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Supplementary Note 1. Experimental setup

Supplementary Figure 1 presents a detailed schematic of the experimental setup used in our experiment. Each port of
the device is connected to an output of the optical switch network and to a fast detector (D) via commercially available
fibre optic circulators (C, Thorlabs). The electronically controllable optical (SWi) and RF (RFSW) switches, along
with the circulators, allow for straightforward measurement of the full transmittance matrix. Four fibre polarisation
controllers (FPCs) placed directly after optical switches 2 and 3 ensure that the polarisation of the incoming probe
fields can be matched to that of the cavity mode. The polarisation of the control field is separately controlled with
a fifth FPC placed directly after the Electro-Optic Modulator (EOM). The FPCs are omitted in the schematic for
clarity. We use the EOM for a Pound-Drever-Hall locking scheme that locks the control field to a motional sideband
of the optical cavity. Furthermore, two variable optical attenuators (not shown in the schematic) placed after the
DPMZI and the EOM control the power levels of the probe and control beams respectively. In our experiments with
red- and blue-detuned control fields we used incident control powers of 60µW and 214 µW, respectively.
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Supplementary Figure 1. Experimental setup. A detailed schematic of the experimental setup is shown. The tapered fibres
and toroid are placed in a vacuum chamber. DPMZI: double parallel Mach Zehnder interferometer, D1-4: detectors, SW1-3:
optical switches, C1-4: circulators, RFSW: radio frequency switch, EOM: electro-optic modulator.

Supplementary Note 2. Measurement and fitting procedure for the transmittance matrix

To provide calibrated and reliable S-matrix elements, the following experimental protocol is followed: first, careful
characterization of all the lossy elements between the microtoroid and detectors is performed. This includes all
detector responses and losses associated with the commercial components and the tapered fibres. Next, both fibres
are gently moved towards the microtoroid until the desired coupling strength is obtained. The latter step involves
continuous spectroscopy over a frequency region around ωc, and is performed at higher probe power levels (∼1µW) to
allow direct measurements of all detector output voltages on an oscilloscope. These voltages are obtained by splitting
the detector output lines just before the RFSW (not shown). For the direct channels (1↔ 2, 3↔ 4) it is then possible
to use the measured off-resonance voltages to normalize the on-resonance cavity response, which directly yields the
on-resonance transmittance efficiency.

Considering for example port 1 → port 2, the non-resonant voltage on D2, together with the response of the
detector and losses of circulator C2 and tapered fibre, allows us to infer the actual power that entered port 1. Using
the on-resonance voltages that are recorded by detectors D1/D3/D4 (obtained via fitting a Lorentzian lineshape) and
compensating with the appropriate losses and detector response functions, we can then 1) determine the power exiting
ports 1/3/4 and 2) calculate the reflection/cross-coupling/add-drop efficiencies. Raw VNA spectra are converted into
transmittance spectra with the help of previously determined transmittance efficiencies. This post-processing involves
the removal of a small portion of raw VNA spectroscopic data surrounding the mechanical resonance peak. Next,
Lorentzian lineshapes are fitted to these cropped (and squared) VNA data, of which the fitted maxima are used to
normalize the reflection, cross-coupling and add-drop spectra. For the direct channels, normalization is performed with
respect to the minimum of the fitted line. All curves are then multiplied with their respective transmittance efficiencies
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Supplementary Figure 2. Data for red detuned control. The 4×4 transmittance matrix spectra that complement the
red-detuned control data shown in the manuscript. The lines are global fits to the data set following the procedure described
in Supplementary Note 2. The fitting procedure yields (κa, κb)/2π = (2.8, 3.7) MHz, mode splitting of µ/π = 2.8 MHz and
cooperativity of C ≈ 0.31. Colour of the data represents the relevant channels of the circulator; data for the forward and reverse
directions of a channel are given the same colour.
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Supplementary Figure 3. Data for blue detuned control. The 4×4 transmittance matrix spectra that complement the blue-
detuned control data shown in the manuscript along with theoretical fits. The fitting procedure yields (κa, κb)/2π = (2.8, 1.8)
MHz, mode splitting of µ/π = 4.3 MHz and cooperativity of C ≈ 0.57. Colour of the data represents the relevant channels of
the circulator; data for the forward and reverse directions of a channel are given the same colour.

