, 8], the physical
potential of a chromatin conformation can be described by an energy function E(m) consisting of
three terms, including the stretching energy Estretch, the bending energy Ebend and the excluding
energy Eexclude, that is,

E(m) = E(m)
stretch + E(m)

bend + E(m)
exclude. (1)

First, the stretching energy term Estretch accounts for the stretching resistance of chromatin
fibers, which is defined by the following equation

E(m)
stretch =

n−1∑
i=1

1
2

ks(‖s
(m)
i+1 − s(m)

i ‖ − li)2, (2)
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where ks stands for the bond spring constant characterizing the chromatin stiffness, and li stands
for the equilibrium length of the i-th segment in the modeled chromatin structure. Since the
sequence length for each pair of adjacent genomic loci is known, their corresponding distance li

can be generally derived based on the packing density, which is usually assigned with 130bp/nm
[9, 10] in approximate 10 kb resolution and can be computed based on a 1/3 power-law rela-
tionship between spatial distances and corresponding genomic distances in other resolutions
(which can be derived mainly based on the 3D FISH data [11] or the fractal globule model
[12]).

Second, the bending energy term Ebend accounts for the bending potential of chromatin
fibers [13], which is defined by the following equation,

E(m)
bend =

n−1∑
i=2

1
2

kθ
〈
s(m)

i+1 − s(m)
i , s(m)

i − s(m)
i−1

〉2
, (3)

where kθ denotes the bending energy constant and 〈·〉 denotes the angle between two adjacent
segments.

Third, the excluding energy term Estretch accounts for the inter-particle repulsive potential.
It takes the form of the repulsive part of the Lennard-Jones potential [14, 15], that is,

E(m)
exclude =
∑

2≤i+1≤ j≤n

4ε


 d0

d(m)
i j


12

−

 d0

d(m)
i j


6

+
1
4

 , d(m)
i j < 2

1
6 d0;

0, otherwise,

(4)

where d(m)
i j = ‖s(m)

i − s(m)
j ‖ stands for the Euclidean distance between s(m)

i and s(m)
j , ε is a Lennard-

Jones energy parameter, and d0 is the Lennard-Jones size parameter, which represents the dis-
tance threshold within which the repulsive force is zero. For the parameters in E(m), we use the
same setting as in [15, 16]. The details of these parameter choices are provided in Supplemen-
tary Table S1.

Optimization of the objective function
The overall cost function C of GEM is defined as

C = C1 + λEC2, (5)

We use gradient descent to minimize C in Equation (5). In particular, the gradient of C is
calculated as follows

∂C

∂s(m)
i

=
∂C1

∂s(m)
i

+ λEπ
(m)∂E(m)

∂s(m)
i

, (6)

∂C
∂π(m) =

∂C1

∂π(m) + λEE(m). (7)

The gradient of C1 with respect to the coordinates s(m)
i in 3D Euclidean space is given by

∂C1

∂s(m)
i

= 4
∑

j

∂C1

∂d(m)
i j

(s(m)
i − s(m)

j ), (8)
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where d(m)
i j stands for the Euclidean distance between s(m)

i and s(m)
j , and

∂C1

∂d(m)
i j

=
π(m)(pi j − qi j)(1 + d(m)

i j )−2

qi jZ
, (9)

Z =
∑

k

∑
l,k

∑
m′
π(m′)(1 + ‖s(m′)

k − s(m′)
l ‖

2
)−1. (10)

From the term (1+d(m)
i j )−2 in the above gradient, we can also see that two neighboring nodes are

not likely to be modeled by widely separated points. Also, π(m) is defined as follows to satisfy
the definition of probability, that is,

π(m) =
e−w(m)∑
m′ e−w(m′)

. (11)

Then we can obtain a new version of the gradient

∂C1

∂w(m) = π(m)

∑
m′
π(m′) ∂C1

∂π(m′)

 − ∂C1

∂π(m)

