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Supplement B: Selecting Qualitative Covariates. The purpose of this sim-
ulation is to show deterministic annealing EMVS’s ability to identify continuous or
qualitative covariates associated with a binary outcome from a pool of potential
covariates. For each model, we simulated 500 data sets of n = 400 observations from
a model similar to Eq. 1 in the main manuscript. Continuous covariates followed a
multivariate normal distribution with mean zero, variance one, and an exchangeable
covariance structure, parameterized with p. We set p = {0,0.4,0.8}. Qualitative co-
variates came from a multinomial distribution with equal probabilities set for each of
the m—+1-levels which sum to one. Qualitative covariates of size m+ 1 were reparam-
eterized with m indicator variables, D;,l = 1, ..., m. Each indicator variable was set
to one if their corresponding covariate was the [+ 1-level of the qualitative covariate
and zero otherwise. For instance a two-level qualitative covariate was reparameter-
ized with one indicator variable D, that equals one if the qualitative covariate was
equal to the second level and zero otherwise. The full model contained an intercept
term, 12 continuous covariates (z¢1,...,Zc12), 12 two-level qualitative covariates
(@13, - - - Tp24), and one four-level qualitative covariate (zq2s,...,Zq427). To deter-
mine the variance of inclusion, vy, we used regularization plots, as recommended by
[2]. We considered a range of vy so that the upper(lower) bound of the 95% prior
probability of exclusion for the odds ratio spans from 1.01(0.99) to 1.15(0.87) by 0.01
to maintain interpretability. We observed that at around vy = 0.0015, equivalent to
an odds ratio between [0.93,1.08], the plots stabilized. The 95% prior probability
of inclusion for the odds ratio is fixed to cover [1/4,4], v; = 0.5, similar to [1]. We
applied our variance adjustment to indicator variables, as described in Section 2.3
in the main manuscript. The models were compared with and without grouping for
the indicator variables. Comparisons were made at the indicator level. For example,
if one indicator variable in the group was truly associated, we considered any levels
that were not selected by the model a false negative. For simplicity, the intercept
term « is set to zero in each of the true models. The following models tested our
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method’s performance:

Model 3.1.1 Null model:

logit(w(x;)) =0
Model 3.1.2 No indicator levels associated:

logit(w(x;)) = 0.65z1 — 0.52¢2 — 0.652p13 + 0.52p 14
Model 3.1.3 Same as Model 3.1.2 but run without variance adjustment
Model 3.1.4 One indicator variable associated:

logit(w(x;)) = 0.652.1 — 0.522 — 0.65xp 13 + 0.5z 14 — 0.64.25
Model 3.1.5 Two indicator variables associated:

logz’t(w(xi)) = 0.651’0,1 — O.5:BC72 — 0.651‘{,713 + O-5$b,14 — 0.6d725 — 0-5$d,26
Model 3.1.6 All indicator variables associated:

logit(w(xi)) = 0.6533‘0,1 — 0.5.7}6,2 — 0.651’1)713 + 0.5.%(7714 — 0.6d725 — 0'533d,26 + 0.41‘0{727

First, we compared the method’s performance using grouped indicator variables
for qualitative covariates against treating them independently (Table S1 on page 4).
Under the assumption that an associated indicator variable justifies the other level’s
inclusion, we found that grouping increased the weighted average correct association
percentage and decreased the average false positive rate (FPR) and false negative
rate (FNR). For all models, the overall performance weakened for higher correlation
structures. We found an average FPR for the null model (3.1.1) with moderate
correlation fell around 0.06. Additionally, Figures S1 and S2 show a decrease in
performance for weaker effects and qualitative terms. As the number of associated
terms in a group of indicator variables increased, so did the method’s ability to
identify the group as associated. Comparing model 3.1.2 and 3.1.3, our simulations
suggest that adjusting the exclusion variance reduced the FPR for the grouped
indicators.