to yield experimental data. Once the transmittances are obtained, the data around the mechanical resonance peak
is included and fitted by varying the mode splitting and cooperativity as fit parameters. During fitting, Ωm,Γm and
κ0 are held fixed, as they are obtained from independent spectroscopic measurements. To account for experimental
drift during data acquisition, the only parameters that are allowed to vary between the different s-parameters are
the control detunings ∆̄. The transmittance spectra for the full 4 × 4 S matrix, including global fit, are shown in
Supplementary Figure 2 (Supplementary Figure 3) for red (blue)-detuned control beam, respectively. The asymmetric
transmittance matrices obtained on resonance are shown in Supplementary Figure 4.
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Supplementary Figure 4. Asymmetric transmittance matrices. (a-d) The colourmaps show the transmittance values
when the probe detuning frequency (|ωp−ωL|) is on (b, d) and off (a, c) mechanical resonance. (a) and (b) correspond to the
case of a red detuned control while (c) and (d) are that of blue detuning. The symmetric transmittance matrix (off-resonance)
becomes asymmetric when optomechanical interactions (on-resonance) are present. Especially for the blue detuned data, the
performance is close to an ideal circulator.

Supplementary Note 3. Conditions for near-ideal circulation

Here, we examine the scattering matrix of the circulator both in the red- and blue-detuned regimes and investigate
the possibility of near-ideal circulation. For simplicity we assume that both the optical modes have equal losses
(κa,1 = κa,2 = κa, κb,1 = κb,2 = κb, κ0,1 = κ0,2 = κ0 and κ = κ0 + κa + κb) and are pumped with equal intensity
and with π/2 phase difference (g2 = ig1 = ig). In addition, we focus only at the resonance frequency where the
optomechanical intercations are maximal. For a red-detuned system (∆̄ = −Ωm) at resonance (ω = Ωm) the S matrix
can be simplified to

S =

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

− 2

1 + C + δ2

 iηaδ ηa(1 + C) i
√
ηaηbδ

√
ηaηb(1 + C)

ηa iηaδ
√
ηaηb i

√
ηaηbδ

i
√
ηaηbδ

√
ηaηb(1 + C) iηbδ ηb(1 + C)√

ηaηb i
√
ηaηbδ ηb iηbδ

 (1)

where, C = C1 + C2 represents the total cooperativity of both modes. In addition, we have defined ηa,b =
κa,b

κ as the

ratio of leakage losses to the total losses of each mode and δ = 2µ
κ as the normalized frequency splitting of the even

and odd modes.

Here, the aim is to maximize the forward port-to-port coupling coefficients, i.e., (s21, s32, s43, s14), while minimizing
the reverse port-to-port couplings (s12, s23, s34, s41). On the other hand, of interest would be to simultaneously
minimize the reflection coefficients (s11, s22, s33, s44) and the cross-coupling terms (s13, s31, s24, s42). According to
Supplementary Equation 1, ideal circulation can be acheieved in the limit of large cooperativities (C → ∞) and for
zero internal losses when assuming equal mode coupling to the upper and lower waveguide channels (ηa,b → 1/2). On
the other hand, another interesting observation in the S matrix of Supplementary Equation 1 is that the reflection
coefficients and the cross-coupling terms are all proportional with the frequency splitting 2µ (appearing as δ in the
S matrix). This can be understood easily in the basis of rotating whispering gallery modes. In such picture, any
coupling between the counter-rotating modes is mediated through their mutual coupling rate µ which instead results
in a finite reflection and coupling of the diagonal ports.
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Supplementary Figure 5. Optimal circulation. The required cooperativity for optimal circulation in the blue-detuned regime
in a parameter map of η and δ.

Similarly, for a blue-detuned control (∆̄ = Ωm) at resonance (ω = −Ωm) the S matrix can be written as

S =

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

− 2

1− C + δ2

 iηaδ ηa(1− C) i
√
ηaηbδ

√
ηaηb(1− C)

