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A. Code Selection in the Bulk Learning Set 

 

The set of infectious diseases in the experiment was selected by taking into account the hierarchical 

structure of ICD-9 codes and the size of the data. Specifically, the ICD-9 system is a taxonomy of 

diagnostic codes organized in a tree structure with the first three digits representing disease category and 

additional digits after the decimal point indicating specific morbidity information. In principle, any set of 

clinical conditions that share common clinical factors in the diagnoses and treatments can be included in a 

bulk learning set as long as it is feasible to identify common variables with supporting data for the clinical 

cases in the set. In this study, we focus on the class of infectious (and parasitic) diseases that are known to 

share the predictive variables associated with the four phenotypic groups – microbiology, antibiotic, blood 

test, and urine test – which are by no means an exhaustive list. To better understand the applicability of the 

bulk-learning framework in a more generic setting, we selected the ICD-9 codes in a manner that 

encourages a higher diversity of infection categories, outlined in Table 1 in the paper. In particular, we 

excluded HIV infection from our training data due to its large data volume.  

 

On the surface, it may seem that a pure random selection from among all infectious diseases is the most 

unbiased choice to form the bulk learning set; nonetheless, such strategy can lead to clusters of clinically 

similar conditions due to the hierarchical structure of the coding system. For instance, 036.0 and 036.1 

represent meningococcal meningitis and meningococcal encephalitis respectively and share pathological 

similarity and common pathogens.  

 

For a greater diversity in the clinical cases, we employ a two-step random selection process based on the 

hash map where the digits prior to the decimal point serve as a key that references a bucket of full ICD-

codes. The random selection then proceeds by first selecting the key followed by selecting an ICD-9 code 

from the corresponding bucket where both steps follow a uniform distribution. In addition, the diagnostic 

codes are ranked according to their associated number of unique patients. In this manner, 100 different 

codes are selected from the “moderately ranked” in terms of their corresponding number of unique patients. 

The reason behind this strategy is to sufficiently exhibit the property of a varying data size distribution that 

occurs in practice and to reduce the size disparity of the training data across different diseases.  

 

 



B. Feature Extraction  

 

The process of the feature extraction highly depends on the data source format and the underlying data 

models. In this study, patient data in the CDR are organized in a structured format such that the feature set 

can be assembled by first identifying the target set of patients with the related diagnostic codes (which in 

this study are the 100 ICD-9 codes associated with infectious diseases). Once the relevant diagnostic entries 

are determined, we then cross-reference these entries with other tables containing the patient attributes (i.e. 

codified variables consistent with MED) associated with the target clinical concepts by matching the 

patient identifier (e.g. medical record number, MRN) and dates (e.g. admission dates and discharge dates).  

 

Assuming that the MRNs are unique, in the simplest case, one may consider using both MRN and date 

attributes as the composite foreign key to uniquely identify the patients in every table. However, in a 

typical healthcare process, a clinical visit involves a date range, i.e. admission and discharge, and mostly do 

not coincide with the dates associated with laboratory tests and medical prescriptions if involved as part of 

the diagnostic and treatment procedure. To increase the flexibility of the matching process, we use a 

predefined threshold of error to account for the potential gap between the dates when diagnostic codes were 

given and those of the relevant clinical procedures. For instance, a patient could receive diagnostic tests 

prior to a clinical visit or after the visit as a follow-up procedure; on the other hand, medicinal treatments 

are typically given following the visit. In this study, we looked for the clinical records that fall within the 

range of 60 days prior to the mention of a target ICD-9 code and 30 days following the mention. The 

tolerable errors in times shall be considered as adjustable parameters. 

 

 

C. Control Data 

 

As mentioned in the paper, control data are the negative examples for the predictive unit, formulated as a 

binary classifier, created to serve as counterexamples for a target disease. For clarity, we denote the bulk 

learning set by 𝐶: {𝐶𝑖 | 𝑖 = 1~𝑁} where 𝐶𝑖 denotes the cohort of the i-th infectious disease (expressed as an 

ICD-9 code) and N is the total number of diseases in the bulk learning set (N =100 in this study). It is 

convenient to overload the notation in the context of statistical learning such that 𝐶𝑖  also refers to the 

training data set associated with i-th infectious disease. Given this, one can simply denote 𝐶−𝑖 as the set of 

all cases excluding those in 𝐶𝑖, i.e. patients without the i-th infectious condition. Further, let 𝐶′ denote the 

set of clinical cases involving no infections. Thus, the control data for 𝐶𝑖 would potentially consist of the 

cohort sampled from 𝐶−𝑖 and 𝐶′. Intuitively, for a given cohort 𝐶𝑖 , using the sampled data from 𝐶−𝑖 as the 

control group can potentially identify the key clinical differences in the bulk learning set while using the 

cohort 𝐶′ as the control helps to distinguish infections from other broader classes of clinical conditions.  

 



Without judiciously selecting the control data, the chance of finding clinically meaningful predictors for a 

target disease may be greatly reduced. Recall from Section 2.2.4 that share variables are defined as the 

predictor variables that not only occur in the training instances of both class labels but also assume non-

trivial values, where the non-triviality depends on the domain of the variable and its meanings. A training 

data set with few shared variables tends to result in overly simplistic models in which strong predictors 

(e.g. large coefficients in absolute values in logistic classifier) are predominantly those with non-trivial 

values exclusively in positive or in negative training instances. This situation occurs when cases and non-

cases are too dissimilar in the sense of sharing a very small or even an empty set of active variables. For 

instance, mixing clinical cases from a non-infectious disease cohort in the control data is very likely to 

result in the lack of shared variables since these cases may not share similar treatments and laboratory 

results as those diagnosed with infectious conditions (e.g. patients without bacterial infections are unlikely 

to have received antibiotic treatments).  

 

Similarly, care must also be taken in selecting the control group from any non-target infectious diseases. 

For instance, cases involving septicemia, a serious bloodstream infection, are very likely to share some 

commonality in blood tests as those in other bacterial infections that also tend to spread through the 

bloodstream. The caveat is that during the diagnosis of a septicemia case, other testing such as urine culture 

could also be involved in order to either evaluate the source of the original infection or to rule out potential 

sources. Hypothetically, if a clinical variable representing the urine culture order is active in a significant 

portion of the positive examples for septicemia whereas only few or none of the cases mixed in the control, 

or negative examples, are active in this variable, then inevitably, urine culture will appear to be one of the 

strong predictors for septicemia, even though on the surface, variables as such may not seem to be directly 

relevant to the case. In general, the diagnostic tests used for ruling out tend to be strong predictors when 

they are active with high probability predominantly in one condition but not the others, which happen to be 

chosen as the control data.  

