Title:

Construction of Versatile Multilayered Composite Nanoparticles from a Customized Nanogel Template

Author names and affiliations:

Jian Zhang, ^{a, b, 1} Jinpeng Jia, ^{c, 1} Jimin P. Kim,^d Fei Yang,^{a,b} Xing Wang,^a Hong Shen,^a Sijia Xu,^{a,b} Jian Yang,^d and Decheng Wu*^{a,b}

^a Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics
& Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, China

^b University of Chinese Academy of Sciences, Beijing, China

^c Department of Orthopaedics, General Hospital of Chinese People's Liberation Army, Beijing, China

^d Department of Biomedical Engineering, Materials Research Institute, The Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, USA

* Corresponding author at: Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics & Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China

E-mail address: dcwu@iccas.ac.cn

Peer review under responsibility of KeAi Communications Co., Ltd.

¹ These two authors contributed equally to this article.

Fig. S1. The degradation of nanogels for 4, 6, 8, 10 and 12 h degradation times (x-axis), with gelation times of the nanogels labeled on the y-axis. Because nanogels are swollen nanosized networks that can absorb a lot of liquid in aqueous solutions, the sizes obtained from TEM and DLS results had a reasonable discrepancy.

Fig. S2. (a) TEM image of Fe_3O_4 nanoparticles and (b) XRD pattern of Fe_3O_4 nanoparticles (curve) and the reference PDF for Fe_3O_4 (column).

Fig. S3. Magnetic field curves for magnetic nanogel/SiO₂ NPs. Legend: 4h = magnetic nanogel/SiO₂ NPs obtained from a nanogel template with 4 h gelation time.

Fig. S4. The TGA results of thermal weight loss of nanogels in nanogel/SiO₂ NPs (labeled GS) and magnetic nanogel/SiO₂ NPs (labeled GFS). Legend: $4h = magnetic nanogel/SiO_2 NPs$ obtained from a nanogel template with 4 h gelation time.

Fig. S5. XPS results of nanogel/SiO₂/PAA NPs. Legend: $4h = nanogel/SiO_2/PAA$ NPs obtained from a nanogel template with 4 h gelation time.

Fig. S6. TEM image of hydroxyapatite NPs.

Fig. S7. XRD patterns of the nanogel/SiO₂/PAA/HA NPs (curve) and the reference PDF for hydroxyapatite (column). Y-axis: $4h = nanogel/SiO_2/PAA/HA$ NPs obtained from a nanogel template with 4 h gelation time.

Fig. S8. Demonstration of biofilm flexibility with curling and spreading tests.

Fig. S9. SEM images of the films.

Fig. S10. X-ray and micro-CT characterization of ectopic bone formation after a 6-week postimplantation of (from left to right) the composite film doped with rhBMP-2 and nanogel/SiO₂/PAA/HA NPs from a 4 h gelation core (left), its 10 h equivalent, PLGA/HA film loaded with rhBMP-2, and PLGA/HA film alone.