ηa iηaδ
√
ηaηb i

√
ηaηb

i
√
ηaηbδ

√
ηaηb(1− C) iηbδ ηb(1− C)√

ηaηb i
√
ηaηbδ ηb iηbδ

 . (2)

which is similar to that of the red-detuned system when replacing C with −C. In a similar fashion, one can show
that in this case a large cooperativity results in ideal circulation, however, this is an unphysical scenario given that in
the blue-detuned regime large cooperativities give rise to parametric instabilities. On the other hand, the S matrix
of Supplementary Equation 2 exhibits interesting properties and can become close to that of an ideal circulator for
critical choices of the parameters involved. Interestingly, compared to the red-detuned case, here the circulation
direction is reversed, i.e., (s12, s23, s34, s41) can be close to unity while (s21, s32, s43, s14) are minimum. In fact, for a
particular set of parameters, one can show that s21 and s43 become zero for

C = 1 + δ2 − 2ηa (3)

C = 1 + δ2 − 2ηb (4)

which clearly requires equal leakage rate for both channels ηa,b = η. In addition, these conditions demand a total
cooperativity larger than the ratio of internal loss to total losses (η0 = 1− 2η). Supplementary Figure 5 depicts the
cooperativity required to satisfy this condition for different values of η and δ. Interestingly, the choice of δ2 = 2η
demands a cooperativity of C = 1 which instead results in the following resonant S matrix:

S =

−iδ 1 −iδ 0
0 −iδ −1 −iδ
−iδ 0 −iδ 1
−1 −iδ 0 −iδ

 (5)

According to this simple relation, near-ideal circulation can be achieved for C = 1 and δ2 = 2η. On the other hand,
one can reduce the reflection coefficients and diagonal port couplings by decreasing δ which instead requires a decrease
in η. This latter scenario thus happens for a weak waveguide-cavity coupling.

Supplementary Note 4. Parametric instability threshold

For a blue-detuned control laser, the optomechanical system can enter a parametric instability regime. For a single-
mode optomechanical system, the threshold cooperativity associated with the onset of instabilities is found to be
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Cth = 1. Similar relation holds for the microtoroid system when assuming a degenerate pair of counter rotating modes
where only one of the modes is populated by the control laser. However, assuming a finite coupling µ between the
two modes, this relation is no longer valid. In this case, one would expect a higher cooperativity for bringing the
system to instability threshold given that the active mode is coupled to another mode which is naturally lossy. For
a blue-detuned system, the dynamical equations governing the optomechanical system in the absence of input probe
signals can be written as:

d

dt

δa1

b†

δa2

 = i

∆̄1 + iκ1/2 g1 0
−g∗1 Ωm + iΓm/2 −g∗2

0 g2 ∆̄2 + iκ2/2

δa1

b†

δa2

 (6)

Assuming ∆̄1,2 = Ωm ± µ and g2 = ig1 = ig, we consider an ansatz of
(
δa1 , b

† , δa2

)T
= (α1 , β , α2)

T
eiΩmtest,

which results in the following cubic equation for the exponent s

s3 +

(
κ+

Γm

2

)
s2 +

(
µ2 +

κ2

4
+ κ

Γm

2
− 2|g|2

)
s+ µ2 Γm

2
+
κ2

4

Γm

2
− κ|g|2 = 0. (7)

The stability of the system can now be investigated by finding a parameter regime for which all roots of this equation
fall on the left side of the imaginary axis, i.e., Real(s) < 0. This latter can be obtained through the Routh-Hurwitz
stability criterion. According to the Routh-Hurwitz criterion, a generic cubic equation of the form s3 +a2s

2 +a1s+a0

has all roots in the negative real part plane as long as a0 > 0, a2 > 0 and a1a2 > a0. For Supplementary Equation 7,
the stability conditions are found to be:

Γm

2

(
µ2 +

κ2

4

)
> κ|g|2, (8)

(
κ+

Γm

2

)(
µ2 +

κ2

4
+ κ

Γm

2
− 2|g|2

)
>

Γm

2

(
µ2 +

κ2

4

)
− κ|g|2, (9)

Given that in practice Γm � κ, the first condition imposes a lower bound on the control power required to bring the
system to instability threshold. Therefore, by rewriting Supplementary Equation 8 in terms of the total cooperativity,
the condition of stability can be written as C < 1 + δ2, which results into the following expression for the instability
threshold

Cth = 1 + δ2. (10)

This relation assures that the condition of near-ideal circulation (Supplementary Equation 3) is accessible without
running into instability. It is worth noting that this condition is obtained under the rotating wave approximation. A
more general expression can be found when considering both mechanical sidebands.