 

We now show a concrete numerical example. Consider a subset of training data in which 6 clinical 

variables {𝑥𝑖 | 𝑖 = 1~6} are used to predict a given disease. We can then consider a hypothetical data set 

that consists of 6 training instances encoded by a 6-by-6 design matrix X and its corresponding labels 

encoded by y, a 6-by-1 column vector, where each row in X represents a training instance and the first 3 

rows correspond to positive cases and last 3 rows are negative:  

 

𝑋 =

[
 
 
 
 
 
1 0 0 1 0 0
0 1 1 1 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 1 1 1 0
0 0 1 0 0 1]

 
 
 
 
 

  𝒚 =

[
 
 
 
 
 
1
1
1
0
0
0]
 
 
 
 
 

 

 



Notice that only the 2nd and 3rd variable (i.e. x2, x3) has a non-zero values (1 in this simple example) that 

occur in both positive and negative examples while all the other variables (i.e. x1, x4, x5) only assume non-

zeros exclusively in either positive or negative examples. For convenience, we refer to the variable set like 

{x2, x3} as shared variables since there exist, for both class labels, at least one or more training instances 

with “non-trivial values” for these variables. Note that the non-triviality certainly depends on the domain of 

the variable and the meaning of its allowable values. The assumption made in this example is simply that a 

value of 0 signifies a non-event (and hence trivial) whereas 1 signifies an event, in which case the variable 

is said to be non-trivial, or active, for the given training instance. Indeed, if one were to fit a parametric 

model such as a logistic classifier to this dataset, then the shared variables x2 and x3 would have relatively 

smaller coefficients (in absolute values). Intuitively, this can be concluded by observing that the variables 

in {x1, x4, x5} are active only in either positive or negative examples but not both and therefore, knowing 

the values of these variables provide significant information as for which label the corresponding training 

instances belong to; by contrast, knowing the values of the share variables still leaves much ambiguity to be 

resolved given that they are active in both labels of training instances. If we denote the coefficients for the 

variable set in terms of a weight vector w, then fitting the data above directly via an ℓ2-regularized logistic 

classifier (with ℓ2 penalty strength set to 1.0) results in coefficient/weight vector w approximately at (0.41, 

0.40, 0.07, -0.07, -0.40, -0.41), where the coefficients {w2, w3} for shared variables {x2, x3} have relatively 

lower absolute values as expected.  

 

Indeed, there is more to the interpretation of coefficients for the logistic classifier; however, this simple 

example suffices to demonstrate that the lack of shared variables can lead to an overly simplistic model in 

which strong predictors (i.e. those with high absolute coefficients) are predominantly those with non-trivial 

values exclusively in positive or in negative training instances. This situation can occur when the case and 

the non-case are too dissimilar in the sense that the case has a very different active variable set from that of 

the non-case. Using the data from the cohort 𝐶′ (i.e. cases without infections) as the control is very likely to 

result in the lack of shared active variables since the set 𝐶′  may not contain patients with matching 

treatments and laboratory results as those in 𝐶  (e.g. patients without infections are unlikely to receive 

antibiotic prescriptions).  

 

Similarly, care must also be taken in selecting the control group from within 𝐶−𝑖  for a given cohort of 

positive cases 𝐶𝑖 . For instance, cases involving septicemia, a serious bloodstream infection, are very likely 

to share some commonality in blood tests as those in other bacterial infections that also tend to spread 

through the bloodstream. The caveat is that during the diagnosis of a septicemia case, other testing such as 

urine culture could also be involved in order to either evaluate the source of the original infection or to rule 

out potential sources. Then, hypothetically if a clinical variable representing the urine culture order is active 

in a significant portion of the positive examples for septicemia whereas only few or none of the cases in the 

negative examples are active in this variable, then inevitably, urine culture will appear to be one of the 



strong predictors for septicemia, for reasons illustrated in the aforementioned example, even though on the 

surface, it may not seem to be directly relevant to the case. In general, the diagnostic tests used for ruling 

out tend to be strong predictors when they are active with high probability predominantly in one condition 

but not the others, which happen to be chosen as the control data. Note that although we have focused on 

binary explanatory variables so far, similar reasoning can be generalized to continuous or ordinal variables.  

 

In order to match the positive and negative cases in a manner that maximizes the number of the shared 

variables while considering all the diseases in the bulk learning set, a systematic matching strategy is 

perhaps more preferable than an ad-hoc disease-dependent strategy. The idea of mixing appropriate control 

data to reach the largest set of shared variables can be recast as a problem of finding the greatest similarity 

in terms of the Jaccard coefficient, which is useful in measuring the degree of overlap between two (active) 

variable sets. Specifically, let 𝐹𝑖 and 𝐹𝑗 denote the sets of clinical variables associated any two different 

diagnostic codes (𝑖 ≠ 𝑗), then their Jaccard coefficient can be expressed as:  

𝐽(𝐹𝑖, 𝐹𝑗) =
|𝐹𝑖  ∩ 𝐹𝑗|

|𝐹𝑖  ∪ 𝐹𝑗|
, 

which is simply the ratio of the size of the intersection and the size of the union of the variable sets. Since 

the bulk learning set in this study consists of 100 diagnostic codes, the index ranges from 1 to 100 (i.e. we 

consider {𝐹𝑖  | 𝑖 = 1~100} ). In considering maximizing the number of shared variables, we are only 

concerned with the active variables (out of the entire variable set). As mentioned in the paper, an 

explanatory variable is said to be active if and only if its value is non-trivial, which in this study is assumed 

to be any non-zero values. Since a training data can consist of an arbitrary number of cases, it is useful to 

define the frequency of active occurrences – the number of times that a variable assumes a non-zero value 

in the training set. Given this, we first rank the frequency of active occurrences for all variables in a 

training set, and subsequently take the top 80% most frequent active variables, which are then used to 

define {𝐹𝑖}. With all frequent active sets determined, we now have a basis to compare the similarity of any 

two training data sets by computing J. In particular, given a set of positive examples from 𝐶𝑖 (associated 

with the i-th diagnostic code), we choose the top N most similar sets of “non-cases” from 𝐶−𝑖 as the control 

data, where N was chosen to be 3 for the experiments in this study.  

 

In the paper, we mentioned that the training data from both class labels are compared on the basis of the 

global feature set. Alternatively, a more accurate matching process would involve matching case by case, 

with one from 𝐶𝑖  and the other from 𝐶−𝑖 , whereby a top-ranked non-cases are obtained for each 

corresponding case; however, a brute-force procedure like this can be computationally prohibitive when the 

sizes of the training sets are large.  

 

Moreover, the ratio between the positive and negative cases is another important factor that drives the 

prediction accuracy and stability. In particular, the control data obtained from the similarity-based criteria 



on active variables are inherently larger than the case data. We sample a subset of the negative examples to 

match comparably with the positives to obtain a balanced dataset. Situations may occur, however, when the 

positive examples are too few, making it difficult to enforce a balance in class labels. In such cases, 

existing methods range from generating synthetic samples and systematic oversampling for the minority 

class to systematic undersampling of the majority class, using unequal class weights, and using anomaly 

detection algorithms, among others, for which we refer the readers to [1–3] for more details. 

 

 

D. Medical Entities Dictionary 

 

In order to obtain features associated with various clinical concepts, we use Medical Entities Dictionary 

(MED) developed at New York Presbyterian Hospital with built-in ontological structures that organize 

various medical concepts/terms in the form of concept hierarchies. Specifically, MED is a semantic 

network [4] with medical concepts drawn from various sources such as UMLS [5], LOINC [6], and ICD-9-

CM. Concept hierarchies are structured in directed acyclic graph (DAG) where each concept node can have 

multiple parents. Each concept node has an assigned code as an identifier, or MED code, with attributes 

such as the name, coding counterparts from various systems and textural information. Fig. S1 is a snapshot 

of MED network at the node of microbiology procedure (2235) with 8 children out of which, microbiology 

blood procedure and its descendants, for instance, can serve as a candidate concept node for feature 

grouping if the bulk learning set contains clinical cases of bloodstream infections such as sepsis. 

