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Supplementary Methods

Clinical Information

Patient Characteristics

We conducted a retrospective clinical cohort study of patients who underwent hepatic resection of
histologically confirmed metastatic colorectal adenocarcinoma at the University of Chicago Medical
Center (Chicago, IL) and NorthShore University Health System (Evanston, IL) between 1994 and 2012.
During this time period, approximately 60-75 patients per year underwent hepatic resection of colorectal
liver metastases at the two participating institutions. All available clinical, pathologic, radiologic, and
outcome data were collected for patients using medical records. Patients with unresectable or
extrahepatic disease at the time of metastatic diagnosis were excluded from this study. In total, 134
consecutive patients with metastatic colorectal cancer who underwent surgical resection of limited de
novo liver metastases were selected for molecular analysis. Patients were uniformly treated with
perioperative chemotherapy, definitive treatment of primary colorectal cancer, and partial hepatectomy for
resection of liver metastases. Detailed cohort characteristics are provided in Table 1 and Supplementary
Table 1. This study was approved by the Institutional Review Boards at each respective institution.
Consent was waived for all enrolled subjects as this study was purely retrospective. Dates of recurrence,
death or last follow-up were extracted from medical records and Social Security Death databases. Clinical
risk scores (CRS) were calculated as previously described”.

Pathologic Examination

Formalin-fixed paraffin-embedded (FFPE) specimens were collected from archived pathologic tissue.
FFPE specimens were catalogued and histologically reviewed by an expert pathologist (Dr. Nora Joseph)
to ensure adequacy of the specimen and histologic quality control. Tissue blocks containing sufficient
tumor tissue were subjected to 2mm punch biopsies of both tumor and normal liver regions. For each
surgical specimen, representative FFPE tissue blocks and corresponding H&E slides were analyzed to
confirm the diagnosis of colorectal adenocarcinoma and identify regions containing high quantities of
viable tumor cells, as well as independent regions containing normal liver parenchyma. Three cores from

tumor and normal tissue regions were obtained. For each specimen, all three cores were combined to



reduce intratumoral variability. This procedure was repeated for both tumor and normal biopsies for each

patient.

Nucleic Acid Extraction

Punch biopsy specimens were deparaffinized and processed using the RecoverAll Total Nucleic Acid
Isolation Kit (Ambion, TX) according to the manufacturer’s instructions. Briefly, 200uL of digestion buffer
and 4pL of protease were added to each sample and incubated overnight at 55°C. RNA and DNA were
extracted following the RecoverAll protocol according to the manufacturer's recommendations. Nucleic
acid quantification was performed using a NanoDrop 1000 Spectrophotometer and a Qubit® Fluorometer.

Nucleic acid extracts were stored at -80°C until further analysis.

RNA Sequencing

Library Construction

RNA integrity and quantity were evaluated using an Agilent 2100 Bioanalyzer (Agilent Technologies, CA).
Reverse-stranded paired-end 75 base-pair sequencing libraries were constructed using lllumina Total
RNA Stranded Kits. Ribosomal RNAs (rRNAs) were depleted by using the Ribo-Zero rRNA Removal Kit
(INumina). Libraries were sequenced on a HISEQ2500 machine using standard reagents and protocols
provided by lllumina. In total, 95 metastatic samples were successfully sequenced using this approach.

Read Alignment and Quantification

Unless otherwise specified, all data analyses were performed under the R programming and software
environment for statistical computing and graphics version 3.3 (R Core Team, 2016). FastQ files for each
sample were assessed for quality using the FastQC tool (version 0.11.2). Raw reads were aligned to the
GRCh38 primary genome assembly using Spliced Transcripts Alignment to a Reference (STAR) aligner
(version 2.4.2a) 1-pass algorithmz. After sorting the bam files in lexicographical order with the sambamba
programs, we assigned the reads to exon features annotated in GENCODE (release 22) using the
FeatureCounts tool from the subread package (version 1.4.6) and summarized the read counts by

genes4. The post-alignment quality control was carried out with Picard tools (version 1.117) and RSeQC



package (version 2.3.1). Specifically, we examined the QC data regarding the alignment summary, gene
body coverage, read distribution, and ribosomal RNA depletion rate.

Data Normalization

We used functions in the R/Bioconductor package edgeR to extract the raw counts of the reads that were
mapped to the protein-coding genes5. After removing the genes with zero read counts across all samples,
we calculated the normalization factors to scale the raw library sizes and the log2-transformed count per
million (log-CPM) for the expression level of each gene. The log-CPM values were corrected for batch
effect (sequencing lane effect and institution) using removeBatchEffect function from the R/Bioconductor
package limma®. We retained 18,714 genes for the subsequent analyses.

