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A. Supplementary Methods 

 

1. Clinical Information 

Patient Characteristics 

We conducted a retrospective clinical cohort study of patients who underwent hepatic resection of 

histologically confirmed metastatic colorectal adenocarcinoma at the University of Chicago Medical 

Center (Chicago, IL) and NorthShore University Health System (Evanston, IL) between 1994 and 2012. 

During this time period, approximately 60-75 patients per year underwent hepatic resection of colorectal 

liver metastases at the two participating institutions. All available clinical, pathologic, radiologic, and 

outcome data were collected for patients using medical records. Patients with unresectable or 

extrahepatic disease at the time of metastatic diagnosis were excluded from this study. In total, 134 

consecutive patients with metastatic colorectal cancer who underwent surgical resection of limited de 

novo liver metastases were selected for molecular analysis. Patients were uniformly treated with 

perioperative chemotherapy, definitive treatment of primary colorectal cancer, and partial hepatectomy for 

resection of liver metastases. Detailed cohort characteristics are provided in Table 1 and Supplementary 

Table 1. This study was approved by the Institutional Review Boards at each respective institution. 

Consent was waived for all enrolled subjects as this study was purely retrospective. Dates of recurrence, 

death or last follow-up were extracted from medical records and Social Security Death databases. Clinical 

risk scores (CRS) were calculated as previously described1.  

Pathologic Examination 

Formalin-fixed paraffin-embedded (FFPE) specimens were collected from archived pathologic tissue. 

FFPE specimens were catalogued and histologically reviewed by an expert pathologist (Dr. Nora Joseph) 

to ensure adequacy of the specimen and histologic quality control. Tissue blocks containing sufficient 

tumor tissue were subjected to 2mm punch biopsies of both tumor and normal liver regions. For each 

surgical specimen, representative FFPE tissue blocks and corresponding H&E slides were analyzed to 

confirm the diagnosis of colorectal adenocarcinoma and identify regions containing high quantities of 

viable tumor cells, as well as independent regions containing normal liver parenchyma. Three cores from 

tumor and normal tissue regions were obtained. For each specimen, all three cores were combined to 
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reduce intratumoral variability. This procedure was repeated for both tumor and normal biopsies for each 

patient. 

 

2. Nucleic Acid Extraction 

Punch biopsy specimens were deparaffinized and processed using the RecoverAll Total Nucleic Acid 

Isolation Kit (Ambion, TX) according to the manufacturer’s instructions. Briefly, 200μL of digestion buffer 

and 4μL of protease were added to each sample and incubated overnight at 55°C. RNA and DNA were 

extracted following the RecoverAll protocol according to the manufacturer’s recommendations. Nucleic 

acid quantification was performed using a NanoDrop 1000 Spectrophotometer and a Qubit® Fluorometer. 

Nucleic acid extracts were stored at -80°C until further analysis.  

 

3. RNA Sequencing 

Library Construction  

RNA integrity and quantity were evaluated using an Agilent 2100 Bioanalyzer (Agilent Technologies, CA). 

Reverse-stranded paired-end 75 base-pair sequencing libraries were constructed using Illumina Total 

RNA Stranded Kits. Ribosomal RNAs (rRNAs) were depleted by using the Ribo-Zero rRNA Removal Kit 

(Illumina). Libraries were sequenced on a HiSEQ2500 machine using standard reagents and protocols 

provided by Illumina. In total, 95 metastatic samples were successfully sequenced using this approach. 

Read Alignment and Quantification 

Unless otherwise specified, all data analyses were performed under the R programming and software 

environment for statistical computing and graphics version 3.3 (R Core Team, 2016). FastQ files for each 

sample were assessed for quality using the FastQC tool (version 0.11.2). Raw reads were aligned to the 

GRCh38 primary genome assembly using Spliced Transcripts Alignment to a Reference (STAR) aligner 

(version 2.4.2a) 1-pass algorithm2. After sorting the bam files in lexicographical order with the sambamba 

program3, we assigned the reads to exon features annotated in GENCODE (release 22) using the 

FeatureCounts tool from the subread package (version 1.4.6) and summarized the read counts by 

genes4. The post-alignment quality control was carried out with Picard tools (version 1.117) and RSeQC 
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package (version 2.3.1). Specifically, we examined the QC data regarding the alignment summary, gene 

body coverage, read distribution, and ribosomal RNA depletion rate. 

Data Normalization 

We used functions in the R/Bioconductor package edgeR to extract the raw counts of the reads that were 

mapped to the protein-coding genes5. After removing the genes with zero read counts across all samples, 

we calculated the normalization factors to scale the raw library sizes and the log2-transformed count per 

million (log-CPM) for the expression level of each gene. The log-CPM values were corrected for batch 

effect (sequencing lane effect and institution) using removeBatchEffect function from the R/Bioconductor 

package limma6. We retained 18,714 genes for the subsequent analyses. 

Detection of Differentially Expressed mRNAs 

To identify differentially expressed mRNAs among samples grouped by Similarity Network Fusion (SNF – 

see Section 7) clusters, we first removed non/low-expressed genes in comparison groups by requiring 

read counts to be at least 1 across a minimum number of samples in one of the comparison groups, 

followed by trimmed mean of M-values (TMM) normalization using the calcNormFactors function in the 

edgeR package. Next, we removed heteroscedascity from the count data using the 

voomWithQualityWeights function from the limma package with quantile normalization method enabled. 

We then fit a linear model for each gene using the limma algorithm, adjusted for batch effect, and ranked 

the genes for differential expression using the empirical Bayes method with trend and robust options 

enabled. The differentially expressed genes were identified with the Benjamini–Hochberg procedure for 

multiple test adjustment and fold-change. The adjusted P-value threshold and fold-change threshold were 

set at 0.05 and 2.0, respectively (Supplementary Table 2).  