Supplement C: Selecting Interaction Terms. In the following simulations,
our aim was to accommodate heredity constraints for interaction terms. For each
model, we simulated 500 data sets of n = 200 observations from the quadratic model
similar to [3] for linear regression models. Here, parent terms, 1, z. 2, and z. 3, fol-
lowed the same distribution as the continuous covariates above. The full model com-
prised an intercept term and 9 possible covariates: 3 parent terms (z1, Z¢2, ¢ 3), 3
pairwise interactions (z,1%¢2, T, 173, Te2Tc3), and 3 squared terms (z2 1, 225, 223).
For these simulations, we show how our method could incorporate prior knowledge
to achieve a research objective, such as an odds ratio between a specific range being
clinically irrelevant. Here, each model was tuned so that the 95% prior probability
of exclusion for the odds ratio covers [0.95,1.05], vg = 0.00062 and the 95% prior
probability of inclusion for the odds ratio covers [1/4,4]. We restricted quadratic
terms’ inclusion with q = (0,1) and applied a strong, a = (0,0,0,1), and a weak,
a = (0,1,1,1), heredity constraint for interaction terms. These parameterizations
indicate which combinations of parental terms’ inclusion and exclusion permited the
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consideration of an interaction term’s inclusion. The constrained models were com-
pared to a model with no heredity constraints (i.e., iid case), a = (1,1, 1,1), which
ignored the relations between covariates. We constructed three models to test our
method’s ability to accommodate heredity constraints.

Model 3.2.1 The true model followed a strong heredity constraint:
logit(w(x;)) = 0.652¢1 — 0.65x.2 + 0.52¢ 122

Model 3.2.2 The true model followed a weak heredity constraint:
logit(w(x;)) = 0.65z¢1 — 0.65z.2 + 0.52¢ 123

Model 3.2.3 The true model was not hierarchically well formulated:
logit(w(x;)) = 0.65z1 — 0.652.2 + 0.5:13273

Overall, the method’s sensitivity to correlation structure for the weighted average
correct association percentage was similar to Supplement B (Table S2 on page 5).
Regardless of the true model’s formulation, the strong heredity constraint favored a
sparse model and has a lower average FPR and a higher weighted average correct
association percentage. The strong heredity constraint experienced a higher average
FNR when the true model followed strong heredity (Table S1 on page 4). Figures
S3, S4, and S5 show the marginal results for the interaction models. Our simulations
show that the method performed better controlling the FPR for pairwise interac-
tions under the strong heredity constraint. However, the FPR for non-associated
squared terms when the true model followed weak heredity (i.e., model 3.2.3) was
increased under the strong heredity constraint. Additionally, the FNR for an asso-
ciated squared term, :ci3, was increased under both heredity constraints. By setting
an intuition-based, exclusion variance prior, we reduced the average number of false
negatives, consequently increasing the average number of false positives compared
with a model tuned solely with regularization plots (results not shown). However in
these simulations, the intuition-driven parameterization performed better in terms
of the weighted average correct association percentage.
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TABLE S1
Evaluation of EMVS'’s selection performance in simulated qualitative covariate settings: FPR,
average false positive rate; FNR, average false negative rate; WA CA P, weighted average correct
association percentage.

Qualitative Terms Qualitative Terms
Treated as Group Treated as Indpendent
Constraint ~ Correlation ~FPR FNR WACAP FPR FNR WACAP

0 0.061 n/a 0.932 n/a n/a n/a

Model 3.1.1 0.4 0.061 n/a 0.931 n/a n/a n/a
0.8 0.082 n/a 0.906 n/a n/a n/a

0 0.066  0.080 0.910 0.050  0.080 0.920

Model 3.1.2 0.4 0.072  0.085 0.902 0.054 0.085 0.914
0.8 0.097 0.138 0.847 0.078 0.138 0.860

0 0.084 0.080 0.899 0.050  0.080 0.920

Model 3.1.3 0.4 0.091  0.085 0.891 0.054 0.085 0.914
0.08 0.112 0.138 0.837 0.078 0.138 0.860

0 0.047  0.105 0.902 0.045 0.249 0.803

Model 3.1.4 0.4 0.046 0.114 0.895 0.045 0.252 0.800
0.8 0.074 0.152 0.852 0.073 0.278 0.758

0 0.047  0.093 0.911 0.047 0.214 0.830

Model 3.1.5 0.4 0.044 0.099 0.909 0.045 0.222 0.825
0.8 0.077  0.132 0.866 0.077  0.246 0.782

0 0.046  0.057 0.940 0.045 0.168 0.867

Model 3.1.6 0.4 0.045 0.068 0.933 0.044 0.173 0.863

0.8 0.079  0.106 0.888 0.079  0.202 0.818




TABLE S2
Evaluation of EMVS’s selection performance in simulated interaction settings: FPR, average false positive rate; FNR, average false negative
rate; WA CAP, weighted average correct association percentage

