Phenotype	Strains	Locus	Markers	Reference
A. Rat Mammary Gland				
latency, tumor number	ACI x COP	Emcal	D5Rat30-D5Rat53	(Gould et al. 2004)
latency	ACI x COP	Emca2	D18Rat21	(Gould et al. 2004)
latency, tumor number	ACI x COP	Emca3	D2Rat16	(Colletti et al. 2014; Shull et al. 2007)
latency, tumor number	ACI x COP	Emca4	D7Rat19	(Schaffer et al. 2013)
latency, tumor number	ACI x COP	Emca5	D3Rat114	(Schaffer et al. 2013)
tumor number	ACI x COP	Етсаб	D4Rat103	(Schaffer et al. 2013)
tumor number	ACI x COP	Emca7	D6Rat22	(Schaffer et al. 2013)
latency, tumor number	ACI x COP	Emca8	D5Rat95	(Schaffer et al. 2013)
latency, tumor number	ACI x COP	Emca9	D18Rat30	(Colletti et al. 2014; Shull et al. 2007)
B. Mouse Uterus				
weight	C57BL6/J x C3H/HeJ	Est2	D5Mit296	(Roper et al. 1999)
weight	C57BL6/J x C3H/HeJ	Est3	D11Mit67	(Roper et al. 1999)
eosinophils	C57BL6/J x C3H/HeJ	Estl	D4Mit6	(Roper et al. 1999)
eosinophils	C57BL6/J x C3H/HeJ	Est4	D10Mit180	(Roper et al. 1999)
eosinophils	C57BL6/J x C3H/HeJ	Est5	D16Mit44	(Roper et al. 1999)
C. Rat Uterus				
pyometritis	BN x ACI	Eutrl	D5Rat190	(Gould et al. 2005)
nyometritis	F344 BN-congenic rat	Futr?	D5Mgh17-	(Pandev et al. 2005)
	1 544. DIV-Congenie Tat	Luit 2	D5Rat205	(Tandey et al. 2003)
D. Rat Uterus		1		
content	F344 x BN	Edpm2-1	D2Mgh14-D2Mit4	(Wendell et al. 2000; Wendell and Gorski 1997)
pituitary weight	F344 x BN	Edpm2-2	D2Mgh15	(Wendell and Gorski 1997)
pituitary weight	F344 x BN	Edpm3	D3Mit7	(Wendell and Gorski 1997)
pituitary weight	F344 x BN	Edpm5	D5Mit11	(Wendell and Gorski 1997)
pituitary weight	F344 x BN	Edpm9	D9Mgh2	(Wendell and Gorski 1997)
pituitary weight, DNA content	(F344xBN)F1xF344	Edpm9-2	D9Rat31	(Wendell et al. 2000)
pituitary weight	ACI x COP	Ept1	D6Rat80	(Strecker et al. 2005)
pituitary weight	ACI x COP	Ept2	D3Rat37	(Strecker et al. 2005)
pituitary weight	BN x ACI	Ept5	D4Mgh7	(Shull et al. 2007)
pituitary weight	ACI x COP	Ept6	D3Mgh9	(Strecker et al. 2005)
pituitary weight	BN x ACI	Ept7	D7Rat19	(Shull et al. 2007)
pituitary weight	ACI x COP	Ept9	D10Mit7	(Strecker et al. 2005)
pituitary weight	ACI x COP	Ept10	D1Rat119	(Strecker et al. 2005)
pituitary weight	ACI x COP	Ept13	D1Rat192	(Strecker et al. 2005)
E. Rat Thymus				
Thymic atrophy	BN X ACI	Estal	D10Mgh10	(Gould et al. 2006)
Thymic atrophy	BN X ACI	Esta2	D2Rat61	(Gould et al. 2006)
Thymic atrophy	BN X ACI	Esta3	D2Rat34	(Gould et al. 2006)
F. Rat Testes				
Testicular weight	LEXF/FXLE		D7Mit4	(Tachibana et al. 2006)
Testicular weight	LEXF/FXLE		D1Wox25	(Tachibana et al. 2006)

Supplementary Table 1: Summary of 35 QTL regulating responses to estrogen in 5 tissues of rats and mice.

