February 4, 2018

Data Processing, Pathway Mapping Multi-Omic Systems and Activity Analysis using XCMS Online Supplementary Methods

Erica M. Forsberg^{1,2}, Tao Huan¹, Duane Rinehart¹, H. Paul Benton¹, Benedikt Warth^{1,3}, Brian Hilmers¹, Gary Siuzdak¹*

¹Center for Metabolomics and Mass Spectrometry, The Scripps Research Institute, La Jolla, CA, 92037, United States

² Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA, 92182, United States

³ Department of Food Chemistry and Toxicology, University of Vienna, 1090 Vienna, Austria

*Author to whom correspondence should be addressed:

Gary Siuzdak Tel: (858) 784-9415 E-mail: siuzdak@scripps.edu Internet: https://masspec.scripps.edu/

Demonstration Dataset Experimental Design:

To test the efficacy of the multi-omic platform, a standard method for probing changes in metabolomics was developed using *E. coli* K12 MG1655 cultures grown in different carbon sources (glucose and adenosine carbon sources). Concurrently with metabolomic data acquisition, RNA transcriptomic data was generated on the same sample set and a set of literature-generated proteomic data¹⁻³ was acquired. This data was run using the base parameter set "HPLC / UHD QTOF (HILIC, neg)" with none of the settings altered, with the exception of the "identification tab", where it was necessary to change the biosource selection to *E. coli* K12 MG1655, with pathway prediction settings of 20 ppm mass tolerance and a 5,000 signal intensity threshold to account for

the expected error in the raw data. This was saved as a new parameter set called "Demo HPLC / UHD QTOF (HILIC, neg)".

E. Coli Growth Methods.

Glucose and adenosine were prepared with equimolar concentrations of carbon in 10 mL aliquots of M9 minimal media in triplicate. Carbon concentration was based on a final concentration of 20 mM glucose or 0.12 M carbon. All carbon sources were prepared in sterile water, then filtered through a 0.22 μ m syringe filter prior to addition to M9 salts. A 10 mL culture of *E. coli* was grown in LB media overnight at 37°C. To inoculate each condition, which was prepared in triplicate, a 1 mL aliquot of cells was centrifuged at 13,000 rpm for 1 minute, the supernatant media was removed and the pellet was washed 3X with sterile water. The cells were made up to a final volume of 1 mL in sterile water and a 1 μ L aliquot was added to 8 mL of each carbon source. The cultures were grown until an OD₆₀₀ ~1, or stopped after 72 hours if the growth rate was plateaued. Triplicate 1 mL aliquots were taken for each replicate for metabolomics analysis and duplicate 1 mL samples were taken for RNA sequencing.

E. coli RNA extraction and mRNA-seq.

RNA in E. coli samples were extracted using RNeasy Mini Kit (50, Cat. No. 74104) and the extraction procedures followed the protocols inside the extraction kit. In brief, cells were lysed with the working solution and then centrifuged. The supernatants were loaded onto spin column and spun down multiple times to purify RNAs. RNA-seq experiment was performed with 75 bp reads generated on the NextSeq Analyzer located at the Scripps DNA Sequencing Facility. The Genome Analyzer Pipeline Software (currently bcl2fastq/2.16.0.10) is used to perform the early data analysis of a sequencing run, which does the image analysis, base calling, and demultiplexing. Cutadapt software19 was used to trim the adapter and low base-pair called scores. For mRNA-Seq, STAR 2.3.0 was used to align to genome using the E. coli K12 genome reference. EdgeR as used with the method finds number of Differentially Expressed transcripts (DE) significantly changed for the comparisons of different carbon sources. The results are first filtered with False Discovery Rate (FDR) >0.15 and then by log

Counts Per Million (log2(CPM)) > 1.0. The log2 counts-per-million (log2 CPM) cut-off used to avoid undefined values and the poorly defined log-fold-changes for low counts shrunk towards zero. Further the deviation of the normalized counts within groups can be used to filter out the transcripts with higher variance. We noted that almost all the transcripts were significantly up or down changed.