 

4. microRNA Expression Profiling 

RNA integrity and quantity were evaluated using an Agilent 2100 Bioanalyzer (Agilent Technologies, CA). 

Total RNA (500ng) was processed for biotin labeling according to the Affymetrix Flash Tag Biotin HSR 

RNA labeling guide (Affymetrix, CA). The biotin-labeled target was hybridized to Affymetrix miRNA 4.0 

Array Chips for 16h at 48°C and 60rpm in an Affymetrix 640 hybridization oven. Arrays were washed and 

stained in an Affymetrix Fluidics Station 450 according to the Affymetrix GeneChip expression guide. The 
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arrays were scanned using the Affymetrix GeneChip Scanner 3000 7G. CEL intensity files were 

generated using GCOS software. In total, 116 metastatic samples were successfully assayed using this 

approach.  

Data Pre-Processing and Normalization 

The methods used in this analysis are available as part of the R/Bioconductor packages affy, oligo, limma 

and sva6,7. The raw Affymetrix GeneChip miRNA 4.0 Array CEL files were imported to R using the 

read.celfiles function from the oligo package. We first performed robust normexp-by-control background 

correction using the nec function from the limma package with the robust option enabled8. We then 

normalized the log2-transformed expression data using cyclic loess normalization with the array weight 

method. Finally, we summarized the probes into probesets using the rma function from the affy package 

with the options normalize and background disabled. To remove batch effects caused by array 

processing dates and the patient cohorts, we applied the ComBat algorithm implemented in the sva 

package9. We considered two batch factors: (1) institution and (2) microarray scan date. A single sample 

was run in batch 6 and combined with samples from batch 5. We removed the non/low-expressed 

probesets and retained the probesets representing 778 mature human miRNAs for the subsequent 

analyses. 

Detection of Differentially Expressed miRNAs 

We applied the limma method to identify differentially expressed miRNAs among the samples grouped by 

SNF clusters. We first estimated the relative quality weights for each array using the arrayWeightsSimple 

function, and then fit a linear model for each probeset adjusted for batch effect, followed by ranking 

probesets for differential expression using empirical Bayes method. The differentially expressed miRNAs 

were identified with the Benjamini–Hochberg procedure for multiple test adjustment and fold-change. The 

adjusted P-value threshold and fold-change threshold were set at 0.05 and 2.0, respectively 

(Supplementary Table 3). 

 

5. Consensus Clustering of Expression Data 

We performed unsupervised consensus clustering analysis on independent mRNA and miRNA 

expression data sets using the R package ConsensusClusterPlus (version 1.38.0). We selected the most 



 

7 
 

informative mRNAs or miRNAs for clustering, which consisted of the top 25% most variable mRNAs or 

miRNAs, as measured by the median absolute deviation (MAD). Normalized expression data from 

previous procedures were first standardized using the data normalization function in the R package 

clusterSim (version 0.45-1). To run ConsensusClusterPlus, we preset the options as a maximum 

evaluated cluster k = 6, 80% samples per resampling, 1,000 resamplings, Euclidean distance, and k-

means clustering algorithm. We chose complete and average linkage as the inner-linkage and final 

linkage, respectively. The optimal number of k clusters was inferred by inspecting the consensus 

cumulative distribution function (CDF) plot and the proportion of ambiguously clustered pairs (PAC) plot 

where the optimal k corresponds to the lowest PAC10 (k = 2, Supplementary Fig. 3 and Supplementary 

Fig. 4). 

 

6. Consensus Molecular Subtyping (CMS) of Colorectal Liver Metastases 

Microarray expression data derived from 183 patients with colorectal liver metastasis were collected from 

ArrayExpress (study IDs: E-MTAB-1951 [MSK2], E-GEOD-62322 [French], E-GEOD-41258 [MSK3], and 

E-GEOD-35834 [Italian]). Study E-MTAB-1951 contains 96 samples profiled on the Illumina HumanHT-12 

v3.0 Expression BeadChip. E-GEOD-62322 and E-GEOD-41258 contain 19 and 47 samples that were 

profiled on Affymetrix HG-U133A Arrays, respectively. E-GEOD-35834 consists of 27 samples profiled on 

the Affymetrix Human Exon 1.0 ST Array. We also used two sets of normalized RNA Sequencing data. 

One cohort includes 93 metastases from our cohort which were reanalyzed with RSEM to assess TPM 

abundances, while the other cohort contains 45 unpublished liver metastases that were obtained from the 

Memorial Sloan-Kettering Cancer Center from Dr. Sajid Khan and Dr. Philip Paty [MSK1] and processed 

similar to previously described methods in Section 3. For E-MTAB-1951, raw expression data was 

preprocessed with variance stabilizing transformation and quantile normalization using the lumi package 

(version 2.26.3). For the remaining microarray studies, CEL files were downloaded directly from 

ArrayExpress and processed with fRMA (version 1.28.0) for core annotation targets summarized by 

robust weighted average. Level 3 TCGA READ and COAD RNA Sequencing RSEM expression data was 

obtained from Sage-Bionetworks Synapse repository (syn: syn2320098, syn2320092, syn2320147, and 

syn2320079). TPM expression data corresponding to primary tumor samples were selected, offset by 1, 
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and log2 transformed. Multiple gene level mappings were resolved by singular value decomposition. 