Supplementary Note 5. Circulation bandwidth

According to the results presented in the main text, the bandwidth of the optomechanical circulator is dictated
by the linewidth of the optomechanically induced transparency (OMIT) or absorption (OMIA) window. Considering
the S-matrix derived in the Materials and Methods section, the bandwidth can be obtained through the frequency-
dependent factor of [det(ωI +M)]−1,

1

det(ωI +M)
=

1

Σ2
o(ω)− µ2 ∓ 2|g|2Σo(ω)/Σm(ω)

, (11)

where, to simplify the analysis, we have assumed equal losses in both modes, κ1 = κ2, and equal intensity pumping,
|g1| = |g2|. In this relation the up and down signs are associated with the red- and blue-detuned regimes respectively.
Given that in general κ � Γm, the inverse optical susceptibilities are fairly constant near the resonance ω = ±Ωm

and over the small frequency range of OMIT/OMIA. Thus one can assume Σo(ω) ≈ iκ/2 which greatly simplifies
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Supplementary Equation 11 to

1

det(ωI +M)
= − 4

κ2(1 + δ2)

1− i
± C

1+δ2

ω ∓ Ωm + i
(

1± C
1+δ2

)
Γm

2

 . (12)

According to this relation, the transparency or absorption window is found to be

BW =

(
1± C

1 + δ2

)
Γm, (13)

which, could be compared with a similar relation for a single-mode optomechanical cavity: BW = (1 ± C)Γm. Re-
calling that δ = µ/(κ/2) is a normalized mode splitting, Supplementary Equation 13 shows that in general the lifted
degeneracy of the modes decreases the bandwidth in the red-detuned regime while it increases the bandwidth in the
blue-detuned case. In addition, Supplementary Equation 13 is in agreement with the fact that the bandwidth should
approach zero at the onset of parametric instabilities.

Supplementary Note 6. Noise analysis

Thermal phonons in the mechanical resonator interact with the control beam creating cavity photons that contribute
to noise at the output ports of the device. Together with the vacuum noise the total noise to the outputs at each port
for the cases of red and blue detuned controls is discussed below.

Noise contribution for red detuned control

The effect of noise can be considered in the linearized equation of motion as:

d

dt

(
δa1
δa2
b

)
= iMred

(
δa1
δa2
b

)
+DT


δs+

1
δs+

2
δs+

3
δs+

4
σ1,in
σ2,in
bin

 (14)

where σ1,in, σ2,in, and bin correspond to the fluctuations entering the optical modes and mechanical mode, respectively,
from the baths that are associated with the intrinsic loss channels. The fluctuations δs+

j enter from the four optical
input waveguide ports.

Here the matrices Mred and DT correspond to

Mred =

µ+ iκ1/2 0 g1

0 −µ+ iκ2/2 g2

g∗1 g∗2 iΓm/2

 (15)

and

DT =
1√
2

 i
√
κa,1 i

√
κa,1 i

√
κb,1 i

√
κb,1

√
2κ0,1 0 0

−√κa,2
√
κa,2 −

√
κb,2

√
κb,2 0

√
2κ0,2 0

0 0 0 0 0 0
√

2Γm

 . (16)
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The output at each port can then be written as
δs−1
δs−2
δs−3
δs−4
σ1,out
σ2,out
bout

 = C


δs+

1
δs+

2
δs+

3
δs+

4
σ1,in
σ2,in
bin

+D

(
δa1
δa2
b

)
(17)

where σ1,out, σ2,out, and bout are the corresponding dissipation ports and

C =


0 1 0 0 0 0 0
1 0 0 0 0 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

 . (18)

We assume that the noise operators obey correlations given by:〈
δs+
j (t)δs+†

j (t′)
〉

= δ(t− t′) (19)〈
σ1,in(t)δσ†1,in(t′)

〉
= δ(t− t′) (20)〈

σ2,in(t)δσ†2,in(t′)
〉

= δ(t− t′) (21)〈
bin(t)b†in(t′)

〉
= (n̄th + 1)δ(t− t′) (22)

where j = 1− 4 and the optical bath is approximated to be at zero temperature.

Combining the above equations we get 
δs−1
δs−2
δs−3
δs−4
σ1,out
σ2,out
bout

 (ω) = S(ω)


δs+

1
δs+

2
δs+

3
δs+

4
σ1,in
σ2,in
bin

 (23)

with

S(ω) = C + iD(ωI +Mred)−1DT (24)

where the elements S1:4,1:4 form the scattering matrix presented in the main text.