E. coli metabolome extraction and LC-MS based metabolomic profiling.

For metabolomics, each sample was spun down at 14,000xg for 5 min at 4°C. The supernatant was removed and 1.0 mL of ice cold 2:2:1 v/v acetonitrile/methanol/water was added to each tube and vortexed. Cell lysis was performed by three freeze/thaw cycles in liquid nitrogen room temperature. Samples were sonicated and then placed in -20° C overnight to allow protein and cell debris to precipitate. The samples were centrifuged again, supernatant was transferred to glass vials and evaporated at 8°C to dryness. The dry extracts were then reconstituted in 100 µL of acetonitrile:water (1:1, v/v), sonicated for 10 min and centrifuged for 15 min at 13,000 rpm and 4°C to remove insoluble debris. The supernatants were transferred to HPLC vials and stored at -80° C prior to LC-MS analysis.

The LC-MS analysis was performed on each sample in triplicate using a Bruker Impact QTOF mass spectrometer (Billerica, MA, USA) linked to an Agilent 1200 series capillary HPLC system (Palo Alto, CA, USA). 2 μ L sample was injected after injection volume optimization. A Phenomenex Luna NH2 column (1 mm × 15 cm, 3 μ m particle size, 100 Å pore size) was used for LC separation. Mobile phase A was 20 mM ammonium acetate in H₂O with 5% acetonitrile (ACN), and mobile phase B was ACN with 5% H₂O. The gradient elution profile was as follows: t = 0 min, 95%B; t = 5 min, 95%B; t = 50 min, 5%B. t = 63min, 5%B. The flow rate was 50 μ L/min. 20 min post acquisition time was also added with 95%B to re-equilibrium the LC column. Injection of 1 μ L sodium formate (250 μ M) occurred at t = 57 min and eluted on t = 61min. This calibration peak was used to internally calibrate the LC-MS data and also served as the MS peak intensity quality control. The m/z scan range was 25–1500, ionization was in negative mode and acquisition speed was 2 Hz. All data files were converted to mzXML format and uploaded to XCMS Online to perform a pairwise analysis on glucose control (n = 3) versus adenosine stressed (n = 3) using Welch's t-test. For parameter settings to run XCMS job and perform automated pathway analysis, see **Supplemental Table S1**.

