Wnt7a activates canonical Wnt signaling, promotes bladder cancer

cell invasion, and is suppressed by miR-370-3p

Xiaojing Huang^{1,#}, Hongwen Zhu^{2,#}, Zemin Gao¹, Junzun Li¹, Junlong Zhuang³, Yu Dong^{2,4}, Bing Shen⁵, Meiqian Li¹, Hu Zhou², Hongqian Guo^{3,1}, Ruimin Huang^{2,1}, Jun Yan^{1,6,7}

¹MOE Key Laboratory of Model Animals for Disease Study and State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu 210061, China; ²Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; ³Department of Urology, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, China; ⁴Shanghai University, Shanghai 200444, China; ⁵Department of Urology, Shanghai General Hospital, Shanghai Jiaotong University, Shanghai 20080, China; ⁶State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.

Running title: Wnt7a promotes bladder cancer invasion

These authors contribute equally.

[®] To whom correspondence should be addressed: Jun Yan, Lab of Cancer Epigenetics, Model Animal Research Center, Nanjing University. 12 Xuefu Road, Nanjing 210061, Jiangsu, China. Email: yanjun@nju.edu.cn; Ruimin Huang, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China. Email: rmhuang@simm.ac.cn; Hongqian Guo, MD., Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, Jiangsu 210008, China. Email: dr.ghq@nju.edu.cn.

Contents of Supplementary Information

1.	Materials and methods
2.	References4
3.	Supplementary Figure S1. No differences of cell growth among 5637 parental cells and
	its derivative cells
4.	Supplementary Figure S2. Quality control of mass spectrum data7
5.	Supplementary Figure S3. Expressions and localizations of Wnt7a and β -catenin in human
	UBC samples
6.	Supplementary Figure S4. Depletion of MMP10 in 5637 HMI cells suppresses the invasion
	capacity by transwell assay9
7.	Supplementary Figure S5. The expression level of putative Wnt7a targeting miRNAs in
	UBC samples
8.	Supplementary Table S1. The list of altered protein levels in 5637 HMI vs NMI
	cells11
9.	Supplementary Table S2. The putative TCF/LEF sites in human MMP10
	promoter
10.	Supplementary Table S3. List for qRT-PCR primers, siRNAs and subcloning
	sequences14
11.	Supplementary Table S4. Relationship between Wnt7a mRNA expression and clinical
	pathological characteristics of 41 UBC samples for qPCR assay15
12.	Supplementary Table S5. Relationship between Wnt7a protein level and clinical
	pathological characteristics of 45 UBC samples for IHC
	staining16
13.	Supplementary Table S6. List of antibodies17

Materials and methods

Sample preparation for mass spectrum. Cultured 5637 HMI and NMI cells were washed thrice with ice-cold PBS and lysed in SDS lysis buffer (4% SDS, 100 mM Tris-HCl, 0.1 M DTT, pH 7.6). The lysates were sonicated, then denatured and reduced at 95°C for 5 min. The protein concentration was determined using fluorescence quantification as described (1). Peptides were prepared following the filter-aided sample preparation (FASP) procedure (2). Briefly, samples were loaded in 10 kDa centrifugal filter tubes, washed twice with 200 µl UA buffer (8 M urea in 0.1 M Tris-HCl, pH 8.5), alkylated with 50 mM iodoacetamide in UA buffer for 30 min in the dark, washed thrice with UA buffer again and finally washed thrice with 50 mM triethyl ammonium bicarbonate (TEAB). All above steps were centrifuged at 12,000 g at 20°C. Proteins were digested overnight by trypsin (Promega) at a concentration of 1:50 (w/w) in 50 mM TEAB. After digestion, peptides were eluted by centrifugation. The peptides concentration was determined by BCA protein quantification kit.

Isobaric Labeling with Tandem Mass Tags (TMT). The isobaric labeling experiment was conducted by reference to the TMT kit instructions. As suggested, TMT reagents (0.8 mg) were dissolved in anhydrous acetonitrile (41 μ l) and added to each 100 μ g peptides (dissolved in 100 μ l 100 mM TEAB) to achieve a final acetonitrile concentration of approximately 30% (v/v). Following incubation for 1 hr at room temperature, 8 μ l 5% hydroxylamine was added to the sample and incubated for 15 min to quench the reaction. The TMT-labeled samples were pooled at equal amounts, and then subjected to vacuum centrifugation dryness and C18 solid-phase extraction desalting (3M Empore).

