Supplementary Material

Assessment of appetitive behavior in honey bee dance followers

Mariel A. Moauro[†], M. Sol Balbuena[†], Walter M. Farina^{*¶}

[†] These authors have contributed equally to this work.

* Corresponding author: e-mail: walter@fbmc.fcen.uba.ar

Table S1. Set of generalized linear models that can explain variability in the honey bees' spontaneous odor response

Hive	Model	AICc	$\Delta_{\rm i}$	Wi	MMI		
H1+H2	SOR~ 1	349.9	0.00	0.367			
		250 5	0.50	0.000	Hive	CI2.5%	CI97.5%
	SOR ~ Hive	350.5	0.52	0.282	H1+H2 (Intercept)	-1.9411480	-1.1060866
	SOR ~ Behavior	351.2	1.27	0.194	Hive2	-0.1964185	2.012371
	SOR ~ Hive+Behavior	351.6	1.70	0.157	Followers	-0.2916715	0.7745214

AICc is a second-order AIC, necessary for small samples. Δ_i is AIC differences, relative to the smallest AIC value in the set of R models. Formally, $\Delta_i = AIC_i - AIC_{min}$ is an estimation of distance between the best model and the *i*th model. Akaike weights, denoted by w_i , are the relative likelihood of the model. There are normalized to sum to 1 and interpreted as probabilities. None of the models reached a weight of 0.8, so we applied a *multimodel inference* (MMI), to predict the levels significance. All confidence intervals (CI) include 0, so none of the factors resulted to be significant to construct the minimal model.

Hive	Model		AICc	Δ_{i}	Wi				
H1+H2	GRS ~ Behavior+	Hive	1369.9	0.00	0.788	MMI			
	GRS ~ Behavior		1372.5	2.62	0.212	Hive		CI2.5%	CI97.5%
	GRS ~ Hive		1388.2	18.29	0.000	HI+H2	(Intercept)	0.01075785	0.22992821
	GRS ~ 1		1390.0	20.09	0.000		Followers	0.14079860	0.3628541
SUBS	ET								
Hive	Model	AICc	Δ_{i}	w	′i				
H1	GRS ~ Behavior	751	0.00	0.885					
	GRS ~ 1	755	4.08	0.1	15				
H2	GRS ~ Behavior	619.8	0.00	0.9	99				
1	GRS ~ 1	633.2	13.32	0.0	01				

Table S2. Set of generalized linear models that could explain the variability in the honey bees' gustatory response score

AICc is a second-order AIC, necessary for small samples. Δ_i is AICc differences, relative to the smallest AIC value in the set of R models. Formally, $\Delta_i = AIC_i - AIC_{min}$ is an estimation of distance between the best model and the *i*th model. Akaike weights, denoted by w_i , are the relative likelihood of the model. There are normalized to sum to 1 and interpreted as probabilities. None of the models reached a weight of 0.8, so we applied a *multimodel inference* (MMI) to predict the levels significance. The confidence intervals (CI) that did not include 0 correspond to the *hive* and *behavior* factors. As there was significant difference between hives, we decided to construct a data subset of each hive to evaluate *behavior* factor.

Hive	Model	AICc Δ	۱	Wi				
H3+H4	ACQ ~ Behavior+Trial+1 bee	690.6 0.0	00	0.371	14141			
	ACQ ~ Trial+1 bee	690.7 0.1	12	0.350	<i>NI NI I</i>			
					Hive		CI2.5%	CI97.5%
	$ACQ \sim Behavior+Trial+Hive+1 bee$	692.5 1.8	89	0.144	H3+H4	(Intercept)	-2.66846560	-0.90798960
	ACQ ~ Trial+Hive+1 bee	692.6 2.0	02	0.135		Trial3	1.21580930	2.63320780
	ACQ ~ Behavior+1 bee	769.3 78.	.71	0.000		Trial4	1.70324160	3.19582560
	ACO 1/has	760 5 70	01	0.000		Trial5	2.20978350	3.80418340
	$ACQ \sim 1 bee$	/09.3 /8.	.91	0.000		Followers	-0.24850660	1.70056700
	ACQ ~ Behavior+Hive+1 bee	771.2 80.	.59	0.000		Hive4	-0.81230430	1 20408530
			-	0 0 0 0		111.01	0.01200400	1.20100550
	$ACQ \sim Hive+1 bee$	771.4 80.	.79	0.000				

Table S3. Set of generalized linear models that could explain the variability in the honey bees' acquisition during differential conditioning

AICc is a second-order AIC, necessary for small samples. Δ_i is AICc differences, relative to the smallest AIC value in the set of R models. Formally, $\Delta_i = AIC_i - AIC_{min}$ is an estimation of distance between the best model and the *i*th model. Akaike weights, denoted by w_i , are the relative likelihood of the model. There are normalized to sum to 1 and interpreted as probabilities. None of the models reached a weight of 0.8, so we applied a *multimodel inference* (MMI) to predict the levels significance. The confidence intervals (CI) that did not include 0 correspond to the *trial* factor. There is significant difference between all of its levels.

Table S4. Set of generalized linear models that could explain the variability in the honey bees' odor response after differential conditioning

						MA	1 1		
Hive	Model	AICc	Δ_{i}	weight		1011			
H3+H4	TEST ~ Behavior	197.4	0.00	0.613		Hive		CI2.5%	CI97.5%
	TEST ~ Behavior+Hive	198.6	1.24	0.330		H3+H4	(Intercept)	-0.17690320	0.87520660
	TEST ~ 1	203.0	5.66	0.036			Followers	0.26200110	1.65058500
	TEST ~ Hive	204.2	6.82	0.020	-		Hive4	-1.02702480	0.37491670
	ILSI ~ Inve	204.2	0.02	0.020					

AICc is a second-order AIC, necessary for small samples. Δ_i is AICc differences, relative to the smallest AICc value in the set of R models. Formally, $\Delta_i = AIC_i - AIC_{min}$ is an estimation of distance between the best model and the *i*th model. Akaike weights, denoted by w_i , are the relative likelihood of the model. There are normalized to sum to 1 and interpreted as probabilities. None of the models reached a weight of 0.8, so we applied a *multimodel inference* (MMI) to predict the levels significance. The only confidence interval (CI) that did not include 0 corresponds to the *behavior* factor. It means that there is significant difference between its levels (follower, non-follower).