Datasets from both tissues were merged, and a custom ComBat correction was performed to account for 

batch effects between HiSeq-RNASeqV2 and Illumina-GA platforms. All scripting and normalization 

methods are available for download via the CRC Subtyping Consortium's github including the merging 

protocol (https://github.com/Sage-

Bionetworks/crcsc/blob/dc58542555e281c1ccb55aeb73d087e7d0bdf6bf/ 

groups/G/dataQc/tcgaCrcRNAseq-merged.R) and miscellaneous normalization procedures 

(https://github.com/Sage-Bionetworks/crcsc/blob/dc58542555e281c1ccb55aeb73d087e7d0bdf6bf/ 

groups/G/dataQc/JGnorm.R).  

For both microarray and RNA Sequencing expression data, features were mapped to corresponding 

Entrez gene IDs using annotation sets provided by Ensembl GRCH38 and Bioconductor including 

hgu133a.db (version 3.2.3), huex10sttranscriptcluster.db (version 8.6.0), lumiHumanIDMapping (version 

1.10.1), or org.Hs.eg.db (version 3.3.0). For multiple annotations mapping to a unique gene feature, either 

the median probeset value or the largest coefficient of variation across RNAseq samples was retained as 

an expression estimate for the corresponding gene feature. CMS classification was performed using the 

single sample procedure (SPP) (https://github.com/Sage-Bionetworks/CMSclassifier). The single sample 

method is a Pearson correlation-based centroid model of 786 genes which is included with the 

CMSClassifier R package.  

 

7. Similarity Network Fusion 

The matched normalized mRNA and miRNA expression data of 93 metastases were first separately 

standardized using the standardNormalization function from the R package SNFtool (version 2.2). The 

Euclidean distances between all pairs of samples in mRNA and miRNA data were calculated, 

respectively. An affinity matrix was computed using the function affinityMatrix with the number of nearest 

neighbors K and the variance for local model alpha. We then performed similarity network fusion on 

affinity matrices of mRNA and miRNA with the number of iterations T, which was used in the subsequent 

spectral clustering step where samples were assigned to one of the SNF clusters. We identified three 

clusters using default settings. In order to find other possible compositions of three clusters we tested 168 
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parameter combinations of K (10, 15, 20, 25, 30, 35, 40), alpha (0.3, 0.4, 0.5, 0.6, 0.7, 0.8), and T (20, 30, 

40, 50). For each parameter setting, we applied the estimateNumberOfClustersGivenGraph function to 

estimate the possible number of clusters using two heuristic methods: (1) eigen gap and (2) rotation cost. 

We retained the clustering results which comprised three clusters and calculated the median Silhouette 

index (SI) of each result. We selected the top 8 clustering results that had the highest median SIs 

(Supplementary Fig. 5A). A majority voting scheme was applied to determine the final cluster 

membership based on the top 8 clustering results. In the event of a tie, we chose the membership defined 

by four clustering results with the largest median SIs. The association between SNF clusters and clusters 

derived from mRNA or miRNA consensus clustering were evaluated using Chi-squared tests 

(Supplementary Fig. 5B). 

Robustness of SNF Clustering on Overall Survival 

Previous work has shown that the SNF algorithm for clustering is statistically robust11. We examined 

whether our observed survival difference between SNF clusters could be reproduced by random chance. 

To this end, we performed permutation analyses. For each permutation, miRNA profiles were shuffled 

and randomly assigned to mRNA profiles. Subsequently, SNF clustering was performed de novo and 

each patient was assigned to one of three resulting groups. Differential overall survival across clusters 

was then assessed with a log-rank test. This process was repeated 1,000 times, and log-rank p-values 

were used to construct a null distribution. We examined the number of instances when p-values from the 

null distribution were more extreme (i.e. smaller) than our empirical p-value (Supplementary Fig. 7).  

 

8. Ensemble of Gene Set Enrichment Analyses (EGSEA) 

Raw gene feature counts were mapped to Entrez ID using the R/Bioconductor package org.Hs.eg.db 

v3.4.05. Low/non-expressed genes with less than 1 CPM across the minimum number of samples in any 

subtype group were excluded from subsequent analysis using edgeR v3.16.5. Quality weighted, quantile, 

and log-normalized CPM were calculated using limma-voom v3.30.11. Gene set enrichment was 

performed using the R/Bioconductor package EGSEA v1.2.012 with planned contrasts of each subtype 

against the average of the remaining subtypes. Independent EGSEA analyses were performed for gene 

lists provided by MSigDB v5.213 (Supplementary Table 4) and a custom gene list identifying numerous 
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immunological, canonical, and metabolic pathways14 (Supplementary Table 5). Intratumoral immunome 

profiling was performed as previously described15, and resulting gene lists were used to calculate 

subtype-level and single sample enrichment scores using EGSEA. 

 

9. SNF Class Predictor 

Data Preprocessing 

To build a classifier to distinguish samples between subtype cluster 2 (C2) and subtype clusters 1 and 3 

combined (C13), the normalized mRNA expression data of 93 patients was split into a training set, 

consisting of 20 subtype 2 samples and 51 subtypes 1 and 3 samples, and a test set, consisting of 6 

cluster 2 samples and 16 cluster 1 and 3 samples. The class ratio remained unchanged during the 

partition. For the training set, we first filtered genes with near zero-variance. We then identified highly 

correlated genes with a pair-wise absolute correlation coefficient greater than 0.7, and removed those 

with the largest mean absolute correlation. We further removed potential linear dependencies of the data 

using the findLinearCombos function from the R package Caret (version 6.0). We applied the preProcess 

function to center and scale the training and test data by mean and standard deviation, followed by 

rescaling data to -1 and 1. 