 , (12)

where
∂C1

∂π(m) =
∑

k

∑
l,k

(qkl − pkl)(1 + d(m)
kl )−1

qklZ
. (13)

The gradient of E(m) with respect to s(m)
i includes three parts, that is,

∂E(m)

∂s(m)
i

=
∂E(m)

stretch

∂s(m)
i

+
∂E(m)

bend

∂s(m)
i

+
∂E(m)

exclude

∂s(m)
i

. (14)

The first part is given by

∂E(m)
stretch

∂s(m)
i

=


(G11 + G12), i = 2, · · · , n − 1;

G11, i = 1;
G12, i = n,

(15)

where

G11 = −ks(‖∆s(m)
i ‖ − li)

∆s(m)
i

‖∆s(m)
i ‖

, (16)

G12 = ks(‖∆s(m)
i−1‖ − li−1)

∆s(m)
i−1

‖∆s(m)
i−1‖

, (17)

∆s(m)
i = s(m)

i+1 − s(m)
i . (18)

The second part is given by

∂E(m)
bend

∂s(m)
i

=



(G21 + G22 + G23), i = 3, · · · , n − 2;
G23, i = 1;

G21 + G23, i = 2;
G21 + G22, i = n − 1;

G22, i = n,

(19)
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where

G21 =

kθ arccos ∆s(m)
i ∆s(m)

i−1

‖∆s(m)
i ‖‖∆s(m)

i−1‖√
‖∆s(m)

i ‖
2
‖∆s(m)

i−1‖
2
− (∆s(m)

i ∆s(m)
i−1)2

·

∆s(m)
i − ∆s(m)

i−1 +
∆s(m)

i ∆s(m)
i−1

‖∆s(m)
i ‖

2 ∆s(m)
i −

∆s(m)
i ∆s(m)

i−1
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2 ∆s(m)
i−1

 ,
(20)

G22 =

kθ arccos ∆s(m)
i−1∆s(m)

i−2

‖∆s(m)
i−1‖‖∆s(m)
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‖∆s(m)
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2
‖∆s(m)

i−2‖
2
− (∆s(m)

i−1∆s(m)
i−2)2
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i−2
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2 ∆s(m)
i−1

 , (21)

G23 =

kθ arccos ∆s(m)
i+1∆s(m)

i

‖∆s(m)
i+1‖‖∆s(m)

i ‖√
‖∆s(m)

i+1‖
2
‖∆s(m)

i ‖
2
− (∆s(m)

i+1∆s(m)
i )2

−∆s(m)
i+1 +

∆s(m)
i+1∆s(m)

i

‖∆s(m)
i ‖

2 ∆s(m)
i

 . (22)

The third part is given by

∂E(m)
exclude

∂s(m)
i

=


∑

1≤ j≤n

24ε

−2d12
0

s(m)
i − s(m)

j

d(m)
i j

14 + d6
0

s(m)
i − s(m)

j

d(m)
i j

8

, d(m)
i j < 2

1
6 d0 & i , j;

0, otherwise.

(23)

Based on the above derivations, we can develop an adaptive gradient descent method to
solve the optimization problem in Equation (5). In particular, the learning rates for π(m) and
s(m)

i can be changed constantly during different stages to accelerate the optimization process.
However, there may exist a “sinking” problem in such an optimization strategy, if the random
initialization process leads to a huge difference of goodness between a pair of conformations.
In such a case, if the learning rate for π(m) is too large, π(m) of those structures that deviated
largely from random initialization will sink at zero rapidly, and these conformations will not
be considered during the downstream optimization process, mainly due to the vanishing gradi-
ent, although they can still converge to proper solutions if a sufficient number of optimization
iterations are performed.