 

 

 

Fig. S1. A concept node in MED, microbiology procedure (2235), one of the concept seeds for the microbiology group. 

 

 



E. Clinical Feature Overlaps  

 

In accessing the clinical similarity from within the bulk learning set comprising multiple diseases, we 

examine their common clinical attributes characterized by shared (active) variables (see Section 2.2.4). 

That is, the larger the intersection of active variables between any pair of conditions, the more clinically 

similar they are to each other in the context of a phenotypic model. For instance, Ceftriaxone can used to 

treat multiple bacterial infections at different sites of the body including bloodstream, lungs, and urinary 

tract, etc. and therefore, its corresponding clinical variable would be active among those disease cohorts 

that share the same antibiotic treatment.  

 

Moreover, since the size of the bulk learning set can be indefinitely large (perhaps in the order of 

hundreds), it is useful to inspect higher-order intersections across multiple diseases in parallel. Visualizing 

set intersections can be exponentially challenging, however, even when the number of sets becomes only 

trivially large due to the combinatory explosion of all possible set combinations. With 100 different 

diseases in the bulk learning set, conventional set visualization methods such as Euler and Venn diagrams 

become infeasible. To address this, we use the set visualization tool UpSet, developed by the Visual 

Computing Group at Harvard University [7], to understand the degree to which the active variables overlap 

across various diseases. Fig. S2a and Fig. S2b illustrate, in descending order, the degrees of intersections 

for the shared variables in the antibiotic model across 10 diseases identified by their ICD-9 codes. In 

particular, diseases in Fig. S2a were chosen to be relatively diverse according to the ICD-9 coding; by 

contrast, the diseases in Fig S2b are relatively similar.  

 

Each diagram centers around the matrix/grid represented by dots and connecting lines combined as set 

indicators. The rows of the matrix correspond to the sets, which in our case represent the subset of the ICD-

9 codes in the bulk training set, while the columns correspond to intersections. In particular, recall from 

Section 2 that each ICD-9 code has an associated classifier and a corresponding feature representation 

comprising the most frequent active shared variables that characterize the global property of the overall 

training data within the context of the same phenotypic model (Section 2.3.2). Within the matrix, a filled 

dot represents a participating set in the intersection and a vertical line connecting the dots serves to 

highlight the sets involved in the intersection. The cardinality of a set is encoded by the length of the bars: 

the vertical bars on top of the matrix indicate the sizes of the shared (active) variables of the participating 

sets whereas the horizontal bars off to the left indicate the total sizes of the active variables associated with 

the sets themselves.  

 

Given these notations above, the histogram above the matrix essentially represents the sorted degrees of the 

intersecting active variables exclusive to and shared by the corresponding subset of the ICD-9 codes, 

marked by the filled dots. For instance, the first column in Fig. S2a indicates that the 10 selected diseases 



 

Fig. S2a. Active variables associated with the antibiotic group analyzed in terms of the degree of intersections, sorted 

in descending order, for the selected 10 diverse infectious diseases on the vertical axis: cysticercosis (123.1), 

candidiasis (112.3), meningococcal meningitis (036.0), dengue (061), Lyme disease (088.81), RSV (079.6), 

pneumococcal pneumonia (481), herpes zoster (053.19), listeriosis (027.0), salmonella gastroenteritis (003.0). 

 

 

Fig. S2b. Active variables associated with the antibiotic group analyzed in terms of the degree of intersections, sorted 

in descending order, for the selected 10 similar infectious diseases according to the ICD-9 classification: toxic shock 

syndrome (040.82), staphylococcus infection of unspecified site (041.11, 041.10), gram-negative organism infection 

(041.85), unspecified bacterial infection (041.89, 041.9), pseudomonas infection of unspecified site (041.7), 

unspecified streptococcus infection (041.00), proteus (041.6), streptococcus infection of unspecified site (041.09). 

 



have 32 active variables in common. By contrast, the second column has only 1 filled dot, which indicates 

that there exist 25 active variables exclusive to candidiasis (ICD-9 code 112.3); similarly, the third column 

shows another 25 active variables but shared by 3 diseases instead: Candidiasis (112.3), respiratory 

syncytial virus (079.6), and pneumococcal pneumonia (481), respectively. By comparing Fig. S2a and S2b, 

we see that similar diseases share higher degrees of intersecting variables. In particular, the first column in 

Fig. S2b indicates that there exist 191 active variables shared by all the diseases, a significant portion of the 

total variable sets. Additionally, most diseases except for toxic shock syndrome (040.82) share another 45 

active variables, which perhaps is not surprising considering the fact that 040.82 is the only ICD-9 code 

that does not start with 041. 

 

 

F. Ontological Feature Grouping  

 

Knowledge representation of the clinical cases plays a decisive role in how the share phenotypic 

components of the bulk learning set can be effectively modeled. Decomposing, via medical ontology such 

as MED, the potentially gigantic EHR feature set into several coherent groups admits an initial feature (set) 

reduction such that multiple phenotypic models can be trained in parallel.  

 

Specifically, clinical variables are grouped according to a set of desired clinical concepts, guided by MED, 

that are considered discriminatory for the diseases in the bulk learning set. For example, the microbiology 

feature group in this paper is derived from 3 concept seeds, as specified in Table 3, including microbiology 

procedure (MED code 2235), microbiology results (315), and microbiology sensitivity (41901). The MED 

codes derived from these seeds are then taken union to form a reference set, which effectively delineates 

the scope of candidate phenotypic features in the domain of microbiology. Finally, only the MED codes 

with supporting data in the CDR are retained as the final feature set for the microbiology group. The feature 

sets for the other three phenotypic groups – antibiotics, blood tests, urine tests – can be determined in a 

similar way summarized as follows:  

 

1. Given a phenotypic group, select its appropriate concept seeds.  

2. For each concept seed in a group, traverse its corresponding subgraph in the MED and collect the 

MED code for each concept node encountered; repeat the same graph traversal for each seed to 

obtain its associated MED codes and subsequently, take the union of all the MED codes from the 

entire concept seeds to get the reference set of the phenotypic group. 

3. Take the intersection of the reference set obtained from step 2, and the codified patient attributes 

in the CDR, assumed to have mapped to MED codes prior to this routine, to finally arrive at the 

feature set associated with the phenotypic group for training statistical models later on.   

4. Repeat steps 1 to 3 for each phenotypic group to obtain their associated feature sets.  



 

Additionally, for each phenotypic group, we retain only the top 80% most frequently active variables (see 

Section 2.2.4) across the entire training data of the bulk learning set such that all diseases modeled by the 

same phenotypic group share the same feature set. 

 

 

G. Design of Phenotypic Groups 

 

In the paper, we have assumed that by locating concept seeds at appropriate levels, one can then obtain the 

desired reference set via graph traversals. Defining appropriate levels for the concept seeding, however, is 

somewhat of a design choice. A simple guideline for tracing the concept hierarchy is that medical concepts 

located towards the higher level of the hierarchy are more generic whereas downstream concepts become 

progressively more specialized. If concept seeds are too generic, the resulting reference set may end up 

covering too many features, which though conceptually related, may not provide a good basis for the 

purpose of feature decomposition since the corresponding feature set, after matching with the data source, 

can still be very large (relative to the number of training instances). For instance, the concept node, 

organism panels (32458), which is connected to two child nodes: microbiology procedure (2235) and 

urinalysis (33891), would be too generic as a seed to distinguish the contributing factors between 

microorganism tests and urine analyses in disease predictions. On the other hand, if a concept seed is too 

specialized, then the resulting set of MED codes can be either too small or having no supporting data at all 

in the CDR; however, this is less of an issue because one can simply use more than one concept seeds as a 

grouping unit as mentioned earlier.  