Model Training and Testing 

We applied Prediction Analysis of Microarrays (PAMR, version 1.55) – a nearest shrunken centroid 

classification algorithm – on the training set16. A 10-fold cross-validation was performed to obtain the 

optimal threshold of 2.72 for the prediction, where the overall error rate was 0.056. The final classification 

model contains 113 genes and was evaluated using the held-out test data of 6 subtype 2 samples and 16 

subtypes 1 and 3 samples. Performance metrics such as accuracy, balanced accuracy, sensitivity, 

specificity, positive prediction value (PPV), negative prediction value (NPV), Cohen’s Kappa, Matthew’s 

correlation coefficient, and area under the curve (AUC) were calculated using the confusionMatrix 

function from the Caret package and an in-house script (Supplementary Fig. 11A and Supplementary 

Fig. 11B). 

Independent Validation of Classifier 

We downloaded the raw expression data of 96 patients from ArrayExpress (study ID: E-MTAB-1951). We 
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prioritized the analysis of the E-MTAB-1951 samples as it is the only publicly available colorectal cancer 

liver metastasis dataset with available clinical annotations (i.e. Clinical Risk Scores (CRS)) to test for 

association with subtype membership grouping. The samples were profiled using the Illumina HumanHT-

12 v3.0 Expression BeadChip. Using the R/Bioconductor package lumi (version 2.26.4)17, we transformed 

the expression data via variance-stabilizing transformation (VST) algorithm, followed by between-chip 

normalization with the robust spline normalization (RSN) algorithm. For multiple probes that mapped to 

the same Ensembl gene ID, we removed those with the smallest variance across samples. We re-trained 

the PAM classifier on all 93 samples in our cohort using the 113 genes selected from the previous 

analysis and applied it to the normalized E-MTAB-1951 microarray data set. For genes that were missing 

in the microarray data, we replaced the expression values with -1 after scaling the data to -1 and 1. The 

concordance between the predicted subtype cluster memberships and the Clinical Risk Scores (CRS) 

from the E-MTAB-1951 samples was examined using contingency analysis (Supplementary Fig. 11C). 

 

10. Hybrid Capture Next Generation Sequencing 

Targeted Capture Sequencing Panel 

For each specimen, DNA from 1,212 exonic regions was captured using the UCM-OncoPlus panel based 

on the NimbleGen SeqCap EZ custom capture method as previously described18. In brief, this approach 

utilizes a tiered assay system in which highly clinically relevant genes (tier 1, n=316) are sequenced 

approximately 3-fold deeper than the remaining (tier 2) genes. Capture libraries were generated using the 

Illumina TruSeq platform. Libraries were multiplexed with 6 base-paired indexes up to 9 samples per lane 

and sequenced using Illumina HiSeq2000 and HiSeq2500 machines. FastQ files were generated using 

Illumina’s BCL2FastQ1.8.4.  

Sequencing Data Alignment 

FastQ files were quality trimmed using cutadapt v1.9.1 

(http://cutadapt.readthedocs.io/en/stable/guide.html) for Phred score quality on 3’ end Q >=3018 and a 

minimum length of 19 after trimming (bwa-mem recommended minimum read size). Remaining reads 

were aligned using the bwa-mem algorithm v0.7.8 (http://bio-bwa.sourceforge.net) against the hg19 

reference. PCR duplicates were removed by Broad Institute Picard tools v1.128 MarkDuplicates 
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(https://github.com/broadinstitute/picard). Bedtools v2.22.1 (http://bedtools.readthedocs.io/en/latest/) was 

used to ascertain coverage at tier 1 and tier 2 loci. Samples that did not have a mean 300X depth of 

coverage at tier 1 genes were excluded from subsequent analyses. In targeted-capture sequencing, 

oxidative damage can be pervasive and lead to false positive variant calls at sites with sequence context 

CCG being read as CAG19. Sample-level oxidative damage was calculated using Picard 

CollectOxoGMetrics. Sample with ArtQ19 scores less than 21 were removed. Overall, 59 unique 

metastasis-normal pairs were available for analysis.  

Example alignment pipeline flow: 
 
1. cutadapt -m 19 --quality-base=33 -q30 -a ZZZ-A ZZZ -o sample_filtered_r1.fastq.gz -p 
sample_filtered_r2.fastq.gz sample_r1.fastq.gz sample_r2.fastq.gz  >>  sample.cutadapt.log 2>> 
sample.cutadapt.log 
 
2. bwa mem -t 8 -R "@RG\tID:sample_flowcell_id\tLB:sample\tSM:sample\tPL:illumina" -v 2 hg19.fa  
sample_filtered_r1.fastq.gz sample_filtered_r2.fastq.gz | samtools view -bT hg19.fa - >  sample.bam) > 
sample.bwa.pe.log 2>&1 
 
3. novosort -c 8 -m 30G --tmpdir novosort_tmp -o sample.srt.bam -i sample.bam > 
sample.novosort.log 2>&1 
 
4. java -Xmx30g -jar picard.jar MarkDuplicates CREATE_INDEX=true TMP_DIR=picard_tmp 
REMOVE_DUPLICATES=true ASSUME_SORTED=true 
MAX_FILE_HANDLES_FOR_READ_ENDS_MAP=500 INPUT=sample.srt.bam 
OUTPUT=sample.rmdup.srt.bam METRICS_FILE=sample.rmdup.srt.metrics 
VALIDATION_STRINGENCY=LENIENT > sample.picard.rmdup.pe.log 2>&1 
 
5. bedtools coverage -hist -abam sample.rmdup.srt.bam -b capture_panel_v3_t1.bed | grep all > 
sample.capture_t1.hist 
 
6. bedtools coverage -hist -abam sample.rmdup.srt.bam -b capture_panel_v3_t2.bed | grep all > 
sample.capture_t2.hist 
 