Detection of Differentially Expressed mRNAs

To identify differentially expressed mMRNAs among samples grouped by Similarity Network Fusion (SNF —
see Section 7) clusters, we first removed non/low-expressed genes in comparison groups by requiring
read counts to be at least 1 across a minimum number of samples in one of the comparison groups,
followed by trimmed mean of M-values (TMM) normalization using the calcNormFactors function in the
edgeR package. Next, we removed heteroscedascity from the count data using the
voomWithQualityWeights function from the limma package with quantile normalization method enabled.
We then fit a linear model for each gene using the limma algorithm, adjusted for batch effect, and ranked
the genes for differential expression using the empirical Bayes method with trend and robust options
enabled. The differentially expressed genes were identified with the Benjamini-Hochberg procedure for
multiple test adjustment and fold-change. The adjusted P-value threshold and fold-change threshold were

set at 0.05 and 2.0, respectively (Supplementary Table 2).

microRNA Expression Profiling

RNA integrity and quantity were evaluated using an Agilent 2100 Bioanalyzer (Agilent Technologies, CA).
Total RNA (500ng) was processed for biotin labeling according to the Affymetrix Flash Tag Biotin HSR
RNA labeling guide (Affymetrix, CA). The biotin-labeled target was hybridized to Affymetrix miRNA 4.0
Array Chips for 16h at 48°C and 60rpm in an Affymetrix 640 hybridization oven. Arrays were washed and

stained in an Affymetrix Fluidics Station 450 according to the Affymetrix GeneChip expression guide. The



arrays were scanned using the Affymetrix GeneChip Scanner 3000 7G. CEL intensity files were
generated using GCOS software. In total, 116 metastatic samples were successfully assayed using this
approach.

Data Pre-Processing and Normalization

The methods used in this analysis are available as part of the R/Bioconductor packages affy, oligo, limma
and sva®’. The raw Affymetrix GeneChip miRNA 4.0 Array CEL files were imported to R using the
read.celfiles function from the oligo package. We first performed robust normexp-by-control background
correction using the nec function from the limma package with the robust option enabled®. We then
normalized the log2-transformed expression data using cyclic loess normalization with the array weight
method. Finally, we summarized the probes into probesets using the rma function from the affy package
with the options normalize and background disabled. To remove batch effects caused by array
processing dates and the patient cohorts, we applied the ComBat algorithm implemented in the sva
packageg. We considered two batch factors: (1) institution and (2) microarray scan date. A single sample
was run in batch 6 and combined with samples from batch 5. We removed the non/low-expressed
probesets and retained the probesets representing 778 mature human miRNAs for the subsequent
analyses.

Detection of Differentially Expressed miRNAs

We applied the limma method to identify differentially expressed miRNAs among the samples grouped by
SNF clusters. We first estimated the relative quality weights for each array using the arrayWeightsSimple
function, and then fit a linear model for each probeset adjusted for batch effect, followed by ranking
probesets for differential expression using empirical Bayes method. The differentially expressed miRNAs
were identified with the Benjamini—-Hochberg procedure for multiple test adjustment and fold-change. The
adjusted P-value threshold and fold-change threshold were set at 0.05 and 2.0, respectively

(Supplementary Table 3).

Consensus Clustering of Expression Data
We performed unsupervised consensus clustering analysis on independent mRNA and miRNA

expression data sets using the R package ConsensusClusterPlus (version 1.38.0). We selected the most



informative mMRNAs or miRNAs for clustering, which consisted of the top 25% most variable mRNAs or
miRNAs, as measured by the median absolute deviation (MAD). Normalized expression data from
previous procedures were first standardized using the data normalization function in the R package
clusterSim (version 0.45-1). To run ConsensusClusterPlus, we preset the options as a maximum
evaluated cluster k = 6, 80% samples per resampling, 1,000 resamplings, Euclidean distance, and k-
means clustering algorithm. We chose complete and average linkage as the inner-linkage and final
linkage, respectively. The optimal number of k clusters was inferred by inspecting the consensus
cumulative distribution function (CDF) plot and the proportion of ambiguously clustered pairs (PAC) plot
where the optimal k corresponds to the lowest PAC"® (k = 2, Supplementary Fig. 3 and Supplementary

Fig. 4).