1							
	Option	Value	Note:				
Name		Demo HPLC / UHD QTOF (HILIC, neg)					
Comment		Based on: param #6674					
Polarity	me format	negative \$	show the retention times in results tables and figures in minutes or seconds data acquired in positive or negative mode ?				
			Close				
General	Feature Detection	Retention Time Correction Alignment	Statistics Annotation Identification Visualization Miscellaneous				
	Method	l: centWave	NG 0				
nom	Option	Value 15	Note:				
ppm			minimum chromatographic peak width in seconds				
minimum pe	ak width	10	note: must be less than max peak width. See also here.				
maximum pe	eak width	120	maximum chromatographic peak width in seconds				
View Advance	ced Options		note: must be greater than min peak width. See also here.				
mzdiff		0.01	minimum difference in m/z for peaks with overlapping retention times, can be nega				
			to allow overlap Signal/Noise threshold Integration method. If =1 peak limits are found through descent on the mexican hat filtered data, if =2 the descent is done on the real data. Method 2 is very accurate b prone to noise, while method 1 is more robust to noise but less exact. Prefilter step for the first phase. Mass traces are only retained if they contain at leas [prefilter step for the first phase. Mass traces are only retained if they contain at leas				
Signal/Noise	e threshold	6					
Integration n	nethod	1					
prefilter peal	ks	3					
			Prefilter step for the first phase. Mass traces are only retained if they contain at lea				
prefilter inter	nsity	100	Prefilter step for the first phase. Mass traces are only retained if they contain at lea [prefilter peaks] peaks with intensity >= [prefilter intensity]				
prefilter inter	nsity	0	Prefilter step for the first phase. Mass traces are only retained if they contain at lea [prefilter steps for the first phase. Mass traces are only retained if they contain at lea [prefilter peaks] peaks with intensity >= [prefilter intensity] optional argument which is useful for data that was centroided without any intensit				
prefilter inter	nsity	0	Prefilter step for the first phase. Mass traces are only retained if they contain at leas [prefilter step for the first phase. Mass traces are only retained if they contain at leas [prefilter peaks] peaks with intensity >= [prefilter intensity] optional argument which is useful for data that was centroided without any intensit threshold, centroids with intensity < noise are omitted from ROI detection Close				
prefilter inter Noise Filter General	Feature Detection Metho Option	100 0 Retention Time Correction Alignme d: obiwarp \$ Value	Prefilter step for the first phase. Mass traces are only retained if they contain at lea [prefilter step for the first phase. Mass traces are only retained if they contain at lea [prefilter peaks] peaks with intensity >= [prefilter intensity] optional argument which is useful for data that was centroided without any intensit threshold, centroids with intensity < noise are omitted from ROI detection Close				
prefilter inter Noise Filter General profStep	Feature Detection Metho Option	100 0 Retention Time Correction Alignme d: obiwarp Value 1	Prefilter step for the first phase. Mass traces are only retained if they contain at lea [prefilter step for the first phase. Mass traces are only retained if they contain at lea [prefilter peaks] peaks with intensity >= [prefilter intensity] optional argument which is useful for data that was centroided without any intensit threshold, centroids with intensity < noise are omitted from ROI detection Close nt Statistics Annotation Identification Visualization Miscellaned Note: step size (in m/z) to use for profile generation from the raw data files				
prefilter inter Noise Filter General profStep	Feature Detection Metho Option	100 0 Retention Time Correction Alignme d: obiwarp Value 1	Prefilter step for the first phase. Mass traces are only retained if they contain at lea [prefilter step for the first phase. Mass traces are only retained if they contain at lea [prefilter peaks] peaks with intensity >= [prefilter intensity] optional argument which is useful for data that was centroided without any intensit threshold, centroids with intensity < noise are omitted from ROI detection Close nt Statistics Annotation Identification Visualization Miscellaned Note: step size (in m/z) to use for profile generation from the raw data files				
General	Feature Detection Metho Option	100 0 Retention Time Correction Alignme d: obiwarp Value 1	Prefilter step for the first phase. Mass traces are only retained if they contain at lea [prefilter step for the first phase. Mass traces are only retained if they contain at lea [prefilter peaks] peaks with intensity >= [prefilter intensity] optional argument which is useful for data that was centroided without any intensit threshold, centroids with intensity < noise are omitted from ROI detection Close nt Statistics Annotation Identification Visualization Miscellaned Note: step size (in m/z) to use for profile generation from the raw data files Close				
prefilter inter Noise Filter General profStep General	Feature Detection Metho Option Feature Detection	100 0 Retention Time Correction Alignme d: obiwarp \$ Value 1 Retention Time Correction Alignment	prefitter peaks peaks with intensity >= [prefitter intensity] Prefitter step for the first phase. Mass traces are only retained if they contain at lea [prefitter step for the first phase. Mass traces are only retained if they contain at lea [prefitter peaks] peaks with intensity >= [prefitter intensity] optional argument which is useful for data that was centroided without any intensit threshold, centroids with intensity < noise are omitted from ROI detection				