High pH Reverse Phase fractionation. 150 µg pooled sample was fractionated by high pH reverse phase method using a Waters XBridge BEH300 C18 column (150×1.0 mm, OD 5 µm) at a flow rate of 0.2 ml/min on Agilent 1200 systems. Solvent A ($10 \text{ mM NH}_4\text{COOH}$, adjusted to pH 10.0 with NH₃•H₂O) and a nonlinear increasing concentration of solvent B (90% ACN, 10 mM NH₄COOH, adjusted to pH 10.0 with NH₃•H₂O) were used to separate peptides. A 90 min gradient was set as follows, 1%-5% B in 2 min; 5%-25% B in 40 min; 25%-40% B in 22 min; 40%-95% B in 2 min; 95% B for 4 min; 95%-1% B in 4 min; 1% B for 16 min. Elutes of the starting 72 min were collected every 2 min into 36 fractions, which were further combined by a concatenation strategy into 18 fractions (1 & 19, 2 & 20, ..., 18 & 36). The 18 fractions of peptides were dried by vacuum centrifugation, resuspended in 0.1% FA and subjected for mass spectrometry analysis.

Mass spectrometry analysis. Peptides were separated using a home-made micro-tip C18 column (75 μ m × 200 mm) packed with ReproSil-Pur C18-AQ, 3.0 μ m resin (Dr. Maisch GmbH, Germany) on a nanoflow HPLC Easy-nLC 1000 system (Thermo Fisher Scientific),

using a 90 min linear gradient at 300 nl/min from 5% to 28% of acetonitrile with 0.1 % (v/v) formic acid. Peptides were analyzed on an Orbitrap Elite mass spectrometry. Data-dependent acquisition was performed using Xcalibur software in positive ion mode at a spray voltage of 2.30 kV. The MS1 full scan was set at a resolution of 60,000 by orbitrap mass analyzer (300-1500 m/z) following 'top 10' MS2 scans generated by HCD fragmentation at a resolution of 15,000. The normalized collision energy (NCE) was 38.0%, and the dynamic exclusion settings were: repeat count, 1; repeat duration, 30 sec; exclusion duration, 30 sec. Isolation window was set at 2.0 m/z. Other parameter settings, minimum signal required, 5,000; activation time, 100 ms; FT first mass value, 100 m/z.

Database searching. Mass spectrometric data were analyzed using MaxQuant 1.5.8.0 against the human Uniprot database (downloaded in July, 2016) (3). MS2 based reporter ion quantification was chosen with reporter mass tolerance set at 0.01 Da. Carbamidomethyl cysteine was searched as a fixed modification, oxidized methionine and protein N-term acetylation as variable modifications. Enzyme specificity was set to trypsin/P. Two missing cleavage site was allowed. The tolerances of first search and main search for peptides were set at 20 ppm and 4.5 ppm respectively. The peptide and protein false discovery rate (FDR) was fixed at a significant level not greater than 0.01. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier (Project accession No.: PXD007709).

Protein association network analysis. STRING database was used to predict protein-protein interactions. The low confidence score (0.15) was chosen for searching more potential interactions. The network was reconstructed in Cytoscape 3.4.

MTT assay. 5637 parental cells, HMI and NMI cells were seeded at 2,500 cells/well in 96-well plates, respectively. The viable cells were measured by MTT (3-(4,5-dimethylthiazol -2-yl)-2,5-diphenyltetrazolium bromide) assay at the indicated time points, as described previously (6).

Immunofluorescence and confocal microscopy. 5.0 µm-thick human UBC paraffin sections were blocked by 5% bovine serum albumin (BSA)/ Phosphate Buffered Saline (PBS), followed by the incubation with the primary antibodies against with Wnt7a (Abcam, ab100792, 1:100) and β -catenin (BD Biosciences, Cat # 610153, 1:400) overnight at 4 °C. Alexa 488 or Alexa 555-conjugated secondary antibody (Molecular Probes, Invitrogen) was added for 1 hr at room temperature. Finally, tissues were counterstained with DAPI and fluorescent images were visualized by a confocal microscope (Leica TSC SP5 II, Wetzlar, Germany).