 

In this study, we chose the phenotypic groups that are believed to exhibit predictive strength in the domain 

of infectious diseases. In particular, the microbiology group consists of features associated with 

microorganism tests of different sources (e.g. blood, urine samples, etc.), and pathogens (e.g. bacterial, 

fungal cultures, etc.). The microbiology group, as a concept unit, is useful in predicting infectious diseases 

as long as there exists at least some strong predictors within the group. For instance, a microorganism test 

for Streptococcus Pneumoniae (750) is expected to be a strong predictor for clinical cases of Streptococcus 

Pneumonia. Various antimicrobial susceptibility tests also fall under the microbiology group such as the 

test for beta-lactam antibiotics (36450), which determines potential drug resistance of common pathogens 

to this family of antibiotics and thus provides a signal to the bulk-learning model the likelihood of 

observing related antibiotic prescriptions as treatments. Other features in microbiology group include status 

information such as an indicator for heavily contaminated culture (426).  

 

The antibiotic group, on the other hand, includes various antibiotic prescription drugs such as ceftriaxone 

(30475), commonly used to treat various bacterial infections included in the bulk learning set such as 



pneumonia, meningitis, and skin infections. Conceptually, the antibiotic group is closely related to the 

microbiology group, given that antibiotics are treatments for the infection of bacterial microorganisms; 

therefore, the features in antibiotic group can be significantly correlated to at least a subset of features in 

microbiology group such as those representing antimicrobial susceptibility tests. Consequently, the 

contributing factors for disease predictions between prescriptions and susceptibility tests could become 

obscured if these features were to mix together in a single phenotypic group. However, since specific drug 

prescriptions and susceptibility tests are now decoupled into two separate phenotypic groups, the two sets 

of variables will be trained independently via different base models such that their contributions to the 

disease prediction can be observed independently.  

 

The intravenous chemistry group includes hematology results and intravenous chemistry tests. Hematology 

results include various blood level indicators such as those for white blood cells; for instance, an increase in 

lymphocyte concentration (with mentions of 42936 in the data) is usually a sign for viral infection. 

Intravenous chemistry tests identify the numerous chemical substances found in the blood such as glucose, 

creatinine, and uric acid. Taking urine sample is also a common diagnostic procedure for infectious 

diseases. The urinary chemistry group includes urine panels and urine chemistry tests. Kidney infection, for 

instance, is commonly diagnosed via urinalysis (33891), which is a child node of urine panels. In particular, 

a mention of urinalysis coupled with intravenous tests on creatinine level and positive microorganism 

culture results on leukocyte esterase, can be a strong indicator for kidney infection. 

 

The phenotypic groups mentioned above are by no means an exhaustive list. Various body substance 

specimens, for instance, can be used to indicate specific sites and tissues of the body from which 

microorganism smears and cultures are obtained (although specimens as a concept is likely to be subsumed 

by culture results from the microbiology group). Antifungal and antiviral prescriptions are also examples of 

potential concept classes that can be used to define phenotypic groups for predicting fungal and viral 

infectious diseases respectively. 

 

 

H. Feature Types 

 

Features used for building statistical models come from the patient attributes. Corresponding to a MED 

code, each patient attribute in the CDR can assume a numerical value (e.g. laboratory measurements), a 

textual content (e.g. clinical notes) and at times assume no values when it corresponds to a MED code 

representing a state (e.g. a positive or negative culture result) or an indicator (e.g. confirmation for a 

laboratory order), in which case the value is implicit in the meaning of the MED code. For the purpose of 

this study, features are treated as either binary or numerical. Numerical features can assume any discrete or 

continuous values depending on the nature of corresponding MED codes. For instance, the code 36283 (aka 



CPMC Laboratory Test: Urine pH) takes on a continuous value ranging from 5.5 to 8.5. MED codes that do 

not have values are considered as binary features and their mentions in the CDR simply signal the presence 

or absence of clinical events (e.g. a positive culture result). For simplicity, MED codes associated with 

textural data are considered as binary features as well by ignoring their textual contents. Although doing so 

results in a loss of information, however, for the purpose of illustrating the key concepts of the bulk-

learning framework, we adopt this scheme as an approximation for modeling the disease assuming that 

each phenotypic group covers a sufficient range of clinical variables as predictors such that the prediction 

will still be reasonably accurate. 

 

 

I. Feature Selection based on LASSO 

 

In this study, we use ℓ1-regularized logistic regression to determine the best subset of features within each 

phenotypic group using AUC as an evaluation metric. For convenience of discussion, phenotypic groups 

are herein denoted by the set Φ: {Φ𝑖  | 𝑖 = 1~4}. Regularization is widely used as a method to cope with 

overfitting, which often occurs when the training set is relatively small compared to the number of features. 

In particular, the ℓ1-norm regularization removes irrelevant features by shrinking their parameters to zeros 

and, when applied in logistic regression, has been shown to have good generalization performance [8–10]. 

The property of parameter shrinkage makes it a good option to address the fact that certain infectious 

diseases tend to have relatively fewer data points and therefore, a large feature set is undesirable in the 

predictive analytics for these diseases; by contrast, the phenotypic group comprising the total feature set 

remains invariant to the data.   

 

In practice, the size of a phenotypic group (denoted by |Φ𝑖|, or |Φ| for simplicity without referring to a 

specific group) can potentially change over time as they depend on the concept seeding as well as the 

medical ontology, which is subject to updates in response to the advancement of healthcare procedures. To 

ensure an upper bound on |Φ|, we introduce a tunable parameter ρ such that the total number of selected 

features can be kept under control; that is, we want |Φ| ≤ 𝜌.  For the sake of clarity, we first introduce a 

few useful notations. Consider for a given infectious disease with a training set of size M: {(x(𝑖), 𝑦(𝑖)| 𝑖 =

1… 𝑀)} where 𝐱(𝑖) represents the i-th feature vector associated with a phenotypic group Φ while 𝑦(𝑖) is the 

corresponding binary label. The optimization of an ℓ1-regularized logistic regression problem can then be 

expressed as follows:  

 

min
𝜃

∑−log𝑃(𝑦(𝑖)|x(𝑖);w)

𝑀

𝑖=1

+ 𝐶‖w‖1, 

 



where 𝑃(𝑦(𝑖)|x(𝑖);w) =
1

1+exp (−w𝑇x(𝑖))
; i.e. a sigmoid function of w𝑇x(𝑖), a linear combination of features 

with parameters w. 