Consensus Molecular Subtyping (CMS) of Colorectal Liver Metastases

Microarray expression data derived from 183 patients with colorectal liver metastasis were collected from
ArrayExpress (study IDs: E-MTAB-1951 [MSK2], E-GEOD-62322 [French], E-GEOD-41258 [MSK3], and
E-GEOD-35834 [ltalian]). Study E-MTAB-1951 contains 96 samples profiled on the lllumina HumanHT-12
v3.0 Expression BeadChip. E-GEOD-62322 and E-GEOD-41258 contain 19 and 47 samples that were
profiled on Affymetrix HG-U133A Arrays, respectively. E-GEOD-35834 consists of 27 samples profiled on
the Affymetrix Human Exon 1.0 ST Array. We also used two sets of normalized RNA Sequencing data.
One cohort includes 93 metastases from our cohort which were reanalyzed with RSEM to assess TPM
abundances, while the other cohort contains 45 unpublished liver metastases that were obtained from the
Memorial Sloan-Kettering Cancer Center from Dr. Sajid Khan and Dr. Philip Paty [MSK1] and processed
similar to previously described methods in Section 3. For E-MTAB-1951, raw expression data was
preprocessed with variance stabilizing transformation and quantile normalization using the lumi package
(version 2.26.3). For the remaining microarray studies, CEL files were downloaded directly from
ArrayExpress and processed with fRMA (version 1.28.0) for core annotation targets summarized by
robust weighted average. Level 3 TCGA READ and COAD RNA Sequencing RSEM expression data was
obtained from Sage-Bionetworks Synapse repository (syn: syn2320098, syn2320092, syn2320147, and

syn2320079). TPM expression data corresponding to primary tumor samples were selected, offset by 1,



and log2 transformed. Multiple gene level mappings were resolved by singular value decomposition.
Datasets from both tissues were merged, and a custom ComBat correction was performed to account for
batch effects between HiSeq-RNASeqV2 and lllumina-GA platforms. All scripting and normalization
methods are available for download via the CRC Subtyping Consortium's github including the merging

protocol (https://github.com/Sage-

Bionetworks/crcsc/blob/dc58542555e281c1ccb55aeb73d087e7d0bdf6bf/

groups/G/dataQc/tcgaCrcRNAseg-merged.R) and miscellaneous normalization procedures

(https://github.com/Sage-Bionetworks/crcsc/blob/dc58542555e281c¢1ccb55aeb73d087e7d0bdf6bf/

groups/G/dataQc/JGnorm.R).

For both microarray and RNA Sequencing expression data, features were mapped to corresponding
Entrez gene IDs using annotation sets provided by Ensembl GRCH38 and Bioconductor including
hgu133a.db (version 3.2.3), huex10sttranscriptcluster.db (version 8.6.0), lumiHumanIDMapping (version
1.10.1), or org.Hs.eg.db (version 3.3.0). For multiple annotations mapping to a unique gene feature, either
the median probeset value or the largest coefficient of variation across RNAseq samples was retained as
an expression estimate for the corresponding gene feature. CMS classification was performed using the

single sample procedure (SPP) (https://github.com/Sage-Bionetworks/CMSclassifier). The single sample

method is a Pearson correlation-based centroid model of 786 genes which is included with the

CMSClassifier R package.

Similarity Network Fusion

The matched normalized mRNA and miRNA expression data of 93 metastases were first separately
standardized using the standardNormalization function from the R package SNFtool (version 2.2). The
Euclidean distances between all pairs of samples in mMRNA and miRNA data were calculated,
respectively. An affinity matrix was computed using the function affinityMatrix with the number of nearest
neighbors K and the variance for local model alpha. We then performed similarity network fusion on
affinity matrices of mMRNA and miRNA with the number of iterations T, which was used in the subsequent
spectral clustering step where samples were assigned to one of the SNF clusters. We identified three

clusters using default settings. In order to find other possible compositions of three clusters we tested 168



parameter combinations of K (10, 15, 20, 25, 30, 35, 40), alpha (0.3, 0.4, 0.5, 0.6, 0.7, 0.8), and T (20, 30,
40, 50). For each parameter setting, we applied the estimateNumberOfClustersGivenGraph function to
estimate the possible number of clusters using two heuristic methods: (1) eigen gap and (2) rotation cost.
We retained the clustering results which comprised three clusters and calculated the median Silhouette
index (SI) of each result. We selected the top 8 clustering results that had the highest median Sis
(Supplementary Fig. 5A). A majority voting scheme was applied to determine the final cluster
membership based on the top 8 clustering results. In the event of a tie, we chose the membership defined
by four clustering results with the largest median Sis. The association between SNF clusters and clusters
derived from mRNA or miRNA consensus clustering were evaluated using Chi-squared tests
(Supplementary Fig. 5B).

Robustness of SNF Clustering on Overall Survival

Previous work has shown that the SNF algorithm for clustering is statistically robust'’. We examined
whether our observed survival difference between SNF clusters could be reproduced by random chance.
To this end, we performed permutation analyses. For each permutation, miRNA profiles were shuffled
and randomly assigned to mRNA profiles. Subsequently, SNF clustering was performed de novo and
each patient was assigned to one of three resulting groups. Differential overall survival across clusters
was then assessed with a log-rank test. This process was repeated 1,000 times, and log-rank p-values
were used to construct a null distribution. We examined the number of instances when p-values from the

null distribution were more extreme (i.e. smaller) than our empirical p-value (Supplementary Fig. 7).