To address this problem, we could employ two strategies during the optimization process,
i.e., two-stage optimization and asynchronous starting. The first strategy is to divide the whole
optimization procedure into two stages, including average-structure optimization and multi-
conformation optimization. In particular, we first compute an average structure using a single-
conformation version of GEM. Then, this average structure is used as an initial structure for
the second-stage optimization, which is accomplished through a multi-conformation version of
GEM. Initialization from such a pre-computed structure that is not so far away the final solution
provides a beneficial guidance for optimization. More importantly, the goodness scores of the
initial conformations in the second-stage optimization do not has extremely large variance,
which thus can prevent the aforementioned sinking problem. The second strategy that we
could use is to delay the update of the learning rates of π(m) in the second-stage optimization
if the goodness scores of the initial conformations remain considerably different. Under such
a strategy, it is unlikely that the sinking problem will occur, after a number of iteration steps
to optimize the conformations with relatively fixed weights. In practice, we found that the first
strategy is often sufficient enough to prevent the sinking problem.
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Generation of simulated Hi-C data
The simulated Hi-C data were generated according to the following procedure. At the begin-
ning, we applied the Brownian simulation method to generate a set of random chromatin con-
formations, each of which imitated a real chromatin conformation in Hi-C experiments. Let Nc

denote the total number of cells. Then we mimicked the experimental Hi-C protocol to obtain
the simulated Hi-C interaction frequency map. First, the restricted sites along the synthetic
chromatin conformations were chosen randomly and then cleaved by the restriction enzymes.
Second, as in the study by Trussart et al. [17], we used a Gaussian process to generate the ge-
nomic interactions between restriction sites. In particular, let Pm and σ denote the scaling factor
(i.e., the maximum interaction probability) and the standard deviation of the Gaussian function
describing the relationship between the probability of generating the interaction and the spatial
distance between a pair of genomic loci. Let dinteract denote the spatial distance between a pair
of genomic loci and Pinteract denote the probability of generating the corresponding genomic
interaction. The Gaussian process of generating the genomic interaction can be described as,

Pinteract = Pme(−
d2
interact
2σ2 ). (24)

Due to experimental uncertainty, not all the interactions between restriction sites can be
captured by Hi-C experiments. Here, we used the trapping rate αt to model such experimental
uncertainty, this is, with probability αt, an occurred interaction is observed between restriction
sites, otherwise it is missed with probability 1 − αt. After considering the trapping rate αt,
Equation (24) can be rewritten into the following form,

Pinteract =

 Pme(−
d2
interact
2σ2 ), with probability αt;

0, with probability 1 − αt.
(25)

Overall, the simulation process for generating a synthetic interaction frequency dataset can be
determined by parameters (αt, Pm, σ,Nc).

The 10-fold cross-validation procedure
The Hi-C data of a chromosome were randomly divided into 10 roughly equal-sized subsets.
Nine of them were selected as training data and input into GEM to compute the chromatin
structures. Based on the latent function between interaction frequencies and spatial distances
between genomic loci derived by GEM (see the dashed box in Figure 1), the modeled chro-
matin structures can also be used to obtain the reconstructed or predicted Hi-C map. Then the
remaining subset was held as test data to assess the accuracy of the modeled conformations by
comparing the original Hi-C map to the reconstructed Hi-C map. Such a process was performed
10 folds, and the average result was used to evaluate the final modeling performance.

The convergence and parameter selection of GEM
We examined the convergence of the optimization procedure employed in GEM, which is a two-
stage optimization scheme including average-structure optimization and multi-conformation
optimization. As shown in Supplementary Figure S6a, both optimization stages converged
successfully. In the first optimization stage, which aimed at computing the average structure,
the cost function descended rapidly at the beginning. After 2000 iterations, the cost function
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began to converge, indicating a stable average structure was reached. After that, the second
optimization stage was performed to obtain multiple conformations. Probably because the
average structure had been determined, the cost function only descended slightly in this stage.
Overall, the second optimization stage converged after approximate 20000 iterations.

In our model, the only parameter, the coefficient of the energy term λE, determines a trade-
off between the fitness of the spatial constraint derived from Hi-C data and structural feasibility
measured in terms of conformational energy. The parameter λE can be decided by the users
according to their emphasized aspects. Alternatively, this parameter can be determined by the
following two automatic methods.