 

Inside the minimization operator is essentially a cost function that consists of negative log likelihood and 

ℓ1 penalty (C‖w‖1). Observe that as the regularization strength C becomes higher, the ℓ1 penalty term 

becomes more significant; therefore, in order to minimize the cost function, a larger set of the parameters 

has to decay to zeros, leading to a smaller feature set. The optimal C can be determined via cross 

validation. Note that 𝜌 is only used to enforce the upper bound on |Φ|, meaning that 𝜌 has no effect if the 

logistic classifier results in a |Φ| ≤ 𝜌. Therefore, a very large 𝜌 simply honors the feature selection result 

from the ℓ1 regularization. Conversely, if 𝜌 is too low, some of the informative features may be lost. 

 

Moreover, for better stability and reliability in the result of feature selection, a resampling process is 

embedded into the ℓ1-regularization; this version of Lasso is also known as Bolasso [11]. The resampling 

process refers to using sampling with replacements to induce multiple bootstrap samples out of the same 

training set such that each sample approximately follows the same data distribution and variability. When 

resampling is used as an ensemble learning approach in supervised learning, it is often referred to as 

bagging and has been shown to effectively reduce variance and improve accuracy. For our purpose here, 

the resampling step creates multiple bootstrap samples (one sample per iteration in a loop, algorithmically 

speaking) from the training set as inputs to the logistic classifier, which in turn selects the best feature 

subsets leading up to maximized AUCs. In the event where the resulting feature set becomes too large (i.e. 

|Φ| > 𝜌), then only the most frequently selected features are kept. Conversely, if the resulting feature set is 

too small, then C can be chosen to increase incrementally (e.g. by 10-fold at a time) until the desired size of 

the feature set is reached (but no greater than 𝜌), the tradeoff of which is acquiring potentially redundant 

features.  

 

 

J. Data Fusion 

 

The process of data fusion for transforming the level-0 data to level-1 data is not unique and with different 

assumptions, numerous other strategies are possible in addition to the simpler one based on maximum and 

minimum probability predictions mentioned in the paper. For instance, instead of using the probability 

prediction of the base model as a conduit for choosing the most representative training instance from 

multiple clinical visits, one may wish to find temporally agreeable training instances across models. 

However, a clinical case may not always agree in the timestamp across different phenotypic models, each 

of which corresponds to different clinical activities during the diagnoses and treatments of a disease. As a 



result, it is not always straightforward to match one clinical case across the phenotypic models due to 

irregular time gaps between clinical activities.  

 

One solution for matching timestamps is to fit a time-weighted regression model such that the temporal 

locality can be factored in the process of matching training instances for the same clinical case across 

different phenotypic models: the closer the time point, the more likely for the training instances to have 

come from the same clinical visit and hence, a higher weight would be given to its associated predictive 

probability for the disease. Another tunable parameter in the formation of the level-1 data is the sample 

weight. Having no evidence in a phenotypic model indicative of a negative case for a disease (i.e. (i.e. no 

evidence of ruling out a disease) may not provide a strong signal for determining the likelihood of having 

that disease given the enormous number of possible diseases. By contrast, having no evidence suggesting a 

positive case can be a strong signal in dismissing a positive case depending on the phenotypic model in 

action and its correlation with the target disease. For instance, diseases with pathological links to 

bloodstream infections would be highly correlated to the blood test model and thus, missing supporting 

evidence in blood tests would be a strong signal for ruling out. The key idea behind the level-1 feature 

representation is to leverage the diversity of probabilistic predictions from different base models; i.e. the 

more base models lack supporting data, the less reliable the combined prediction would become. The 

sample weight can therefore take into account of the number of models without supporting data. We refer 

interested readers to [12] for more information on sample-weighted regression and its implications.  

 

 

K. More on Abstraction Feature Representation 

 

Abstract features can be constructed via methods in relation to dimensionality reduction such as PCA, 

which essentially re-expresses the original feature set, potentially correlated, through their linear 

combinations as principle components, the first few of which account for most of the data variance, 

assuming that at least a subset of features are indeed (linearly) correlated. One can then project the original 

data points to these principle axes to obtain a new set of coordinates, giving rise to a new data 

representation, where principle components are a form of abstract features as they are functions of raw 

features. The notion of deriving abstract feature set via learning appropriate function mappings of raw 

features can also be traced from the literature of representational learning where the main objective is to 

capture useful explanatory factors inherent in the data, which not only minimizes efforts in feature 

engineering but the learned (abstract) feature representations can further assist in supervised learning tasks 

such as disease classifications in computational phenotyping. At times, through representation learning, 

dimensionality reduction is also achieved as a secondary result, which can be observed, for instance, in a 

typical deep learning architecture, where the number of hidden units is progressively made smaller as one 

goes further away from the input layer.  



 

As mentioned in the paper, the autoencoder, as an instrument for unsupervised feature learning, has been 

shown to capture hidden temporal patterns in the longitudinal data of gout and acute leukemia [13]. In 

particular, these hidden temporal patterns reveal what underlies the time trajectories of uric acid 

concentration (e.g. measurement sequences in multiple 30-day segments) such as upward, downward 

ramps, and oscillatory patterns (i.e. Fourier components). These learned (abstract) features suggest that 

relative to the clinical cases of gout, leukemia cases tend to assume relatively wider variations, lower 

values and higher frequency in the measurements of uric acid. These temporal features are essentially 

transformations of the input feature vector (i.e. uric acid measurements) through applying non-linear 

functions (e.g. sigmoid) to the weighted sums of feature vector components, structurally similar to the 

internals of a logistic classifier. The property of autoencoders allows for a deep architecture to be 

constructed by stacking multiple layers of autoencoders, leading to higher-levels of feature abstractions via 

multiple stages of (non-linear) transformations.  

 

Incidentally, model stacking bears resemblance to (stacked) autoencoders and other deep learning 

architectures in the sense that one could choose to cascade multiple layers of (meta-)models to achieve 

levels of feature abstractions (also known as cascade generalization [14]). As discussed in the paper, using 

the abstract feature representation on top of the phenotypic models helps to gain a better control over the 

dimensionality of the training data given its compact form through functional mappings of raw features. If 

the abstract feature space has sufficient discriminatory strength, then the requirement of annotated data can 

be greatly reduced due to its lower dimensionality. Specifically, the number of training instances needed to 

learn well from the data (i.e. sample complexity) grows with the VC dimension [15]. For most parametric 

models, the VC dimension grows linearly in the number of (free) parameters, which tends to increase the 

feature set becomes larger.  

 

Although we have been focusing on the four example phenotypic models in the paper, it is possible to 

further extend the abstract feature set by introducing more phenotypic models (e.g. antiviral prescriptions) 

to account for more clinical aspects of infectious diseases. The control of feature dimensionality, in 

particular, can be achieved by varying the stacking architecture. The example stacking hierarchy depicted 

in Fig. 1 in the paper effectively has only a single level of combiners; i.e. from base models to level-1 meta-

models for per disease. Alternatively, each base model can be formulated, instead, by various feature 

subsets of the chosen phenotypic groups, leading to a finer-grained feature abstraction with a higher 

flexibility in terms of the number of parameters for promoting diversity tradeoffs in model predictions. 

Moreover, it is also possible to mix abstract features with features at lower levels, as a form of partial 

abstraction, for potentially more accurate disease predictions at the cost of an increasing demand of labeled 

data due to a higher “mix-in” of raw features.  