References

1. Thakur, S.S., Geiger, T., Chatterjee, B., Bandilla, P., Fröhlich, F., Cox, J., and Mann, M.

(2011) Deep and highly sensitive proteome coverage by LC-MS/MS without prefractionation. *Mol. Cell Proteomics* **10**, M110.003699.

- 2. Wiśniewski, J.R., Zougman, A., Nagaraj, N., and Mann, M. (2009) Universal sample preparation method for proteome analysis. *Nat. Methods* **6**, 359-362.
- 3. Tyanova, S., Temu, T., and Cox, J. (2016) The MaxQuant computational platform for mass spectrometry -based shotgun proteomics. *Nat. Protoc.* **11**, 2301-2319.
- 4. Cadigan, K.M., and Waterman, M.L. TCF/LEFs and Wnt signaling in the nucleus. (2012) *Cold Spring Harb. Perspect Biol.* **4**, pii: a007906.
- 5. Yi, H., Hu, J., Qian, J., and Hackam, A.S. (2012) Expression of brain-derived neurotrophic factor is regulated by the Wnt signaling pathway. *Neuroreport.* 23, 189-194.
- Chang, C., Liu, J., He, W., Qu, W., Huang, X., Deng, Y., Shen, L., Zhao, X., Guo, H., Jiang, J., Fu, X.Y., Huang, R., Yan, J. (2018) A regulatory circuit HP1γ/miR-451a/c-Myc promotes prostate cancer progression. *Oncogene* 37, 415-426.

Supplementary Figure S1. No differences of cell proliferation rates among 5637 parental cells and its derivative cells. 5637 parental cells, 5637 HMI and 5637 NMI cells were seeded at 2,500 cells/well in 96-well plate and viable cells were measured by MTT assay at the indicated time points. n.s., not significant.

Supplementary Figure S2. Quality control of mass spectrum data. (A) The boxplot shows distributions of protein reporter intensities adjusted by median normalization in each channel. (B) The quantification correlation plot. Pearson coefficients were calculated using all quantified proteins for each pair of samples. (C) Hieratical clustering analysis using proteins with significant p<0.05.

Supplementary Figure S3. Expressions and localizations of Wnt7a and β -catenin in human UBC samples. The human UBC sections were stained with Wnt7a (Green) and β -catenin (Red) antibodies, followed by counterstaining with DAPI (Blue). Scale bar, 20 μ m.

Supplementary Figure S4. Depletion of MMP10 in 5637 HMI cells suppressed the invasion capacity by transwell assay. (A) Knockdown of MMP10 in 5637 HMI cells by two independent siRNAs was detected by western blotting. GAPDH served as an internal loading control. (B) Transwell invasion assay. After transfected with siRNAs to MMP10 and control siRNA (siCTL), 1×10^5 cells were trypsinized and seeded in each transwell with 10% FBS medium as chemoattractant. After 15 hr, cells were fixed with formaldehyde and stained with crystal violet. Cell number was counted under microscope. Representative transwell images were shown below the graph. Scale bar, 100 µm. ***, p<0.001.

Supplementary Figure S5. The expression level of putative Wnt7a targeting miRNAs in UBC samples. (A) Bioinformatic analysis of Wnt7a targeting miRNAs by miRanda algorithm. (B,C) The plots of two underexpressed miRNAs, miR-370 (B) and miR-195 (C), in either UBC samples without lymph node metastatic lesion (N0, n=236) or UBC samples and UBC samples with lymph node metastatic lesions (\geq N1, n=128), compared with normal bladder tissues (n=19) by using TCGA provisional database.

Supplementary Table S1. The list of altered protein levels in 5637 HMI vs NMI cells.									
Uniprot	Gene	HMI-1	HMI-2	HMI-3	NMI-1	NMI-2	NMI-3	FC*	p value
	Symbol							(HMI/NMI)	(<i>t</i> test)
DE0 450	GEDDINDA	0000 ((10202.4	10750 7	55(0 77	((0)(0)	(2.11.00		0.00054015