7. java -Xmx30g -jar picard.jar CollectOxoGMetrics I=sample.rmdup.srt.bam 
O=sample.oxo_summary.txt R=hg19.fa INTERVALS=capture_panel_v3.intvl 2> sample.oxo.log; 
 
Variant Calling and Filtering 

Single nucleotide variants (SNVs) were called using MuTect v1.1.7 

(http://archive.broadinstitute.org/cancer/cga/mutect). Insertions and deletions (indels) were called using 

scalpel-discovery 0.5.3 (http://scalpel.sourceforge.net/). Calls not annotated as “PASS” or “KEPT” were 

removed. For both SNVs and indels, only calls falling within genomic coordinates targeted by the capture 

panel were retained for subsequent analyses. Targeted capture libraries have been shown to be 

susceptible to oxidative damage. Even samples that do not have pervasive oxidative damage can have 
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false positive calls attributable to this phenomenon19. All SNV calls were assigned a FoxoG score using 

metalfox (https://github.com/cpwardell/bin/blob/master/metalfox.py). Based on previously reported 

studies19, calls without a MuTect tumor_lod greater than -10 + (100 / 3) * FoxoG were removed as they 

were likely a consequence of oxidative damage. All variants were annotated using snpeff v3.6c 

(http://snpeff.sourceforge.net/), hg19 reference. Only variants that exist within coding regions or disrupted 

splice sites were included in analyses. Calls with a variant allele frequency (VAF) < 5%, position coverage 

< 30, or an allele frequency >= 0.01 in ExAC were removed. To further improve the quality of indel calls, 

two additional filters were implemented: (1) Dustmasker 

(https://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/src/app/dustmasker/) was used to 

identify low complexity genomic regions, and indels falling within these regions were discarded; (2) A 

pseudo-panel of normal samples was constructed, such that across the matched normal samples, all 

putative indel calls that failed Scalpel filters due to ‘HighVafNormal’ or ‘HighAltCountNormal’ were 

aggregated. All indels that failed in two or more samples from unique patients were filtered. These 

methods helped to eliminate remaining noisy calls which passed previous filtering steps.  

Example variant calling workflow: 
 
1. java -Djava.io.tmpdir=./temp -Xmx2g -jar mutect-1.1.7.jar -T MuTect -R hg19 --intervals chr1.intvl  
--input_file:normal normal_bam tumor_bam --max_alt_alleles_in_normal_count 1000 --
max_alt_alleles_in_normal_qscore_sum 37 --max_alt_allele_in_normal_fraction 0.05 --out 
tumor_normal/tumor_normal.chr1.out -vcf tumor_normal/tumor_normal.chr1.vcf --
enable_extended_output --strand_artifact_power_threshold 0 -log tumor_normal.mutect.chr1.log 2>> 
'tumor_normal.mutect.chr1.log; 
 
2. metalfox.py -f1 tumor_normal/tumor_normal.chr1.out.keep -f3 tumor.bam -m 
wgEncodeCrgMapabilityAlign100mer.bedGraph.gz > tumor_normal.foxog_scored_added.out 
 
3. scalpel-discovery --somatic --logs --numprocs 8 --tumor tumor_bam --normal normal_bam --bed 
capture_panel_v3.bed --ref hg19.fa 2>> tumor_normal.indels.log 
 
4. java -jar snpEff.jar eff -t hg19  
(tumor_normal.out.keep.sift.vcf/tumor_normal.somatic_indel.PASS.sift.vcf) -v > 
(tumor_normal.out.keep.eff.vcf/tumor_normal.somatic_indel.PASS.eff.vcf) 2>> tumor_normal.snpeff.log 
 
 
Mutation Significance (MutSig) Analysis 

VCFs were annotated and converted to a MAF format using Oncotator20. MAF files for all patients were 

merged and assessed for significant gene-centric mutation frequency using MutSigCV version 2 with 
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default coverage and covariate tables provided by the Broad Institute21. Mutation Assessor22 and 

ClinVar23 were used to predict the functional impact of protein-coding mutations. 

Copy Number Variation Analysis 

Copy number calling was carried out using CNVKit v0.7.12.dev024. All 59 matched-normal samples were 

used to calculate the pooled reference baseline using default parameters. Segmented log2 ratios were 

used to call copy number gains and losses.  

Identification of Prognostic Mutations 

Multivariate Cox proportional hazard ratios were generated for each mutated gene feature as a binary 

factor across 59 liver metastasis-matched paired normal samples using the survival v2.40-1 R package. 

Molecular subtype and Clinical Risk Score (CRS) were included as covariates in multivariate analyses. 

Ten-year overall survival was chosen as the primary endpoint of the analysis. 

 

11. Microsatellite Instability (MSI) Analysis 

H&E slides of normal and tumor specimens were reviewed by a molecular pathologist (Dr. Nora Joseph). 

Tumor sections with greater than 30% tumor percentage were used for DNA extraction by the Pinpoint 

Slide DNA Isolation System (Zymo Research). DNA was subsequently purified by using the Zymo-Spin I 

Column protocol. All samples were run on the Promega MSI 1.2 assay according to the FDA approved 

protocol and result interpretation. MSI testing was performed on 93 metastases with corresponding 

molecular subtypes of which 89 samples were successfully assayed. Four samples failed repeated 

testing.   

 

12. Immunohistochemical Analysis 

CRC liver metastases were preserved in formalin and embedded in paraffin. 5µm tissue sections were 

created from paraffin blocks and mounted on glass slides. The slides were stained on Leica Bond RX 

Automatic Stainer using HTRC Bond Refine DAB protocol. After antigen retrieval treatment (epitope 

retrieval solution II, AR9640, Leica Biosystems) for 20 minutes, anti-human CD3 (DAKO, Cat#M7254, 

Clone: F7.2.38, mouse IgG) antibody (1:600) was applied on tissue sections for 25 minutes incubation. 