 



Further, the feature abstraction from one level to another can be made progressively by introducing 

intermediate meta-classifiers as model combiners, for which, the single-combiner model in this study 

actually results in a very sharp reduction of feature dimension. In practice, this sharp and perhaps abrupt 

reduction of feature dimension may not be necessary, if the size of labeled data is at least moderate, but 

nonetheless was chosen to be the stacking architecture that suffices for illustrating the key concepts 

involved in bulk learning. Generally speaking, the degree of feature abstraction depends on the available 

labeled data; the more labeled data become available, the less degree of feature abstraction is needed for the 

model to perform well (which refers to the property that the learned model generalizes well to unseen data). 

On the other hand, if labeled data were scarce due to the cost, then a higher-level abstraction would be 

more desirable. An example for such modeling choices in relation to “regularizing” the feature dimension 

is given in the paper in terms of the comparisons between the level-1 models and their level-2 counterparts.  

 

In essence, feature abstraction used in bulk learning compresses the information coming from the base 

level, encoded by variables extracted directly from EHR, to a smaller and manageable set of variables. It is 

a form of lossy compression and hence, there is no guarantee that using the abstract features alone can 

always precisely distinguish all infectious diseases. This is the reason behind the need of evaluating the 

learned abstract feature representation (Section 3.2.2) from the perspective of how they can be used to 

reconstruct the original data through their use in statistical models that predict ICD-9 labels. In particular, 

by plotting the performance profiles in the form of Fig. 4a and Fig. 4b (the former for the global model and 

the latter for local models), one can then sort out which bulk learning subset are better candidates for 

phenotyping as a group.  

 

 

L. Using Abstract Features to Predict Gold Standard 

 

Continuing on the discussion in Section K, if the learned abstract features can reasonably differentiate 

individual diseases in the bulk learning set, then it is possible to move forward and use them to approximate 

the annotated sample with true labels that are assumed to be quite close to the surrogate labels like ICD-9. 

Since the true labels are independent from the surrogates (again by assumption), it is even possible to mix 

the learned abstract features and surrogate labels in statistical models as exemplified by the ICD-9 

modulated level-1 models. The idea is to leverage their trade-offs to potentially induce a better 

generalization over the data than if one were to use surrogate labels alone, particularly for the data region 

where surrogate labels committed errors (referred to as type-FP and type-FN annotations in the paper). 

However, the question now becomes whether it is sufficient to examine only one type of surrogate labels.  

 

The model performance using ICD-9-derived abstract features is comparable to the ICD-9. However, no 

significant improvement over the ICD-9 labeling itself has been observed using various abstract feature 



representations coupled with the ICD-9 as a feature (previously used as surrogate labels in deriving abstract 

features) in predicting the annotated sample. This is also true for higher-order models that allow abstract 

features to interact (see Section R). Nonetheless, training statistical models in the abstract feature space has 

an advantage of reducing the training requirement on labeled data.  

 

ICD-9 is merely one form of surrogate labels among many others. We believe bulk learning has the 

potential to surpass the ICD-9’s accuracy by taking into account multiple types of surrogate labels such as 

other diagnostic codes, if available, and keywords extracted from clinical notes. A practical extension 

would be to apply the same bulk learning method, again based on the model stacking methodology 

discussed in the paper, to multiple types of surrogate labels in parallel, from which their corresponding 

abstract feature sets can be derived and combined through another layer of model stacking that leverages 

their predictive diversity so as to go beyond the individual performances based on separate sets of surrogate 

labels.  

 

 

M. 2-D Ensembles for Bulk Learning 

 

The feature abstraction in this study is achieved through stacking meta-classifiers, as an ensemble learning 

method, which aggregates the predictive results from phenotypic models at the base level and transforms 

them into higher-level representations. If we consider the process of transforming the base-level feature 

representation to its level-1 counterpart as a horizontal ensemble learning on a per-disease basis, then the 

computation of the global level-1 model can be thought of as a vertical ensemble learning across all 

infectious diseases at the population scale.  

 

Fig. S3 illustrates graphically the 2-D ensemble learning perspective of the bulk learning system. In 

particular, the base level, depicted on the left-most column, consists of four phenotypic models denoted by 

Φ: {𝑚, 𝑎, 𝑏, 𝑢}. These variables are conveniently named using the first letter of the four phenotypic models 

used in this study; namely, microbiology (m), antibiotic (a), blood test (b), and urine test (u). All base 

models share the same layout of a logistic regression unit, taking raw features as input, computing their 

linear combination, followed by a transformation through the sigmoid unit. The output of the base models 

serves as the input for the next level (i.e. level 1), which is marked by the subscript at each base model 

output. In the middle column of Fig. S3 is a grid structure wherein each row represents abstract features 

derived from the base models (e.g. class conditional probabilities). Each local level-1 model is associated 

with a disease in the bulk learning set and shares the same underlying horizontal ensembles of base models, 

the layout of which is depicted by the right-most column of Fig. S3. The learning process of the local 

models is referred to as horizontal ensemble learning since it reflects the grid layout and the fact that each 

local, per-disease level-1 model can be computed in parallel.  



 

On the other hand, at the bottom of the center grid lies the global level-1 model whose input features are 

aggregates of those from the local level-1 models. In the paper, we simply combined the level-1 training 

instances from across all diseases to form a global training set, which, when fed as input to a logistic 

regression unit, gives rise to a global level-1 model. Since the data aggregation runs across all diseases, this 

unit of the ensemble learning is referred to as a vertical ensemble. Just as each abstract feature of the local 

level-1 model is a function of the base-level raw features, each abstract feature of the global level-1 model 

is in general a function of its local counterparts (making it a composite function of the raw features). It is 

also possible to weight per-disease level-1 sample in the training of the global model based on, for instance, 

the number of training instances for each disease, and data availability at the base level, among others.  

 

 

Fig. S3. A “2D-ensemble” perspective of the stacking architecture. One form of ensemble learning unfolds in the 

horizontal direction where base models (left-most column), consisting of four phenotypic models, are consolidated 

to form per-disease level-1 models. Each row in the center grid (middle column) represents an abstract feature set 

for a local level-1 model that predicts a particular disease in the bulk learning set. The internal layout of a local 

model is depicted on the right-most column. Another form of ensemble learning goes in the vertical direction where 

level-1 data are aggregated across diseases and subsequently used to train a global level-1 model, which is depicted 

below the center grid. Since the feature set for the global model is derived from aggregating those of the local 

models, each feature (e.g. 𝒎𝟏𝒈) is effectively a function of its local counterparts (e.g. {𝒎𝟏
(𝒊)

}). 
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N. Training Local and Global Level-1 Models  

 

The evaluation of the level-1 local models were accomplished by a nested validation procedure wherein the 

outer loop allocates the training split (denoted as g) for computing each local model and the test split 

(denoted as h) for evaluating its performance at the end; meanwhile, as the outer-loop training process 

unfolds, the inner loop takes place behind the scene in computing base models, followed by the feature 

transformation from the base level to the level-1 representation. There is a subtle difference, however, 

between the feature transformation in the training split and in the test split. The feature transformation 

within the training split (g), as mentioned in Section 2.4.2, was accomplished via a k-fold CV procedure in 

which only one fold worth of level-0 training data is transformed into the level-1 representation in each 

iteration; therefore, it takes k iterations to finally transform all the data in the training split and in particular, 

the transformation simply means translating the predictive outputs of the base models to the predefined 

format of level-1 representation given previously in both Section 2.4.2 in the paper and Section K in this 

document. Effectively, the level-1 representation associated with the training split (g) only utilizes (k-1)/k 

portion of the data, which were used as the training data, i.e. a training set derived from the outer-loop 

training split, denoted g-, for the base models to generate their predictive outputs; the minus sign (with the 

g) is used to reflect a reduced training data. The transformation for the test split, however, utilizes all the 

data in the (outer-loop) training split (g) since they were all used as the training data for base models to 

generate their predictive outputs over the test split (h), resulting in its level-1 counterpart.  