Ensemble of Gene Set Enrichment Analyses (EGSEA)

Raw gene feature counts were mapped to Entrez ID using the R/Bioconductor package org.Hs.eg.db
v3.4.0°. Low/non-expressed genes with less than 1 CPM across the minimum number of samples in any
subtype group were excluded from subsequent analysis using edgeR v3.16.5. Quality weighted, quantile,
and log-normalized CPM were calculated using limma-voom v3.30.11. Gene set enrichment was
performed using the R/Bioconductor package EGSEA v1.2.0"? with planned contrasts of each subtype
against the average of the remaining subtypes. Independent EGSEA analyses were performed for gene

lists provided by MSigDB v5.2" (Supplementary Table 4) and a custom gene list identifying numerous



immunological, canonical, and metabolic pathways14 (Supplementary Table 5). Intratumoral immunome
profiling was performed as previously described’®, and resulting gene lists were used to calculate

subtype-level and single sample enrichment scores using EGSEA.

SNF Class Predictor

Data Preprocessing

To build a classifier to distinguish samples between subtype cluster 2 (C2) and subtype clusters 1 and 3
combined (C13), the normalized mRNA expression data of 93 patients was split into a training set,
consisting of 20 subtype 2 samples and 51 subtypes 1 and 3 samples, and a test set, consisting of 6
cluster 2 samples and 16 cluster 1 and 3 samples. The class ratio remained unchanged during the
partition. For the training set, we first filtered genes with near zero-variance. We then identified highly
correlated genes with a pair-wise absolute correlation coefficient greater than 0.7, and removed those
with the largest mean absolute correlation. We further removed potential linear dependencies of the data
using the findLinearCombos function from the R package Caret (version 6.0). We applied the preProcess
function to center and scale the training and test data by mean and standard deviation, followed by
rescaling data to -1 and 1.

Model Training and Testing

We applied Prediction Analysis of Microarrays (PAMR, version 1.55) — a nearest shrunken centroid
classification algorithm — on the training set'®. A 10-fold cross-validation was performed to obtain the
optimal threshold of 2.72 for the prediction, where the overall error rate was 0.056. The final classification
model contains 113 genes and was evaluated using the held-out test data of 6 subtype 2 samples and 16
subtypes 1 and 3 samples. Performance metrics such as accuracy, balanced accuracy, sensitivity,
specificity, positive prediction value (PPV), negative prediction value (NPV), Cohen’s Kappa, Matthew’s
correlation coefficient, and area under the curve (AUC) were calculated using the confusionMatrix
function from the Caret package and an in-house script (Supplementary Fig. 11A and Supplementary
Fig. 11B).

Independent Validation of Classifier

We downloaded the raw expression data of 96 patients from ArrayExpress (study ID: E-MTAB-1951). We
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10.

prioritized the analysis of the E-MTAB-1951 samples as it is the only publicly available colorectal cancer
liver metastasis dataset with available clinical annotations (i.e. Clinical Risk Scores (CRS)) to test for
association with subtype membership grouping. The samples were profiled using the lllumina HumanHT-
12 v3.0 Expression BeadChip. Using the R/Bioconductor package lumi (version 2.26.4)17, we transformed
the expression data via variance-stabilizing transformation (VST) algorithm, followed by between-chip
normalization with the robust spline normalization (RSN) algorithm. For multiple probes that mapped to
the same Ensembl gene ID, we removed those with the smallest variance across samples. We re-trained
the PAM classifier on all 93 samples in our cohort using the 113 genes selected from the previous
analysis and applied it to the normalized E-MTAB-1951 microarray data set. For genes that were missing
in the microarray data, we replaced the expression values with -1 after scaling the data to -1 and 1. The
concordance between the predicted subtype cluster memberships and the Clinical Risk Scores (CRS)

from the E-MTAB-1951 samples was examined using contingency analysis (Supplementary Fig. 11C).

Hybrid Capture Next Generation Sequencing

Targeted Capture Sequencing Panel

For each specimen, DNA from 1,212 exonic regions was captured using the UCM-OncoPlus panel based
on the NimbleGen SeqCap EZ custom capture method as previously described™®. In brief, this approach
utilizes a tiered assay system in which highly clinically relevant genes (tier 1, n=316) are sequenced
approximately 3-fold deeper than the remaining (tier 2) genes. Capture libraries were generated using the
lllumina TruSeq platform. Libraries were multiplexed with 6 base-paired indexes up to 9 samples per lane
and sequenced using lllumina HiSeq2000 and HiSeq2500 machines. FastQ files were generated using
lllumina’s BCL2FastQ1.8.4.