First, inspired by previous studies [18, 16, 19], we can use a Bayesian approach to determine
the proper value of the coefficient of the energy term, λE, based on extra priori knowledge, such
as the volume of a chromosome obtained by direct experimental observations or estimated by
indirect experimental observations (e.g., DNA density [20]). The goal is to select a proper
value of λE that best interprets both the input Hi-C data and the observation about the volume
of a chromosome. The posterior probability Pr(λE |H,V) of the coefficient λE given Hi-C data
H and the volume of a chromosome V can be derived according to Bayes’ theorem, i.e.,

Pr(λE |H,V) =
Pr(H,V |λE) Pr(λE)

Pr(H,V)

=
Pr(H|λE) Pr(V |λE) Pr(λE)

Pr(H) Pr(V)
∝ Pr(H|λE) Pr(V |λE) Pr(λE).

(26)

Based on the maximum a posteriori estimation of λE, we define a Bayesian score to evaluate
the parameter λE for our model. We assume that the prior distribution of λE is uniform, and
thus Pr(λE) can be considered constant and is not necessary to be included in the Bayesian
score. The final optimized value of the KL divergence C1 mentioned in Equation (5), which is
dependent on λE during the optimization process, measures the degree of mismatch (ranging
from 0 to 1) between structures calculated with λE and the Hi-C data. Here, we use 1 − C1

to define Pr(H|λE). In addition, the mismatch between the volume of a computed structure v′

(which is also dependent on λE) and its real volume v can be measured by the relative error
ratio. Here, we use the inverse of this relative error ratio to define Pr(V |λE). To sum up, the
Bayesian score is defined as,

Bayesian score = Pr(λE |H,V)
= Pr(H|λE) Pr(V |λE) Pr(λE)

∝ (1 −C1)(
v

|v − v′|
).

(27)

Second, if we do not have any priori knowledge, we can transform the parameter selection
into a multi-criteria decision problem and use TOPSIS [21] to obtain the best estimate of pa-
rameter λE. In this setting, each value of different λE is regarded as a decision that is evaluated
by two criteria C1 and C2.

In our study, we employed the Bayesian approach to perform parameter selection. We
computed the Bayesian scores with respect to a wide range of the coefficient of energy term λE

(Supplementary Figure S6b) and then chose λE = 5 × 10−12 which had the maximum Bayesian
score, as the most reasonable parameter for human chromosome 14 (which is marked by the
orange dashed line in Supplementary Figure S6b). In practice, we only need to select a rough
range for λE because in general the change of λE within the same order of magnitude has lit-
tle influence on the performance of our model, measured by the Pearson correlation between
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experimental and reconstructed Hi-C data in the 10-fold cross-validation procedure (Supple-
mentary Figure S6c).