Umprot	Gene	111/11-1	111/11-2	11111-5	141411-1	11111-2	141411-3	FC	p value
	Symbol							(HMI/NMI)	(<i>t</i> test)
P50453	SERPINB9	9880.66	10303.4	10759.7	5568.77	6686.2	6241.98	1.65	0.00054817
P05109	S100A8	83007	86329	86749.3	56637.8	62371.7	56887.4	1.52	0.00026996
P30740	SERPINB1	32539.7	32070.7	32682.6	22861.3	24972.1	22878.8	1.42	0.00025689
P09238	MMP10	19810.6	19781.8	19520.6	14724.5	14432.5	14838.7	1.34	4.9525E-06
Q5JV61	FRMD3	5509.86	6596.16	6148.69	4606.46	5314.54	4596.5	1.33	0.03433336
O00755	WNT7A	30150.1	29650.4	29410.3	21235	24782.3	22238.9	1.33	0.0029236
O60732	MAGEC1	5546.02	6533.82	6921.93	5045.25	4762.77	5010.49	1.30	0.02918655
P06702	S100A9	37241.7	37522.4	38437.9	30741	29138.8	28976.1	1.29	0.00026501
O60635	TSPAN1	573.167	583.635	685.016	506.403	412.804	455.631	1.28	0.02541519
P03973	SLPI	11267.7	11094.4	11357.6	8778.38	8814.51	9105.8	1.28	5.4729E-05
P03956	MMP1	78326.4	83122.7	81224.2	60939.5	65519.1	64028.2	1.27	0.00085581
P00813	ADA	9602.69	9558.03	10039.3	7621.04	7811.34	7610.92	1.26	0.00025058
P05120	SERPINB2	76875.8	80050.1	75563.7	59045.8	61164	62334.5	1.26	0.00053414
H7C1W6	CBS	2127.2	1947.12	2121.94	1854.03	1640.52	1741.04	1.22	0.02000178
Q96HD1	CRELD1	9631.99	9710.55	9479.31	7972.41	8401.4	7908.96	1.21	0.00085914
A0A0C4DFU2	SOD2	34989.3	36288.3	37177.2	30096.9	31792.4	29924.1	1.21	0.00311866
H7C471	TBC1D10A	941.475	1042.47	990.047	1195.41	1116.67	1283.53	0.83	0.02123622
Q02388	COL7A1	12155.2	11879.8	11833.6	14359.4	13816.2	14428.3	0.83	0.00050204
Q12962	TAF10	5102.47	4572.89	4664.7	5639.35	5250.76	6110.24	0.83	0.04066769
P46736	BRCC3	5465.34	5387.42	5228.79	5765.73	6542.42	6701.96	0.82	0.03044322
P18827	SDC1	2019.22	1803.28	2095.61	2392.2	2564.49	2469.37	0.82	0.00754082
K7EPQ7	YIF1B	1849.94	1693.74	1703.23	2478.08	2067.01	2097.7	0.81	0.03029218
O75487	GPC4	4948.48	4106.87	4342.88	5159.29	5552.45	5353.5	0.81	0.0319417
Q15542	TAF5	590.939	566.991	585.321	730.94	798.358	646.527	0.80	0.03169325
P0DMQ5	INAFM2	504.659	497.512	548.636	608.521	683.442	630.538	0.80	0.01061864
P31431	SDC4	860.512	887.893	857.81	1281.79	1077.44	987.884	0.80	0.04771194
E9PR30	FAU	562.913	542.004	548.934	692.718	592.828	715.119	0.79	0.03858998
P32455	GBP1	12659	13005.3	12900	16412.5	15390.6	16317.4	0.79	0.00073695
Q15464	SHB	756.753	872.085	746.767	960.505	965.148	943.003	0.79	0.01572224
I3L3M4	CLDN7	205.259	232.062	193.202	264.714	284.532	254.65	0.78	0.01615584
Q9BWT7	CARD10	387.473	450.159	423.962	554.768	522.041	552.756	0.77	0.00431099
H0YD96	SDHD	673.603	748.233	640.551	952.688	889.322	838.345	0.76	0.01093581
Q9P0H9	RER1	6071.32	5666.57	5555.22	7036.72	7509.25	8042.06	0.75	0.00589341
Q9BQ69	MACROD1	703.173	767.993	803.101	866.73	1022.61	1065.7	0.75	0.02780179
A0A075B730	EPPK1	52124.5	49762.9	50379.8	67987.5	64511.2	67333.6	0.75	0.00024398
P43365	MAGEA12	6012.08	5140.44	5329.27	7187.14	6977.73	7702.39	0.74	0.00625207
Q13641	TPBG	6667.79	6710.83	6472.54	7376.39	9329.21	9439.42	0.71	0.03578893
Q99880	HIST1H2BL	2453.27	1990.15	2060.6	3280.84	2690.1	2996.84	0.69	0.02123717
P04035	HMGCR	3843.72	3667.69	3806.49	4371.58	5809.26	5592.41	0.68	0.03006608