Sequencing Data Alignment

FastQ files were quality trimmed using cutadapt v1.9.1

(http://cutadapt.readthedocs.io/en/stable/qguide.html) for Phred score quality on 3’ end Q >=30"® and a

minimum length of 19 after trimming (bwa-mem recommended minimum read size). Remaining reads

were aligned using the bwa-mem algorithm v0.7.8 (http://bio-bwa.sourceforge.net) against the hg19

reference. PCR duplicates were removed by Broad Institute Picard tools v1.128 MarkDuplicates

11



(https://github.com/broadinstitute/picard). Bedtools v2.22.1 (http://bedtools.readthedocs.io/en/latest/) was

used to ascertain coverage at tier 1 and tier 2 loci. Samples that did not have a mean 300X depth of
coverage at tier 1 genes were excluded from subsequent analyses. In targeted-capture sequencing,
oxidative damage can be pervasive and lead to false positive variant calls at sites with sequence context
CCG being read as CAG'™. Sample-level oxidative damage was calculated using Picard
CollectOxoGMetrics. Sample with ArtQ'® scores less than 21 were removed. Overall, 59 unique
metastasis-normal pairs were available for analysis.

Example alignment pipeline flow:

1. cutadapt -m 19 --quality-base=33 -q30 -a ZZZ-A ZZ7Z -0 sample_filtered_r1.fastq.gz -p
sample_filtered_r2.fastq.gz sample_r1.fastq.gz sample_r2.fastq.gz >> sample.cutadapt.log 2>>
sample.cutadapt.log

2. bwa mem -t 8 -R "@RG\tID:sample_flowcell_id\tLB:sample\tSM:sample\tPL:illumina" -v 2 hg19.fa
sample_filtered_r1.fastq.gz sample_filtered_r2.fastq.gz | samtools view -bT hg19.fa - > sample.bam) >

sample.bwa.pe.log 2>&1

3. novosort -¢ 8 -m 30G --tmpdir novosort_tmp -o sample.srt.bam -i sample.bam >
sample.novosort.log 2>&1

4. java -Xmx30g -jar picard.jar MarkDuplicates CREATE_INDEX=true TMP_DIR=picard_tmp
REMOVE_DUPLICATES=true ASSUME_SORTED-=true
MAX_FILE_HANDLES_FOR_READ_ENDS_MAP=500 INPUT=sample.srt.bam
OUTPUT=sample.rmdup.srt.bam METRICS_FILE=sample.rmdup.srt.metrics
VALIDATION_STRINGENCY=LENIENT > sample.picard.rmdup.pe.log 2>&1

5. bedtools coverage -hist -abam sample.rmdup.srt.bam -b capture_panel_v3 t1.bed | grep all >
sample.capture_t1.hist

6. bedtools coverage -hist -abam sample.rmdup.srt.bam -b capture_panel_v3 t2.bed | grep all >
sample.capture_t2.hist

7. java -Xmx30g -jar picard.jar CollectOxoGMetrics I=sample.rmdup.srt.bam
O=sample.oxo_summary.txt R=hg19.fa INTERVALS=capture_panel_v3.intvl 2> sample.oxo.log;

Variant Calling and Filtering

Single nucleotide variants (SNVs) were called using MuTect v1.1.7

(http://archive.broadinstitute.org/cancer/cga/mutect). Insertions and deletions (indels) were called using

scalpel-discovery 0.5.3 (http://scalpel.sourceforge.net/). Calls not annotated as “PASS” or “KEPT” were

removed. For both SNVs and indels, only calls falling within genomic coordinates targeted by the capture
panel were retained for subsequent analyses. Targeted capture libraries have been shown to be

susceptible to oxidative damage. Even samples that do not have pervasive oxidative damage can have
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false positive calls attributable to this phenomenon“’. All SNV calls were assigned a FoxoG score using

metalfox (https://github.com/cpwardell/bin/blob/master/metalfox.py). Based on previously reported

studies'®, calls without a MuTect tumor_lod greater than -10 + (100 / 3) * FoxoG were removed as they
were likely a consequence of oxidative damage. All variants were annotated using snpeff v3.6c

(http://snpeff.sourceforge.net/), hg19 reference. Only variants that exist within coding regions or disrupted

splice sites were included in analyses. Calls with a variant allele frequency (VAF) < 5%, position coverage
< 30, or an allele frequency >= 0.01 in EXAC were removed. To further improve the quality of indel calls,
two additional filters were implemented: (1) Dustmasker

(https://www.ncbi.nim.nih.gov/IEB/ToolBox/CPP_DOC!/Ixr/source/src/app/dustmasker/) was used to

identify low complexity genomic regions, and indels falling within these regions were discarded; (2) A
pseudo-panel of normal samples was constructed, such that across the matched normal samples, all
putative indel calls that failed Scalpel filters due to ‘HighVafNormal' or ‘HighAltCountNormal’ were
aggregated. All indels that failed in two or more samples from unique patients were filtered. These
methods helped to eliminate remaining noisy calls which passed previous filtering steps.