For CD8 staining, anti-human CD8 (DAKO, Cat#M7103, Clone: C8/144B, mouse IgG) antibody (1:400) 
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was applied. The antigen-antibody binding was detected with Bond polymer refine detection (Leica 

Biosystems, DS9800). A coverslip was applied to the tissue sections. For Masson’s trichrome staining, 

tissue sections were deparaffinized using heated Bouin’s solution and then stained with Weigert’s iron 

hematoxylin and Biebrich scarlet solutions. The tissue sections were then treated with phosphotungstic-

phosphomolybdic acid and immediately stained with aniline blue solution. The tissue sections were rinsed 

and a coverslip was applied.  
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Supplementary Figure 3: Consensus clustering analysis of the mRNA expression data for 95 

patients with colorectal liver metastases. (A) Heatmaps of the consensus matrices for the predefined 

cluster numbers k (k = 2, 3, 3, 4, 5, and 6); (B) Kaplan-Meier plot for 10-year overall survival of the 

patients stratified by their consensus cluster memberships. P-value was determined using a log-rank test 

across groups; (C) Consensus Cumulative Distribution Function (CDF) plot of the consensus matrix for 

each k, estimated by a histogram of 100 bins. The lower left portion of the CDF plot represents samples 

rarely clustered together, and the upper right portion represents those almost always clustered together, 

whereas the middle portion represents those with occasional co-assignments in different clustering runs; 

A flat middle segment, suggesting that very few sample pairs are ambiguous when k is correctly inferred, 

can be used to determine the optimal k of consensus clusters. (D) Proportion of ambiguous clustering 

(PAC) plot defined as the fraction of sample pairs with consensus index values falling in the intermediate 

sub-interval (0.1, 0.9). A low value of PAC indicates a flat middle segment in the CDF plot and is allowed 

to infer the optimal k (k = 2). 
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Supplementary Figure 4: Consensus clustering analysis of the miRNA expression data for 116 

patients with colorectal liver metastases. (A) Heatmaps of the consensus matrices for the predefined 

cluster numbers k (k = 2, 3, 3, 4, 5, and 6); (B) Kaplan-Meier plot for 10-year overall survival of the 

patients stratified by their consensus cluster memberships. P-value was determined using a log-rank test 

across groups; (C) Consensus Cumulative Distribution Function (CDF) plot of the consensus matrix for 

each k, estimated by a histogram of 100 bins. The lower left portion of the CDF plot represents samples 

rarely clustered together, and the upper right portion represents those almost always clustered together, 

whereas the middle portion represents those with occasional co-assignments in different clustering runs; 

A flat middle segment suggesting that very few sample pairs are ambiguous when k is correctly inferred, 

can be used to determine the optimal k of consensus clusters. (D) Proportion of ambiguous clustering 

(PAC) plot defined as the fraction of sample pairs with consensus index values falling in the intermediate 

sub-interval (0.1, 0.9). A low value of PAC indicates a flat middle segment in the CDF plot and is allowed 

to infer the optimal k (k = 2). 
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Supplementary Figure 7: Non-random association of SNF network structure with overall survival 

in metastatic colorectal cancer patients. Shown is the density of the -log P-value for each simulation of 

the SNF cluster set with members closest to the consensus for illustrative purposes. The red line in the 

figure represents the empirical P-value for a particular parameter set (parameter settings: K=25, 

alpha=0.6, T=20). The table inset contains the key statistics for each of the top 8 SNF cluster 

parameterizations in order of decreasing median Silhouette Index; highlighted is a parameter setting 

which produced SNF clusters with memberships closest to the consensus SNF grouping differing only by 

two sample assignments. 
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Supplementary Figure 8: Distant metastasis-free survival by molecular subtype. Molecular subtypes 

were determined for 93 patients in our cohort. Subtype 1 = SNF1, Subtype 2 = SNF2, and Subtype 3 = 

SNF3. Kaplan-Meier survival analysis of distant metastasis-free survival (event = first metastatic 

recurrence or death). No. at risk denotes number of patients at risk at each specified time point. P-value 

was determined using a log-rank test across groups. 

 

  



 

 

Supplem

distributio

subtypes 

CMS subt

methodolo

Methods)

 

entary Figur

on of primary c

of colorectal 

types were de

ogy implemen

). P-value den

re 9: Primary

colorectal can

liver metastas

etermined for 

nted in Sage-

notes a Chi-S

 

y CRC CMS s

ncer Consens

ses. Subtype 

93 patients i

-Bionetwork's 

Squared test a

subtype by m

sus Molecular

1 = SNF1, S

n our cohort f

CMSclassifie

across the thr

metastasis su

r Subtypes (C

Subtype 2 = S

from RNA Se

er R package

ree SNF grou

ubtype. Show

CMS) by SNF

NF2, and Sub

equencing dat

 (see Supple

ps.

wn is the 

-based molec

btype 3 = SN

ta using the 

ementary 

24 

cular 

F3. 