Uniprot	Gene Symbol	HM-1	HM-2	НМ-3	NM-1	NM-2	NM-3	FC* (HMI/NMI)	p value (<i>t</i> test)
Q9NY87	SPANXC	2014.15	1949.18	1975.96	2710.14	3161.88	3000	0.66	0.00184943
E9PF05	SUMF1	1946.62	1695.57	1733.77	2179.42	2644.08	2947.7	0.66	0.02794741
Q9NV35	NUDT15	1048.45	893.905	965.536	1158.71	1611.52	1513.14	0.64	0.03381291

*, FC, fold changes. Only the proteins with statistical significance were listed in the table.

Putative TCF/LEF site	From	То	Wild-type Sequence	Mutated sequence
Site 1	-756	-739	5'-taaggTACAAAGgagga-3'(-)	5'-taaggCATGAGAgagga-3'
Site 2	-622	-605	5'-ttatgTTCAAAGtaact-3'(-)	5'-ttatgCTTCAGAtaact-3'

Notes: The core sequences of the TCF/LEF site are in upper cases, which match the 7-base consensus TCF/LEF binding motif (5'-WWCAAWG-3') (4,5). The position is the distance from the transcription start site using human Wnt7a sequence (NM_004625.3). (-), antisense strand.

Direction		Sequences (5'-3')					
qRT-PCR pri	imers						
β-actin	Forward	TCTGGCTGAGGCTGGTTGAC					
	Reverse	CTCCTTAATGTCACGCACGAT					
MMP1	Forward	CCTGGAAAAATACTACAACCTGAAG					
	Reverse	TTCAATCCTGTAGGTCAGATGTGT					
MMP10	Forward	TGCTCTGCCTATCCTCTGAGT					
	Reverse	TCACATCCTTTTCGAGGTTGTAG					
S100A8	Forward	ATGCCGTCTACAGGGATGAC					
	Reverse	ACTGAGGACACTCGGTCTCTA					
Wnt7a	Forward	CTCCGGATCGGTGGCT					
	Reverse	CCCATTTGTGAGCCTTCTCCT					
miR370-3p	RT-primer	CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACCAGGTT					
	qRT-primer	ACACTCCAGCTGGGGCCTGCTGGGGGTGGAA					
miR424-5p	RT-primer	CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTTCAAAAC					
	qRT-primer	ACACTCCAGCTGGGCAGCAGCAATTCAGTG					
miR497-5p	RT-primer	CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGACAAACCA					
	qRT-primer	ACACTCCAGCTGGGCAGCAGCACACTGTGG					
miR195-5p	RT-primer	CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGCCAATATT					
	qRT-primer	ACACTCCAGCTGGGTAGCAGCACAGAAATA					
RNU6	RT-primer	CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGAACGCTTC					
	qRT-primer	ACACTCCAGCTGGGACGCAAATTCGTGAAG					
siRNA seque	ences						
siWnt7a-1		GCUACGUGCUCAAGGACAAtt					
siWnt7a-2		GCUGCUAUGUCAAGUGCAAtt					
siMMP10-1		GGACAGUAAUCUCAUUGUUtt					
siMMP10-2		CAUACAGGAUUGUGAAUUAtt					
siNC		UUCUCCGAACGUGUCACGUtt					
PCR primer	s for subcloni	ng					
MMP10 WT	1F	ATTTCTCTATCGTAGGTACCGTAGAGCAAACTCTTTGGCAAC					
MMP10 WT	1R	CAGTACCGGAATGCCAAGCTTCTCACTGCCCTTACCTTCT					
MMP10 muta	ant 1 2F	AATCCATCTCCTC <u>TCTCATG</u> CCTTAAGA					
MMP10 muta	ant 1 2R	TCTTAAGG <u>CATGAGA</u> GAGGAGATGGATT					
MMP10 muta	ant 2 3F	ATGGAGCAGTTA <u>TCTGAAG</u> CATAATTATAC					
MMP10 muta	ant 2 3R	GTATAATTATG <u>CTTCAGA</u> TAACTGCTCCAT					
pWnt7a subc	loning F	gatgacaagettgeggeeggAACCGGAAAGCGCGGCGCTGCC					
pWnt7a subc	loning R	tctgccctcgatatcgaattcCTTGCACGTGTACATCTCCGTG					

Supplementary Table S3. List for qRT-PCR primers, siRNAs and subcloning sequences.