Example variant calling workflow:

1. java -Djava.io.tmpdir=./temp -Xmx2g -jar mutect-1.1.7 jar -T MuTect -R hg19 --intervals chr1.intvl
--input_file:normal normal_bam tumor_bam --max_alt_alleles_in_normal_count 1000 --
max_alt_alleles_in_normal_gscore_sum 37 --max_alt_allele_in_normal_fraction 0.05 --out
tumor_normal/tumor_normal.chr1.out -vcf tumor_normal/tumor_normal.chr1.vcf --
enable_extended_output --strand_artifact_power_threshold 0 -log tumor_normal.mutect.chr1.log 2>>

'tumor_normal.mutect.chr1.log;

2. metalfox.py -f1 tumor_normal/tumor_normal.chr1.out.keep -f3 tumor.bam -m
wgEncodeCrgMapabilityAlign100mer.bedGraph.gz > tumor_normal.foxog_scored _added.out

3. scalpel-discovery --somatic --logs --numprocs 8 --tumor tumor_bam --normal normal_bam --bed
capture_panel_v3.bed --ref hg19.fa 2>> tumor_normal.indels.log

4, java -jar snpEff.jar eff -t hg19

(tumor_normal.out.keep.sift.vcf/tumor_normal.somatic_indel.PASS sift.vcf) -v >
(tumor_normal.out.keep.eff.vcf/tumor_normal.somatic_indel.PASS.eff.vcf) 2>> tumor_normal.snpeff.log

Mutation Significance (MutSig) Analysis

VCFs were annotated and converted to a MAF format using Oncotator®. MAF files for all patients were

merged and assessed for significant gene-centric mutation frequency using MutSigCV version 2 with
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11.

12.

default coverage and covariate tables provided by the Broad Institute?’. Mutation Assessor’? and
ClinVar® were used to predict the functional impact of protein-coding mutations.

Copy Number Variation Analysis

Copy number calling was carried out using CNVKit v0.7.12.dev0*. All 59 matched-normal samples were
used to calculate the pooled reference baseline using default parameters. Segmented log2 ratios were
used to call copy number gains and losses.

Identification of Prognostic Mutations

Multivariate Cox proportional hazard ratios were generated for each mutated gene feature as a binary
factor across 59 liver metastasis-matched paired normal samples using the survival v2.40-1 R package.
Molecular subtype and Clinical Risk Score (CRS) were included as covariates in multivariate analyses.

Ten-year overall survival was chosen as the primary endpoint of the analysis.

Microsatellite Instability (MSI) Analysis

H&E slides of normal and tumor specimens were reviewed by a molecular pathologist (Dr. Nora Joseph).
Tumor sections with greater than 30% tumor percentage were used for DNA extraction by the Pinpoint
Slide DNA Isolation System (Zymo Research). DNA was subsequently purified by using the Zymo-Spin |
Column protocol. All samples were run on the Promega MSI 1.2 assay according to the FDA approved
protocol and result interpretation. MSI testing was performed on 93 metastases with corresponding
molecular subtypes of which 89 samples were successfully assayed. Four samples failed repeated

testing.

Immunohistochemical Analysis

CRC liver metastases were preserved in formalin and embedded in paraffin. 5um tissue sections were
created from paraffin blocks and mounted on glass slides. The slides were stained on Leica Bond RX
Automatic Stainer using HTRC Bond Refine DAB protocol. After antigen retrieval treatment (epitope
retrieval solution I, AR9640, Leica Biosystems) for 20 minutes, anti-human CD3 (DAKO, Cat#M7254,
Clone: F7.2.38, mouse IgG) antibody (1:600) was applied on tissue sections for 25 minutes incubation.

For CD8 staining, anti-human CD8 (DAKO, Cat#M7103, Clone: C8/144B, mouse IgG) antibody (1:400)

14



was applied. The antigen-antibody binding was detected with Bond polymer refine detection (Leica
Biosystems, DS9800). A coverslip was applied to the tissue sections. For Masson’s trichrome staining,
tissue sections were deparaffinized using heated Bouin’s solution and then stained with Weigert's iron
hematoxylin and Biebrich scarlet solutions. The tissue sections were then treated with phosphotungstic-
phosphomolybdic acid and immediately stained with aniline blue solution. The tissue sections were rinsed

and a coverslip was applied.
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B. Supplementary Figures

Supplementary Figure 1. Overview of study design.
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Supplementary Figure 2: Overall survival by Consensus Molecular Subtypes (CMS) in patients

with colorectal liver metastases. CMS subtypes were determined for 93 patients in our cohort from