The symmetrized noise power spectral density at the four output ports of the waveguides is then given by [1]

S̄−j (ω) =
1

2

∫ ∞
−∞

dteiωt
〈
δs−†j (t)δs−j (0) + δs−j (0)δs−†j (t)

〉
(25)

for j = 1− 4, which leads to

S̄−j (ω) =
1

2
|Sj1(−ω)|2 +

1

2
|Sj2(−ω)|2 +

1

2
|Sj3(−ω)|2 +

1

2
|Sj4(−ω)|2

+
1

2
|Sj5(−ω)|2 +

1

2
|Sj6(−ω)|2 +

(
n̄th +

1

2

)
|Sj7(−ω)|2 .

(26)
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We consider the S matrix only at resonance (ω = 0) and under the following assumptions:

g2 = ig1 = ig (27)

κ1 = κ2 = κ (28)

κ0,1 = κ0,2 = (1− 2η)κ (29)

κa,1 = κb,1 = κa,2 = κb,2 = ηκ (30)

such that the S matrix, written in terms of the cooperativity and normalized mode splitting, becomes

S =
1

1 + C + δ2



−i2ηδ δ2 −i2ηδ −2η(1 + C) 0 0 −i2δ
√
ηC

δ2 + C −i2ηδ −2η −i2ηδ 0 0 −2
√
ηC

−i2ηδ −2η(1 + C) −i2ηδ δ2 0 0 −i2δ
√
ηC

−2η −i2ηδ C + δ2 −i2ηδ 0 0 −2
√
ηC

0 0 0 0 1 + C + δ2 0 0
0 0 0 0 0 1 + C + δ2 0

−2
√
ηC −i2δ

√
ηC −2

√
ηC −i2δ

√
ηC 0 0 3 + C + 3δ2


. (31)

For the optimal condition of η = 1
2 , Supplementary Equation 26 and Supplementary Equation 31 can be used to

simplify the output noise spectral density at each port as

N1,3 = S̄1,3(0) =
1

2
+

2Cδ2

(1 + C + δ2)2
n̄th (32)

N2,4 = S̄2,4(0) =
1

2
+

2C
(1 + C + δ2)2

n̄th. (33)

The noise contribution arising from a non-zero thermal population, n̄th, is seen to reduce in the limit of C → ∞ and
in the limit of zero thermal population of the mechanical resonator the output noise is seen to be limited only by
vacuum noise. The added noise to port j, referred back to the input port k, can then be calculated considering the
channel transmittance and the input signal contribution as nadd,j = Nj/|Sjk|2 − 1

2 . In the red detuned regime, we

consider the transmittances |S21|2, |S32|2, |S43|2, and |S14|2, where the added noise is then given by

nadd,1,3 =
δ2(δ2 + 2(1 + C) + 4Cn̄th)

2(1 + C)2
(34)

nadd,2,4 =
1 + 2C + 2δ2 + 4Cn̄th

2(C + δ2)2
. (35)

For degenerate optical modes (δ = 0) the added noise to ports 1 and 3 (for a signal inserted at ports 4 and 2
respectively) is seen to be independent of thermal and vacuum noise.

Noise contribution for blue detuned control

A similar analysis can be followed for blue-detuned control. Then Supplementary Equations 14-24 can be used
when replacing all b, bin, bout by their Hermitian conjugates, and replacing Mred by

Mblue =

µ+ iκ1/2 0 g1

0 −µ+ iκ2/2 g2

−g∗1 −g∗2 iΓm/2

 . (36)

We consider the contribution only on resonance (ω = 0) and use the same assumptions on gi and κi as earlier. The
noise power spectral density has the same form as in Supplementary Equation 25. Considering optimal conditions,
the output noise for each port for the blue detuned case is given by

N1,3 =
1

2
+ 2(n̄th + 1) (37)

N2,4 =
1

2
+

2

δ2
(n̄th + 1) (38)
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where we have assumed C = 1 and δ2 = 2η. The noise in each port, for these conditions, is seen to be decided by
the tolerance for reflections and cross-couplings, which is equal to δ2. In this regime, as the transmittances for the
relevant channels are unity, the added noise becomes Nj − 1

2 and is given by

nadd,1,3 = 2(n̄th + 1) (39)

nadd,2,4 =
2

δ2
(n̄th + 1). (40)
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