A. Mammary tumor phentoypes in rats were observed following chronic administration of 17β -estradiol. B. Uterine responses in ovariectomzied mice were induced by acute treatment with 17β -estradiol for 4 days. C. Uterine phenotypes in rats were induced by chronic administration of diethylstilbestrol. D. Phenotypes in the pituitary of rats were induced by chronic administration of either 17β -estradiol or diesthylstilbestrol. E. Phenotypes in the thymus of rats were induced by chronic administration of either 17β -estradiol or diesthylstilbestrol. F. Testes phenotypes in rats were induced by chronic administration of diethylstilbestrol. Details of experiments can be found in the references provided.

References

Colletti JA, 2nd, Leland-Wavrin KM, Kurz SG, Hickman MP, Seiler NL, Samanas NB, Eckert QA, Dennison KL, Ding L, Schaffer BS, Shull JD (2014) Validation of six genetic determinants of susceptibility to estrogen-induced mammary cancer in the rat and assessment of their relevance to breast cancer risk in humans. G3 (Bethesda, Md.) 4, 1385-1394

Gould KA, Pandey J, Lachel CM, Murrin CR, Flood LA, Pennington KL, Schaffer BS, Tochacek M, McComb RD, Meza JL, Wendell DL, Shull JD (2005) Genetic mapping of Eutr1, a locus controlling E2-induced pyometritis in the Brown Norway rat, to RNO5. Mamm Genome 16, 854-864

Gould KA, Strecker TE, Hansen KK, Bynote KK, Peterson KA, Shull JD (2006) Genetic mapping of loci controlling diethylstilbestrol-induced thymic atrophy in the Brown Norway rat. Mamm Genome 17, 451-464

Gould KA, Tochacek M, Schaffer BS, Reindl TM, Murrin CR, Lachel CM, VanderWoude EA, Pennington KL, Flood LA, Bynote KK, Meza JL, Newton MA, Shull JD (2004) Genetic determination of susceptibility to estrogen-induced mammary cancer in the ACI rat: mapping of Emca1 and Emca2 to chromosomes 5 and 18. Genetics 168, 2113-2125

Pandey J, Gould KA, McComb RD, Shull JD, Wendell DL (2005) Localization of Eutr2, a locus controlling susceptibility to DESinduced uterine inflammation and pyometritis, to RNO5 using a congenic rat strain. Mamm Genome 16, 865-872

Roper RJ, Griffith JS, Lyttle CR, Doerge RW, McNabb AW, Broadbent RE, Teuscher C (1999) Interacting quantitative trait loci control phenotypic variation in murine estradiol-regulated responses. Endocrinology 140, 556-561

Schaffer BS, Leland-Wavrin KM, Kurz SG, Colletti JA, Seiler NL, Warren CL, Shull JD (2013) Mapping of three genetic determinants of susceptibility to estrogen-induced mammary cancer within the Emca8 locus on rat chromosome 5. Cancer prevention research 6, 59-69

Shull JD, Lachel CM, Murrin CR, Pennington KL, Schaffer BS, Strecker TE, Gould KA (2007) Genetic control of estrogen action in the rat: mapping of QTLs that impact pituitary lactotroph hyperplasia in a BN x ACI intercross. Mamm Genome 18, 657-669

Strecker TE, Spady TJ, Schaffer BS, Gould KA, Kaufman AE, Shen F, McLaughlin MT, Pennington KL, Meza JL, Shull JD (2005) Genetic bases of estrogen-induced pituitary tumorigenesis: identification of genetic loci determining estrogen-induced pituitary growth in reciprocal crosses between the ACI and Copenhagen rat strains. Genetics 169, 2189-2197

Tachibana M, Lu L, Hiai H, Tamura A, Matsushima Y, Shisa H (2006) Quantitative trait loci determining weight reduction of testes and pituitary by diethylstilbesterol in LEXF and FXLE recombinant inbred strain rats. Experimental animals 55, 91-95

Wendell DL, Daun SB, Stratton MB, Gorski J (2000) Different functions of QTL for estrogen-dependent tumor growth of the rat pituitary. Mammalian genome : official journal of the International Mammalian Genome Society 11, 855-861

Wendell DL, Gorski J (1997) Quantitative trait loci for estrogen-dependent pituitary tumor growth in the rat. Mammalian genome : official journal of the International Mammalian Genome Society 8, 823-829