RNA Sequencing data using the methodology implemented in Sage-Bionetwork's CMSclassifier R

package (see Supplementary Methods). Kaplan-Meier survival analysis of 10-year overall survival was

performed for patients with CMS2, CMS4 and unclassified patterns. One patient with a CMS1 pattern was

excluded from survival analysis. No. at risk denotes the number of patients at risk at each specified time

point. P-value was determined using a log-rank test across groups.
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Supplementary Figure 3: Consensus clustering analysis of the mRNA expression data for 95
patients with colorectal liver metastases. (A) Heatmaps of the consensus matrices for the predefined
cluster numbers k (k = 2, 3, 3, 4, 5, and 6); (B) Kaplan-Meier plot for 10-year overall survival of the
patients stratified by their consensus cluster memberships. P-value was determined using a log-rank test
across groups; (C) Consensus Cumulative Distribution Function (CDF) plot of the consensus matrix for
each k, estimated by a histogram of 100 bins. The lower left portion of the CDF plot represents samples
rarely clustered together, and the upper right portion represents those almost always clustered together,
whereas the middle portion represents those with occasional co-assignments in different clustering runs;
A flat middle segment, suggesting that very few sample pairs are ambiguous when k is correctly inferred,
can be used to determine the optimal k of consensus clusters. (D) Proportion of ambiguous clustering
(PAC) plot defined as the fraction of sample pairs with consensus index values falling in the intermediate
sub-interval (0.1, 0.9). A low value of PAC indicates a flat middle segment in the CDF plot and is allowed

to infer the optimal k (k = 2).
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Supplementary Figure 4: Consensus clustering analysis of the miRNA expression data for 116
patients with colorectal liver metastases. (A) Heatmaps of the consensus matrices for the predefined

cluster numbers k (k = 2, 3, 3, 4, 5, and 6); (B) Kaplan-Meier plot for 10-year overall survival of the

patients stratified by their consensus cluster memberships. P-value was determined using a log-rank test

across groups; (C) Consensus Cumulative Distribution Function (CDF) plot of the consensus matrix for

each k, estimated by a histogram of 100 bins. The lower left portion of the CDF plot represents samples
rarely clustered together, and the upper right portion represents those almost always clustered together,
whereas the middle portion represents those with occasional co-assignments in different clustering runs
A flat middle segment suggesting that very few sample pairs are ambiguous when k is correctly inferred,

can be used to determine the optimal k of consensus clusters. (D) Proportion of ambiguous clustering

(PAC) plot defined as the fraction of sample pairs with consensus index values falling in the intermediate

sub-interval (0.1, 0.9). A low value of PAC indicates a flat middle segment in the CDF plot and is allowed

to infer the optimal k (k = 2).
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Supplementary Figure 5: Median Silhouette Index (Sl) for the SNF clusters under 72 parameter
settings. (A) Sl represents the separation distance between the resulting clusters under each parameter
setting. The top 8 parameter settings with highest median Sl (in red) were selected for further analysis,
and the corresponding clustering results were used to determine the final SNF cluster memberships
through majority voting. Statistical differences in the associations between SNF clusters (S1=Subtype 1;
S2= Subtype 2; S3= Subtype 3) and mRNA (B) or miRNA (C) consensus clusters (C1-C4) for pre-defined
consensus cluster numbers of k=2, k=3, and k=4 were assessed using Chi-squared tests across SNF

clusters. Asterisks denote P-values < 0.0001.
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Supplementary Figure 6: Associations of molecular subtypes and clinicopathological variables.

Statistical significance was assessed using Fisher’'s exact tests for categorical variables and Student’s t-

test for continuous variables. Asterisks denote P-values < 0.05 in the comparison of one SNF subtype

versus the remaining subtypes. Error bars represent S.E.M..
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Supplementary Figure 7: Non-random association of SNF network structure with overall survival
in metastatic colorectal cancer patients. Shown is the density of the -log P-value for each simulation of
the SNF cluster set with members closest to the consensus for illustrative purposes. The red line in the
figure represents the empirical P-value for a particular parameter set (parameter settings: K=25,
alpha=0.6, T=20). The table inset contains the key statistics for each of the top 8 SNF cluster
parameterizations in order of decreasing median Silhouette Index; highlighted is a parameter setting
which produced SNF clusters with memberships closest to the consensus SNF grouping differing only by

two sample assignments.
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Supplementary Figure 8: Distant metastasis-free survival by molecular subtype. Molecular subtypes
were determined for 93 patients in our cohort. Subtype 1 = SNF1, Subtype 2 = SNF2, and Subtype 3 =
SNF3. Kaplan-Meier survival analysis of distant metastasis-free survival (event = first metastatic
recurrence or death). No. at risk denotes number of patients at risk at each specified time point. P-value

was determined using a log-rank test across groups.
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Supplementary Figure 9: Primary CRC CMS subtype by metastasis subtype. Shown is the
distribution of primary colorectal cancer Consensus Molecular Subtypes (CMS) by SNF-based molecular
subtypes of colorectal liver metastases. Subtype 1 = SNF1, Subtype 2 = SNF2, and Subtype 3 = SNF3.
CMS subtypes were determined for 93 patients in our cohort from RNA Sequencing data using the
methodology implemented in Sage-Bionetwork's CMSclassifier R package (see Supplementary