Notes : The nucleotides with underlines in the table were mutant nucleotides sequences to replace putative wild-type TCF/LEF binding sites.

		Expressio		
Characteristics	Number	Low (n, %)	High (n, %)	p value
Age				0.0953
<60	11	3 (27.2%)	8 (72.7%)	
≥ 60	30	17 (56.7%)	13 (43.3%)	
Gender				0.7059
Male	35	18 (51.4%)	17 (48.6%)	
Female	6	2 (33.3%)	4 (66.7%)	
Tumor number				0.6232
Single	18	8 (44.4%)	10 (55.6%)	
Multiple	23	12 (52.2%)	11 (47.8%)	
Tumor grade				0.0500
Low	12	3 (25.0%)	9 (75.0%)	
High	29	17 (58.6%)	12 (41.1%)	
T stage				0.4697
< T2	11	5 (45.5%)	6 (54.5%)	
\geq T2	23	15 (65.2%)	8 (34.8%)	
Tx	7	0 (0.0%)	7(100%)	
N stage				0.9198
N0	33	16 (48.5%)	17 (51.5)	
\geq N1	3	1 (33.3%)	2 (66.7%)	
Nx	5	3 (60.0%)	2 (40.0%)	

Supplementary Table S4. Relationship between Wnt7a mRNA expression and clinical pathological characteristics of 41 UBC samples for qPCR assay.

Notes: Mean was used for cutoff point.

		Wnt7a pr		
Characteristics	Number	Low (n, %)	High (n, %)	p value
Age				0.286
≤65	20	12 (60.0%)	8 (40.0%)	
>65	25	11 (44.0%)	14 (56.0%)	
Gender				0.953
Male	39	20 (51.3%)	19 (48.7%)	
Female	6	3 (50.0%)	3 (50.0%)	
T stage				0.626
< T2	18	10 (55.6%)	8 (44.4%)	
\geq T2	27	13 (48.1%)	14 (51.9%)	
N stage				0.838
N0	19	10 (52.6%)	9 (47.4%)	
\geq N1	7	4 (57.1%)	3 (42.9%)	
Nx	19	9 (47.4%)	10(52.6%)	

Supplementary Table S5. Relationship between Wnt7a protein level and clinical pathological characteristics of 45 UBC samples for IHC staining.

Notes: Mean value was used for cutoff point.

50	ipplementary rai	oic 50. List of al	indoules.
Antibody	Company	Cat. No.	Dilution (Application)
Active β-catenin	Cell Signaling	8814s	1:1,000 (WB)
β-catenin	BD Biosciences	610153	1:500 (IHC)
			1:400 (IF)
E-Cadherin	Bioworld	BS1098	1:1,000 (WB)
N-Cadherin	Proteintech	22018-1-AP	1:1,000 (WB)
GAPDH	Santa Cruz	sc-32233	1:1,000 (WB)
MMP1	Proteintech	10371-2-AP	1:1,000 (WB)
MMP9	Cell Signaling	#13667s	1:1,000 (WB)
MMP10	R&D Systems	MAB9101	3.5:3,000 (WB)
Twist	GeneTex	GTX127310	1:1,000 (WB)
Vimentin	Proteintech	0366-1-AP	1:1,000 (WB)
Wnt7a	Abcam	ab100792	1:1,000 (WB);
			1:150 (IHC)
			1:100 (IF)
Zebl	Proteintech	21544-1-AP	1:1,000 (WB)
2 nd antibody mouse IgG	Cell Signaling	7076s	1:1,000 (WB)
2 nd antibody rabbit IgG	Cell Signaling	7074s	1:1,000 (WB)
2 nd antibody mouse IgG,	Molecular	A11008	1:1,000 (IF)
Alexa Flour 488	Probes		
2 nd antibody rabbit IgG,	Molecular	A21422	1:1,000 (IF)
Alexa Flour 555	Probes		

Supplementary Table S6. List of antibodies.

Notes: WB, western blotting; IHC, immunohistochemical staining; IF, immunofluorescence.