 

After the level-1 data are obtained for each member in the bulk learning set, they are combined as a single 

training set, which is then used to compute the level-1 global model. At this point, the size of the (level-1) 

training data for each bulk learning member indeed influences the model accuracy especially in the case of 

rare diseases with only few data points. If a subset of the selected diseases has an overwhelmingly large 

dataset compared to the rest of the members, the resulting global model would effectively be fitting towards 

the diseases with inherently more data points (e.g. pandemic and long-term infections). This is the reason 

behind excluding diseases with large data volume in bulk learning set as mentioned in Section A. 

Nonetheless, the bias induced by sample size disparity has much less impact in the context of annotated 

sample because the number of annotated instances for each disease was made comparable (i.e. 1 or 2 

annotated instances per disease).  

 

Similar to the idea of the subset sampling that makes up the annotated sample, an alternative method to 

even out sample size disparity is to employ methods that cope with imbalanced classes such as over-

sampling on minority classes and/or under-sampling of majority classes [2]. The imbalanced classes in the 

aforementioned literature are analogous to the disease members in the bulk learning set having relatively 

larger and smaller sample sizes than the average or a predefined reference sample size.  

 



O. Semi-supervised Learning 

 

Semi-supervised learning aims to find potentially better classifiers by leveraging the unlabeled data on top 

of the existing labeled data, for which numerous methodologies have been proposed and they are largely 

based on i) cluster assumptions [16,17] and ii) manifold assumptions [18,19]. The main idea behind the 

cluster assumption is to identify the unlabeled data that are sufficiently similar to the labeled ones such that 

they can be connected through paths along high-density region of the same class label. On the other hand, 

the manifold assumption states that the classification function can be defined within a lower dimensional 

submanifold of the original feature space of higher dimension. Simply put, if feature abstractions can be 

identified in the lower dimensional space such that they accurately capture the manifold structure of the 

data, both labeled and unlabeled as a whole, then similar unlabeled data points within this submanfiold are 

assigned the same class labels as the corresponding labeled data. Semi-supervised learning will be an 

important component for bulk learning as demonstrated in the paper through virtual annotations.  

 

 

P. More on the Performance Metric Calculation for the Imaginary ICD-9 Classifier 

 

As mentioned in Section 3.3.1, the training set size is not always identical to the number of annotated cases; 

however, at level-1, they are consistent due to the policy chosen to consolidate predictive results from the 

base level (Section 2.4.2). In particular, one can compute, by referencing Table 4, the sensitivity (1) and 

specificity (0.66) for the ICD-9 system as a classifier from the perspective of level 1 data.  

 

At the base level, however, the same performance metrics may turn out different since a single annotated 

case could correspond to multiple training instances spread out across different phenotypic models. 

Specifically, the 2nd and the 3rd column of Table 4 contrasts, by annotation types, the number of annotated 

cases (83 in total) with that of base-level training instances (254 in total). The sensitivity measure remains 

the same as before (i.e. 1.00) but the specificity is now 0.68, the ratio of 92 to 43+92.  

 

Further, as a reference for comparing with meta-classifiers, it is possible to simulate an ROC curve for the 

ICD-9 classifier by assigning probabilities to its predictive labels under appropriate assumptions. Without a 

prior knowledge of exactly how clinical data were coded in ICD-9, one could assume that the coders were 

confident in assigning appropriate diagnostic codes to clinical cases; that is, if the ICD-9 were a 

probabilistic classifier, it would generate a high probability towards 1 to conclude a positive label and by 

symmetry, a low probability towards 0 to conclude a negative label. This can be simulated by sampling 

from a negatively skewed distribution between the interval [0.5, 1] and a positively skewed distribution 

between [0, 0.5). We performed this probability assignment for 30 cycles, each of which represents a 

possible outcome of this imaginary ICD-9 classifier. Fig. S4 illustrates the performance snapshot of the 



simulated ICD-9 classifier taken from 1 of the 30 cycles of simulation with a mean AUC at 0.89 (versus the 

grand mean at approximately 0.83). Notice the relatively low AUCs in the 6th and 10th fold, for which the 

training split would contain the type-FP data driving the performance down whereas the training split of the 

2nd and the 8th fold would only contain the type TP and the type TN.  

 

 

Q. More on the Annotation Set 

 

The annotation set was created by sampling the training instances at the base level. As mentioned in the 

paper, the strategy for selecting clinical cases can influence the model performance. In this study, we did 

not take into account how representative these cases are for the rest of the population. The only control in 

the sampling process was to ensure that each positive annotation corresponds to a distinct ICD-9 code, 

which we had assumed to represent an infectious disease for simplicity.  

 

The difference between the original training sample and the annotated sample therefore lies only in their 

labeling. During the phase of deriving abstract features, we had used ICD-9 codes as surrogate labels in the 

model stacking, assuming they were true labels but only subject to some small errors. Further, assuming 

that the process of data annotation and the diagnostic coding are independent processes, the ICD-9 codes, 

once abstract features are derived, can then be used as external explanatory variables in the model learning 

 

Fig. S4. Performance snapshot of the simulated ICD-9 classifier taken from 1 of the 30 cycles of simulation. 

 



within the annotated sample. Also, by the assumption that the ICD-9 codes are reasonably accurate, the 

abstract features would be able generalize sufficiently well in the annotated sample if we used them 

(instead of raw features) as predictors in statistical models (e.g. logistic regression and SVM). To see if 

such assumption holds true, the predictive capacity of the ICD-9 derived abstract features would have to be 

first justified such that evidence indeed supports their use in generalizing the data originally represented in 

raw features. This is the main reason behind the experimental setup in Section 3.2.2 as a prerequisite step 

prior to evaluating the gold standard using abstract features and ICD-9 codes as an external predictor.  

 

Incidentally, one subtle distinction between the positive and negative annotations is that there is a much 

lower probability for type-FN annotations to occur than the type-FP type. As evidenced by our annotated 

sample, 15 out of the 54 positive annotations are of type FP whereas there is no type-FN annotation found. 

This is partly due to the mixing strategy of the control data (Section 2.2.4), which allows for instances of 

any ICD-9 codes but the target ICD-9 to mix in. For a training instance of an ICD-9 code, say 481, to be a 

type-FN annotation, there must exist some control data that are not only incorrectly labeled but their true 

identities happen to be the target ICD-9 (i.e. 481) among all the other possible ICD-9 codes, which rarely 

occurs (unless highly correlated, easily confused ICD-9 codes exist for 481).  

 

Table S1a. Comparison of different meta-classifiers trained by mixing virtual annotations.    