Methods). P-value denotes a Chi-Squared test across the three SNF groups.
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Supplementary Figure 10: Perioperative chemotherapy regimens and associations with molecular
subtype. (A) Types of perioperative chemotherapies received by patients which were included in the
integrated SNF-based molecular analysis. Specific details regarding chemotherapy regimens were
available for 81 of 93 patients. (B) Association between type of chemotherapy received in perioperative
setting and molecular subtype of metastasis derived from molecular subtyping analysis. P-value denotes

a Chi-Squared test across the three SNF groups. Subtype 1 = SNF1, Subtype 2 = SNF2, and Subtype 3 =

SNF3.
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Supplementary Figure 11: Prediction Analysis of Microarrays (PAM)-based classifier to

distinguish molecular subtypes. (A) Model evaluation on the test data set from our cohort samples. (B)

The area under the ROC curve demonstrates the classification performance compared to a random

classifier on the test data set (AUC = 0.875 vs. AUC = 0.50 for random classifier). (C) Mosaic plot

showing the concordance between the predicted subtype cluster labels and the Clinical Risk Scores

(CRS) in an independent data set of patients who underwent hepatic resection of limited colorectal liver

metastases (Memorial Sloan-Kettering Cancer Center, n=96, ArrayExpress Identifier: E-MTAB-1951).

Subtype 1 = SNF1, Subtype 2 = SNF2, and Subtype 3 = SNF3.
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Supplementary Figure 12: Histologic analysis by molecular subtypes of liver metastasis. (A)
Hematoxylin and eosin, (B) Trichome, (C) CD3, and (D) CD8 staining by subtype. Shown are 10X
magnification fields for three representative patients from each SNF subtype. Top row, Subtype 1. Middle

row, Subtype 2. Bottom row, Subtype 3.

A

27




Supplementary Figure 13: Oncoprint plot of exomic mutations occurring in 59 patients with
colorectal liver metastases. Genes mutated in = 10% of samples are shown. Values to the left of the
Oncoprint plot represent the percentage of samples that harbor a mutation (non-synonymous SNVs or
indels) in a given gene. The horizontal bar plot indicates the number of mutations for each patient sample
falling within these recurrently altered genes. The vertical bar plot to the right depicts the number of
mutations seen in each gene across all 59 samples. 'Splicing' refers to mutations that affect a splice

donor or acceptor site.
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Supplementary Figure 14: Cytotoxic immune signature by molecular subtypes. (A) Distribution of
cytotoxic immune gene scores' by CRC liver metastasis subtype. MSI-H and MSI-L, microsatellite
instability-high and -low. MSS, microsatellite stable. N/A, missing data. Subtype 1 = SNF1, Subtype 2 =
SNF2, and Subtype 3 = SNF3. (B) Mean (+ S.E.M.) values of cytotoxic cell immune scores by SNF-based
molecular subtype. (C) Percentage of MSS patients within each SNF-derived subtype. Differences in
cytotoxic immune scores by somatic ARID2 (D) or SNF-specific mutations (E). Metastases classified as
harboring SNF subtype 2-specific mutations included CDK12, NRAS, and EBF1 mutations, whereas
SMAD3, NOTCHL1, or PIK3C2B mutations characterized SNF subtypes 1- and 3-specific mutations. Data

represent mean + S.E.M. values. Asterisks denote P-values < 0.05 based on two-tailed Student’s t-test.
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Supplementary Figure 15: Overall survival by integration of molecular subtype and Clinical Risk

Scores (CRS). High CRS denotes scores = 2. Patient subgroups defined by molecular subtypes and

CRS were classified into low-, intermediate-, and high-risk cohorts based on Kaplan-Meier analysis of

overall survival rates. P-value was determined using a log-rank test across groups. No. at risk denotes

number of patients at risk at each specified time point. Table inset denotes hazard ratios (95% confidence

intervals) for Cox multivariate proportional hazard analysis of molecular subtype (3 levels; SNF1 vs. SNF2

vs. SNF3) and CRS (2 levels; CRS >=2 vs. CRS <2). Both subtype and CRS were considered nominal

variables. A multivariate interaction was assessed between subtype and CRS and removed from the final

multivariate model due to non-significance. P-value was determined using likelihood ratio test. The

differences in CRS between SNF subtypes were assessed using Chi-Squared tests. Asterisk denotes P-

values < 0.05 in the comparison of one subtype versus the remaining subtypes.
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Supplementary Figure 16: Metastatic recurrence patterns by integrated risk classification. Risk
groups were determined for 87 patients in our cohort. (A) Kaplan-Meier survival analysis of distant
metastasis-free survival (event = first metastatic recurrence or death). P-value was determined using a
log-rank test across groups. No. at risk denotes number of patients at risk at each specified time point. (B)
Association of molecular/clinical risk stratification groups with patterns of metastatic recurrence. Statistical
significance was assessed using Fisher’s exact tests between one risk group versus the two remaining

groups. Asterisks denote P-values < 0.05.
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