 



 

 

Supplem

subtype. 

integrated

available 

setting an

a Chi-Squ

SNF3. 

entary Figur

(A) Types of 

d SNF-based 

for 81 of 93 p

nd molecular s

uared test acr

re 10: Periop

perioperative

molecular an

patients. (B) A

subtype of me

ross the three

erative chem

e chemothera

nalysis. Specif

Association be

etastasis deri

e SNF groups

motherapy re

apies received

fic details reg

etween type o

ved from mol

. Subtype 1 =

egimens and

d by patients w

garding chemo

of chemothera

lecular subtyp

= SNF1, Subty

 association

which were in

otherapy regi

apy received 

ping analysis.

ype 2 = SNF2

ns with molec

ncluded in the

imens were 

in perioperat

. P-value den

2, and Subtyp

25 

cular 

e 

tive 

otes 

pe 3 = 



 

 

Supplem

distinguis

The area 

classifier o

showing t

(CRS) in a

metastase

Subtype 1

 

entary Figur

sh molecula

under the RO

on the test da

he concordan

an independe

es (Memorial 

1 = SNF1, Su

re 11: Predict

r subtypes. (

OC curve dem

ata set (AUC 

nce between 

ent data set o

Sloan-Ketter

btype 2 = SN

 

tion Analysis

(A) Model eva

monstrates the

= 0.875 vs. A

the predicted

f patients who

ing Cancer C

NF2, and Subt

s of Microarr

aluation on th

e classificatio

AUC = 0.50 fo

 subtype clus

o underwent 

Center, n=96, 

type 3 = SNF

rays (PAM)-b

he test data se

n performanc

or random clas

ster labels and

hepatic resec

ArrayExpress

3. 

based classif

et from our co

ce compared 

ssifier). (C) M

d the Clinical 

ction of limited

s Identifier: E

 

fier to 

ohort samples

to a random 

Mosaic plot 

Risk Scores 

d colorectal liv

-MTAB-1951)

26 

s. (B) 

ver 

). 



 

 

Supplem

Hematoxy

magnifica

row, Subt

 

entary Figu

ylin and eosi

ation fields for

ype 2. Bottom

re 12: Histo

in, (B) Tricho

r three repres

m row, Subtyp

 

ologic analys

ome, (C) CD

entative patie

pe 3.  

sis by mole

D3, and (D) 

ents from eac

ecular subty

CD8 staining

ch SNF subty

ypes of live

g by subtype

ype. Top row, 

r metastasis

e. Shown are

Subtype 1. M

27 

s. (A) 

e 10X 

Middle 



 

 

Supplem

colorecta

Oncoprint

indels) in 

falling wit

mutations

donor or a

 

entary Figu

al liver metas

t plot represe

a given gene

thin these rec

s seen in eac

acceptor site. 

re 13: Onco

stases. Gene

ent the perce

e. The horizon

currently alte

ch gene acro

 

oprint plot o

es mutated in

ntage of sam

ntal bar plot in

ered genes. T

oss all 59 sa

of exomic m

n ≥ 10% of s

mples that ha

ndicates the n

The vertical b

mples. 'Splic

mutations oc

amples are s

arbor a mutat

number of mu

bar plot to th

cing' refers to

ccurring in 

shown. Value

tion (non-syn

utations for ea

he right depi

o mutations t

59 patients

es to the left 

onymous SN

ach patient sa

cts the numb

hat affect a 

28 

 with 

of the 

NVs or 

ample 

ber of 

splice 

 



 

 

Supplem

cytotoxic 

instability-

SNF2, an

molecular

cytotoxic 

harboring

SMAD3, N

represent

entary Figur

immune gen

-high and -low

d Subtype 3 =

r subtype. (C

immune scor

SNF subtyp

NOTCH1, or 

mean ± S.E.

re 14: Cytoto

ne scores15 b

w. MSS, micr

= SNF3. (B) M

C) Percentage

res by somat

pe 2-specific 

PIK3C2B mu

M. values. As

oxic immune

by CRC live

rosatellite sta

Mean (± S.E.

e of MSS pa

ic ARID2 (D)

mutations in

utations chara

sterisks deno

e signature b

r metastasis

able. N/A, mis

M.) values of 

atients within 

 or SNF-spec

ncluded CDK

acterized SNF

te P-values ≤

by molecula

subtype. MS

ssing data. S

f cytotoxic cel

each SNF-d

cific mutation

K12, NRAS, a

F subtypes 1-

≤ 0.05 based o

ar subtypes. 

SI-H and MS

ubtype 1 = S

l immune sco

derived subty

ns (E). Metas

and EBF1 m

- and 3-specif

on two-tailed 

(A) Distribut

SI-L, microsa

SNF1, Subtyp

ores by SNF-b

ype. Differenc

tases classifi

mutations, wh

fic mutations.

Student’s t-te

29 

tion of 

atellite 

pe 2 = 

based 

ces in 

ed as 

hereas 

. Data 

est. 



 

 

Supplem

Scores (C

CRS were

overall su

number o

intervals) 

vs. SNF3

variables.

multivaria

difference

values ≤ 0

 

entary Figur

CRS). High C

e classified i

urvival rates. 

f patients at r

for Cox multi

) and CRS (2

 A multivariat

ate model du

es in CRS bet

0.05 in the co

re 15: Overa

CRS denotes

nto low-, inte

P-value was 

risk at each sp

variate propo

2 levels; CRS

te interaction 

ue to non-sig

tween SNF s

mparison of o

 

ll survival b

s scores ≥ 2.

ermediate-, a

determined 

pecified time 

ortional hazard

S >=2 vs. CR

was assesse

gnificance. P-

ubtypes were

one subtype v

y integration

. Patient sub

nd high-risk 

using a log-ra

point. Table i

d analysis of 

RS <2). Both 

ed between s

-value was d

e assessed u

versus the rem

n of molecu

bgroups defin

cohorts base

ank test acro

inset denotes

molecular su

subtype and 

ubtype and C

determined u

using Chi-Squ

maining subty

lar subtype 

ed by molec

ed on Kaplan

oss groups. N

s hazard ratio

btype (3 leve

CRS were c

CRS and rem

using likelihoo

uared tests. A

ypes. 

and Clinical

cular subtypes

n-Meier analy

No. at risk de

os (95% confid

els; SNF1 vs. 