Settings Sensitivity Specificity Mean AUC (Repeated 10-fold with 30 cycles) 

Level 1 (L1) 1029/1170 (0.88) 212/1320 (0.16) 0.59 (0.51 ~ 0.66) 

Level 2 (L2) 812/1170 (0.69) 456/1320 (0.35) 0.52 (0.45 ~ 0.60) 

L1 + ICD9 1158/1170 (0.99) 771/1320 (0.58) 0.85 (0.80 ~ 0.89) 

L2 + ICD9 910/1170 (0.78) 836/1320 (0.63) 0.74 (0.67 ~ 0.82) 

Interactive L1 1154/1170 (0.99) 839/1320 (0.64) 0.83 (0.78 ~ 0.87) 

 

Table S1b. Comparison by annotation types among different meta-classifiers trained by mixing virtual annotations.  

Settings Type TP (39) Type FP (15) Type TN (29) Type FN (0) 

Level 1 (L1) 1029/1170 (0.88) 102/450 (0.23) 110/870 (0.13) n/a 

Level 2 (L2) 812/1170 (0.69) 158/450 (0.35) 298/870 (0.34) n/a 

L1 + ICD9 1158/1170 (0.99) 10/450 (0.02) 761/870 (0.87) n/a 

L2 + ICD9 910/1170 (0.78) 104/450 (0.23) 732/870 (0.84) n/a 

Interactive L1 1154/1170 (0.99)  4/450 (0.01) 834/870 (0.96) n/a 

 

 

R. Higher-Order Meta-Models 

 

Empirically speaking, the type-FP annotation set is most difficult to predict correctly using only the 

abstract features derived from the learning hierarchy. The tradeoff between abstract features and the ICD-9 



only permits limited improvement upon classification performance in the type-FP region. To further verify 

this, we introduced a second-order level-1 model, referred to as Interactive L1 in Table S1 (a minor 

extension to Table 6 in the paper) by allowing its probability attributes and the ICD-9 to interact, which 

leads to an additional 14 abstract features: 4 features from the set {𝑝𝑖 ∙ 𝑖𝑐𝑑9 } and 10 features from {𝑝𝑖 ∙ 𝑝𝑗}, 

where both i and j range from 1 to 4. Interactive L1 produces a more expressive, non-linear decision 

boundary but yet its performance is comparable to L1+ICD9 and tends towards the ICD-9 itself with the 

type-FP accuracy barely above 0. 

 

 

S. Towards the type-FP Prediction 

 

As mentioned in Section 4, the abstract feature set plays a role of modulating the ICD-9 signal such that the 

meta-learner potentially exhibits a performance profile that shifts towards closing the gap between the ICD-

9 and the gold standard (by reducing predictive errors in the type-FP region). Unfortunately, the result is 

not prominent with the current experimental settings in Section 3. The remaining challenge is a method of 

making educated decisions between either relying on the ICD-9 signal or instead, using the pattern within 

the abstract features to predict general clinical cases, for which the key lies in the capacity to predict the 

type-FP region (and the type-FN region if it exists).  

 

Towards that end, we note that although both type-TN and type-FP data correspond to negative examples 

by the gold standard; however, their properties are very different. In particular, type-TN data assume 

negative labels according to the mixture strategy of the control data. For instance, a negative instance with 

respect to the ICD-9 code, 036.0, can only indicate that the underlying clinical case did not have 036.0 

documented in their diagnosis records; yet in principle, any other codes can very well serve as possible 

candidates for its true label so long as the shared-variable criteria hold (Section 2.2.4). By contrast, the 

type-FP data are corrected to be negative by removing the error occurred in the medical coding process. 

Since such errors are typically more systematic than random, the data characteristic in the type-FP region is 

likely to correlate with the type-TP region more than the type-TN region (i.e. within the subset of the 

annotated sample for which the coder of ICD-9 labeled positive is assumed to have higher correlation with 

each other than that between the positive and the negative). For this reason, we further postulated that 

removing type-TN annotations would enable the classifier to identify true labels in the type-FP region with 

greater ease by using only the type-TP data as counterexamples.  

 

However, the caveat is that the type-FP region in general is smaller than the type-TP region by a significant 

margin given the decent accuracy of the ICD-9 system (0.72 for positive annotations), which suggests that 

annotating only a small portion of the positive cases may not produce sufficient type-FP data points. Table 

S2 compares the performance (in accuracy by annotation types) of different abstract models, trained and 



evaluated only on the positive annotations (including the virtual annotation). In this case, including the 

ICD-9 no longer has a prominent effect on driving the performance profile given that its advantage in the 

type-TN region (with 100% accuracy) is completely removed. Consequently, there is no significant 

reduction as before in the type-FP accuracy, which remains congruent in the presence of the ICD-9 

predictor and exhibits higher accuracy compared to the earlier experimental results in Table 6 in the paper. 

However, the absence of the type-TN data as counterexamples indeed compromised the accuracy in the 

type-TP region, suggesting yet another tradeoff in terms of the composition of annotated data for bulk 

learning. 

 

Hypothetically, if one had access to the knowledge as to whether the ICD-9 and the gold standard agree on 

the labeling of a training instance, then it would be possible to introduce a moderator variable (denoted by 

u) for the ICD-9 predictor such that it sets to 1 if the labeling matches (between the ICD-9 and the gold 

standard) and 0 otherwise. In this case, the original level-1 feature set is augmented to {𝒕, 𝒑, 𝑢 ∙ 𝑖𝑐𝑑9} where 

the joint vector (t, p) remains the same as before while 𝑢 ∙ 𝑖𝑐𝑑9 represents the interaction between the label-

matching indicator u and the ICD-9 as a predictor. Since ICD-9 is a strong predictor that, when included, 

gravitates the prediction towards itself, mixing ICD-9 with abstract features naturally leads to more errors 

in the type-FP region, which is undesirable; to address this, u plays the role of suppressing the ICD-9 

predictor by setting itself to 0 in the type-FP region so that the only predictors remained therein are the 

abstract features. Specifically, the accuracy of this moderated level-1 model is specified in the 4th column 

of Table S2. Although this abstraction mechanism allows for a further increase in the type-FP accuracy 

without compromising the type-TP’s, however, the moderation of ICD-9 relies on an oracle access to the 

type-FP region. Nonetheless, this result suggests that the type-FP region is not beyond the generalizability 

of the abstract features; however, it would require that they assume two different sets of weights (i.e. 

regression coefficients) in order to express two separate decision functions for the type-TP and type-TN 

regions respectively.  

 

 

Table S2. Comparison of different feature abstractions with positive annotations only (including virtual annotations). 

Annot. Types Level 1 (L1) L1 + ICD9 L1+u*ICD9 Level 2 (L2) L2 + ICD9 ICD9 

Type TP (+) 563/1170 (0.48) 573/1170 (0.49) 1095/1170 (0.94) 696/1170 (0.59) 836/1170 (0.71) 1.00 

Type FP (−) 243/450 (0.54) 237/450 (0.53) 425/450 (0.94) 187/450 (0.42) 159/450 (0.35) 0.00 

 

 

As can be seen in Table S2 as well as the earlier experimental settings in Section 3, sharing the same 

regression coefficients in all regions of annotated data leads to a degradation of the generalizability, a 

reflection of conflicting evidence that exists between the ICD-9 and the gold standard. This also suggests 

that an external explanatory factor beyond the ICD-9 itself would be needed in order to assign appropriate 



values to the variable u, which informs the model specifically when to trust ICD-9 and when to use abstract 

feature set alone. As mentioned earlier in Section L, using multiple surrogate labels is a candidate solution.  
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