Supplementary Figures and Tables

High-dimensional Space

2D space

Supplementary Figure S1: A schematic illustration of manifold learning. In high-
dimensional (3D for example) space, the data points lie on a “Swiss roll” structure. Af-
ter embedding the data points from high-dimensional space into low-dimensional (2D for
example) space by manifold learning, the intrinsic manifold is uncovered.
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Supplementary Figure S2: The validation results on the simulated Hi-C data, which were
generated according to different settings of the maximum interaction probability Pm (see
Supplementary Methods). (a) The comparisons of Pearson correlations between GEM
and other modeling methods, including the MDS [22, 23] based model, ChromSDE [24]
and ShRec3D [25]. (b) and (c) show the typical examples of the simulated Hi-C maps and
the corresponding distributions of the simulated interaction frequencies as Pm increases,
respectively. In the simulated Hi-C maps, the axes denote the genomic loci (1 Mb reso-
lution) and the values of the entries indicate the simulated interaction frequencies. In the
histograms, the x axes denote the interaction frequencies obtained from the Hi-C maps and
the y axes denote the numbers of data points falling into individual interaction frequency
intervals.
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Supplementary Figure S3: The validation results on the simulated Hi-C data, which were
generated according to different settings of the standard deviation of Gaussian function
σ (see Supplementary Methods). (a) The comparisons of Pearson correlations between
GEM and other modeling methods, including the MDS [22, 23] based model, ChromS-
DE [24] and ShRec3D [25]. (b) and (c) show the typical examples of the simulated Hi-C
maps and the corresponding distributions of the simulated interaction frequencies as σ in-
creases, respectively. In the simulated Hi-C maps, the axes denote the genomic loci (1
Mb resolution) and the values of the entries indicate the simulated interaction frequencies.
In the histograms, the x axes denote the interaction frequencies obtained from the Hi-C
maps and the y axes denote the numbers of data points falling into individual interaction
frequency intervals.
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Supplementary Figure S4: The validation results on the simulated Hi-C data, which were
generated according to different settings of the number of cells Nc (see Supplementary
Methods). (a) The comparisons of Pearson correlations between GEM and other modeling
methods, including the MDS [22, 23] based model, ChromSDE [24] and ShRec3D [25].
(b) and (c) show the typical examples of the simulated Hi-C maps and the corresponding
distributions of the simulated interaction frequencies as Nc increases, respectively. In the
simulated Hi-C maps, the axes denote the genomic loci (1 Mb resolution) and the values
of the entries indicate the simulated interaction frequencies. In the histograms, the x axes
denote the interaction frequencies obtained from the Hi-C maps and the y axes denote the
numbers of data points falling into individual interaction frequency intervals.
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Supplementary Figure S5: Comparison results between different modeling methods,
showing the plot of the Pearson correlations between experimental Hi-C data and predicted
interaction frequencies of human chromosome 14 as a function of genomic distance.
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Supplementary Figure S6: The convergence and parameter selection of GEM. Here,
human chromosome 14 at a resolution of 1 Mb was used as an example. (a) The conver-
gence results on the cost function C in Equation (5). The first-stage optimization (i.e.,
average-structure optimization) took about 1000 iterations and stopped at the position
marked with black cross, which denotes the start of the second-stage optimization (i.e.,
multi-conformation optimization), which also took about 1000 iterations. (b) The Bayesian
score as a function of the coefficient parameter λE that weighs the conformational energy
term. The value of λE (5 × 10−12) with the maximum Bayesian score was used in GEM,
which is marked by the orange dashed line. (c) The 10-fold cross-validation results (eval-
uated in terms of the Pearson correlation between experimental and reconstructed Hi-C
data) as a function of the coefficient parameter λE for the conformational energy term. The
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Supplementary Figure S7: Comparisons between different modeling methods on the EN-
m008 ENCODE region containing the α-globin locus in terms of the ratios of spatial dis-
tances between two modeled regions (i.e., positions 55911-56690 and 402437-418222 on
chromosome 16) between GM12878 and K562 cells. The ratio of the corresponding spatial
distances derived from the FISH probes in [26] is also shown.
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Supplementary Table S1: The parameter setting of the conformational energy model. kB

denotes the Boltzmann constant and T denotes the absolute temperature. T is set to 300K
according to [15, 16].

Parameter Symbol Reduced unit SI unit
Bond spring constant ks 500kBT/d2

0 2.3 × 10−3J · m−2

Bending energy constant kθ 4kBT/rad2 1.7 × 10−20J · rad−2

Lennard-Jones energy parameter ε 1.0kBT 4.1 × 10−21J
Lennard-Jones size parameter d0 1.0 30nm

Supplementary Table S2: The enrichments of the functional elements (compared with the
background) in both missing and known chromatin loops on human chromosome 19.

Missing loops Known loops
H3K27ac 1.4020 1.1203

DNase-seq 1.7797 1.6842
H3K4me3 1.4423 1.3410
H3K4me1 1.2934 1.1034
Promoters 1.5563 2.4234
Enhancers 3.1685 2.5611
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