considered no

oved from the

od ratio test

Asterisk denot

30 

l Risk 

s and 

ysis of 

enotes 

dence 

SNF2 

ominal 

e final 

t. The 

tes P-

 



 

 

Supplem

groups w

metastasi

log-rank te

Associatio

significanc

groups. A

 

entary Figur

were determin

s-free surviva

est across gro

on of molecul

ce was asses

Asterisks deno

re 16: Metas

ned for 87 p

al (event = fi

oups. No. at r

ar/clinical risk

ssed using F

ote P-values ≤

 

static recurr

atients in ou

rst metastatic

risk denotes n

k stratification

Fisher’s exact

≤ 0.05.  

ence pattern

ur cohort. (A

c recurrence 

number of pa

n groups with 

 tests betwee

ns by integr

) Kaplan-Me

or death). P-

tients at risk a

patterns of m

en one risk g

rated risk cl

ier survival a

-value was d

at each speci

metastatic rec

group versus 

lassification.

analysis of d

determined us

ified time poin

currence. Stat

the two rema

31 

. Risk 

distant 

sing a 

nt. (B) 

tistical 

aining 

 



 

32 
 

C. Supplementary References 

1. Fong Y, Fortner J, Sun RL, Brennan MF, Blumgart LH. Clinical score for predicting recurrence 

after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg 

1999;230:309-18; discussion 18-21. 

2. Dobin A, Davis CA, Schlesinger F, et al. STAR: ultrafast universal RNA-seq aligner. 

Bioinformatics 2013;29:15-21. 

3. Tarasov A, Vilella AJ, Cuppen E, Nijman IJ, Prins P. Sambamba: fast processing of NGS 

alignment formats. Bioinformatics 2015;31:2032-4. 

4. Liao Y, Smyth GK, Shi W. The Subread aligner: fast, accurate and scalable read mapping by 

seed-and-vote. Nucleic acids research 2013;41:e108. 

5. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential 

expression analysis of digital gene expression data. Bioinformatics 2010;26:139-40. 

6. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-

sequencing and microarray studies. Nucleic acids research 2015;43:e47. 

7. Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for removing batch 

effects and other unwanted variation in high-throughput experiments. Bioinformatics 2012;28:882-3. 

8. Wu D, Hu Y, Tong S, Williams BR, Smyth GK, Gantier MP. The use of miRNA microarrays for the 

analysis of cancer samples with global miRNA decrease. Rna 2013;19:876-88. 

9. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using 

empirical Bayes methods. Biostatistics 2007;8:118-27. 

10. Senbabaoglu Y, Michailidis G, Li JZ. Critical limitations of consensus clustering in class 

discovery. Scientific reports 2014;4:6207. 

11. Wang B, Mezlini AM, Demir F, et al. Similarity network fusion for aggregating data types on a 

genomic scale. Nat Methods 2014;11:333-7. 

12. Alhamdoosh M, Ng M, Wilson NJ, et al. Combining multiple tools outperforms individual methods 

in gene set enrichment analyses. Bioinformatics 2017;33:414-24. 

13. Liberzon A, Subramanian A, Pinchback R, Thorvaldsdottir H, Tamayo P, Mesirov JP. Molecular 

signatures database (MSigDB) 3.0. Bioinformatics 2011;27:1739-40. 



 

33 
 

14. Guinney J, Dienstmann R, Wang X, et al. The consensus molecular subtypes of colorectal 

cancer. Nat Med 2015;21:1350-6. 

15. Bindea G, Mlecnik B, Tosolini M, et al. Spatiotemporal dynamics of intratumoral immune cells 

reveal the immune landscape in human cancer. Immunity 2013;39:782-95. 

16. Tibshirani R, Hastie T, Narasimhan B, Chu G. Diagnosis of multiple cancer types by shrunken 

centroids of gene expression. Proceedings of the National Academy of Sciences of the United States of 

America 2002;99:6567-72. 

17. Du P, Kibbe WA, Lin SM. lumi: a pipeline for processing Illumina microarray. Bioinformatics 

2008;24:1547-8. 

18. Kadri S, Long BC, Mujacic I, et al. Clinical Validation of a Next-Generation Sequencing Genomic 

Oncology Panel via Cross-Platform Benchmarking against Established Amplicon Sequencing Assays. J 

Mol Diagn 2017;19:43-56. 

19. Costello M, Pugh TJ, Fennell TJ, et al. Discovery and characterization of artifactual mutations in 

deep coverage targeted capture sequencing data due to oxidative DNA damage during sample 

preparation. Nucleic acids research 2013;41:e67. 

20. Ramos AH, Lichtenstein L, Gupta M, et al. Oncotator: cancer variant annotation tool. Hum Mutat 

2015;36:E2423-9. 

21. Lawrence MS, Stojanov P, Polak P, et al. Mutational heterogeneity in cancer and the search for 

new cancer-associated genes. Nature 2013;499:214-8. 

22. Reva B, Antipin Y, Sander C. Predicting the functional impact of protein mutations: application to 

cancer genomics. Nucleic acids research 2011;39:e118. 

23. Landrum MJ, Lee JM, Riley GR, et al. ClinVar: public archive of relationships among sequence 

variation and human phenotype. Nucleic acids research 2014;42:D980-5. 

24. Talevich E, Shain AH, Botton T, Bastian BC. CNVkit: Genome-Wide Copy Number Detection and 

Visualization from Targeted DNA Sequencing. PLoS Comput Biol 2016;12:e1004873. 

25. Cancer Genome Atlas N. Comprehensive molecular characterization of human colon and rectal 

cancer. Nature 2012;487:330-7. 

 


	Cover page for Supplementary Information.pdf
	Supplementary Information.pdf