Model 3.2.1: True Model Follows Model 3.2.2: True Model Follow Model 3.1.3: True Model Not

Strong Heredity ‘Weak Heredity Well Formulated
Constraint  Correlation FPR  FNR WACAP FPR FNR WACAP FPR  FNR WACAP

0 0.057 0.024 0.946 0.080 0.008 0.942 0.097  0.005 0.929

Strong 0.4 0.068 0.051 0.919 0.099 0.013 0.924 0.091 0.012 0.928
0.8 0.145 0.157 0.778 0.170  0.069 0.823 0.160 0.069 0.825

0 0.100 0.023 0.921 0.101  0.020 0.921 0.126  0.005 0.911

Weak 0.4 0.113 0.047 0.894 0.113 0.032 0.904 0.145 0.014 0.893
0.8 0.191 0.150 0.754 0.192 0.144 0.754 0.225 0.066 0.781

0 0.107 0.022 0.916 0.113 0.019 0.914 0.145 0.007 0.897

iid 0.4 0.128 0.046 0.883 0.128 0.031 0.894 0.146  0.020 0.888

0.8 0.227 0.144 0.732 0.229 0.142 0.730 0.228 0.107 0.755
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EMVS-Logistic with Qualitative Covariates: Grouped
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the better the model performed for that variable, averaged over all simulations.

** Covariates existing in the true model
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EMVS-Logistic with Qualitative Covariates: Independent
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EMVS-Logistic with Interaction Terms: Model 3.2.1
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Fi1c S3. Each box represents the correct association percentage for a covariate. The lighter the boz,
the better the model performed for that variable, averaged over all simulations. Whether or not a
covariate should be included depends on the heredity constraint given. For example: if covariate c¢q
is associated with the outcome, but c2 is not, a strong constraint would exclude their interaction but
a weak or no heredity constraint should include it.

** Covariates existing in the true model
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EMVS-Logistic with Interaction Terms: Model 3.2.2
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F1c S4. Each box represents the correct association percentage for a covariate. The lighter the boz,
the better the model performed for that variable, averaged over all simulations. Whether or not a
covariate should be included depends on the heredity constraint given. For example: if covariate c1
is associated with the outcome, but c2 is not, a strong constraint would exclude their interaction but
a weak or no heredity constraint should include it.

** Covariates existing in the true model
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EMVS-Logistic with Interaction Terms: Model 3.2.3
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F1c S5. Each box represents the correct association percentage for a covariate. The lighter the boz,
the better the model performed for that variable, averaged over all simulations. Whether or not a
covariate should be included depends on the heredity constraint given. For example: if covariate c1
is associated with the outcome, but c2 is not, a strong constraint would exclude their interaction but
a weak or no heredity constraint should include it.

** Covariates existing in the true model



SUPPLEMENTARY MATERIAL B & C 11

M. KOSLOVSKY M. SWARTZ

DEPARTMENT OF BIOSTATISTICS DEPARTMENT OF BIOSTATISTICS
UTHEALTH UTHEALTH

1200 PRESSLER STREET 1200 PRESSLER STREET

HousTon, TX 77030, USA HousTon, TX 77030, USA

E-MAIL: matthew.d.koslovsky@uth.tmc.edu E-MAIL: Michael.D.SwartzQuth.tmc.edu
L. LEON-NOVELO W. CHAN

DEPARTMENT OF BIOSTATISTICS DEPARTMENT OF BIOSTATISTICS
UTHEALTH UTHEALTH

1200 PRESSLER STREET 1200 PRESSLER STREET
HousTton, TX 77030, USA HousTton, TX 77030, USA
E-MAIL: Luis.G.LeonNovelo@Quth.tmc.edu E-MAIL: Wenyaw.Chan@uth.tmc.edu

A. WILKINSON

DEPARTMENT OF EPIDEMIOLOGY
UTHEALTH

1616 GUADALUPE STREET

AUSTIN, TEXAS 78701, USA

E-MAIL: Anna.V.Wilkinson@uth.tmc.edu


mailto:matthew.d.koslovsky@uth.tmc.edu
mailto:Michael.D.Swartz@uth.tmc.edu
mailto:Luis.G.LeonNovelo@uth.tmc.edu
mailto:Wenyaw.Chan@uth.tmc.edu
mailto:Anna.V.Wilkinson@uth.tmc.edu

	Supplement B: Selecting Qualitative Covariates
	Supplement C: Selecting Interaction Terms
	References
	Author's addresses