prefilter inter Noise Filter General General General	Feature Detection Option Option Option	100 0 Retention Time Correction Alignme d: obiwarp Value 1 Retention Time Correction Alignment Value Value	prefitter peaks peaks with intensity >= [prefitter intensity] Prefitter step for the first phase. Mass traces are only retained if they contain at lea [prefitter step for the first phase. Mass traces are only retained if they contain at lea [prefitter peaks] peaks with intensity >= [prefitter intensity] optional argument which is useful for data that was centroided without any intensit threshold, centroids with intensity < noise are omitted from ROI detection				
prefilter inter Noise Filter General profStep General bw	Feature Detection Option Feature Detection Option	100 0 Retention Time Correction Alignme d: obiwarp \$ Value 1 Retention Time Correction Alignment Value 5	prefitter peaks prefitter step for the first phase. Mass traces are only retained if they contain at lea [prefitter step for the first phase. Mass traces are only retained if they contain at lea [prefitter peaks] peaks with intensity >= [prefitter intensity] optional argument which is useful for data that was centroided without any intensit threshold, centroids with intensity < noise are omitted from ROI detection				
prefilter inter Noise Filter General profStep General bw minfrac	Feature Detection Metho Option Feature Detection Option	100 0 Retention Time Correction Alignme d: obiwarp Value 1 Retention Time Correction Alignment Value 5 0.5	Prefitter step for the first phase. Mass traces are only retained if they contain at lea [prefitter step for the first phase. Mass traces are only retained if they contain at lea [prefitter step for the first phase. Mass traces are only retained if they contain at lea [prefitter peaks] peaks with intensity >= [prefitter intensity] optional argument which is useful for data that was centroided without any intensit threshold, centroids with intensity < noise are omitted from ROI detection				
prefilter inter Noise Filter General profStep General bw minfrac mzwid	Feature Detection Option Feature Detection Option	100 0 Retention Time Correction Alignme d: obiwarp \$ Value 1 Retention Time Correction Alignment Value 5 0.5 0.5 0.015	Prefilter step for the first phase. Mass traces are only retained if they contain at lea [prefilter step for the first phase. Mass traces are only retained if they contain at lea [prefilter step for the first phase. Mass traces are only retained if they contain at lea [prefilter step for the first phase. Mass traces are only retained without any intensit threshold, centroids with intensity >= [prefilter intensity] optional argument which is useful for data that was centroided without any intensit threshold, centroids with intensity < noise are omitted from ROI detection				
prefilter inter Noise Filter General profStep General bw minfrac mzwid	Feature Detection Option Feature Detection Option	100 0 Retention Time Correction Alignme d: obiwarp \$ Value 1 Retention Time Correction Alignment Value 5 0.5 0.015	Prefitter step for the first phase. Mass traces are only retained if they contain at lea [prefitter step for the first phase. Mass traces are only retained if they contain at lea [prefitter step for the first phase. Mass traces are only retained if they contain at lea [prefitter peaks] peaks with intensity >= [prefitter intensity] optional argument which is useful for data that was centroided without any intensit threshold, centroids with intensity < noise are omitted from ROI detection				
prefilter inter Noise Filter General profStep General bw minfrac mzwid View Advanc	Feature Detection Option Feature Detection Option	100 0 Retention Time Correction Alignme d: obiwarp Value 1 Retention Time Correction Alignment Value 5 0.5 0.015 1	Prefitter step for the first phase. Mass traces are only retained if they contain at lea [prefitter step for the first phase. Mass traces are only retained if they contain at lea [prefitter step for the first phase. Mass traces are only retained if they contain at lea [prefitter peaks] peaks with intensity >= [prefitter intensity] optional argument which is useful for data that was centroided without any intensit threshold, centroids with intensity < noise are omitted from ROI detection				
prefilter inter Noise Filter General profStep General bw minfrac mzwid View Advanc minsamp	Feature Detection Option Feature Detection Option	100 0 Retention Time Correction Alignme d: obiwarp \$ Value 1 Retention Time Correction Alignment Value 5 0.5 0.015 1	Prefitter step for the first phase. Mass traces are only retained if they contain at lea [prefitter step for the first phase. Mass traces are only retained if they contain at lea [prefitter peaks] peaks with intensity >= [prefitter intensity] optional argument which is useful for data that was centroided without any intensit threshold, centroids with intensity < noise are omitted from ROI detection				

Supplementary Table S1. Parameter settings for *E. coli* experimental data analysis

5	General Feature Detection	Retention Time Correction Alignment	Statistics Annotation Identification Visualization Miscellaneous					
	Option	Value	Note:					
	Statistical test	Unpaired parametric t-test (Welch t-test)	 Statistical test method: Welch t-test (unequal variances) or Wilcoxon Rank Sum test The selected statistical test is performed as a paired test. The sample pairs need to be specified. Perform post-hoc analysis [multigroup only] Features with a p-value less than this threshold are considered highly significant. Some 					
	Perform paired test	VIEW PAIRS						
	Perform post-hoc analysis	True 🛊						
	p-value threshold (highly							
	significant features)	0.01	statistical figures (e.g. Mirror plot) are generated using only the dysregulated features according to this threshold.					
	fold change threshold (highly		Features with a fold change greater than this threshold are considered highly					
	significant features)	1.5	significant. Some statistical figures (e.g. Mirror plot) are generated using only the dysregulated features according to this threshold.					
	p-value threshold (significant features)	0.05	Features with a p-value less than this threshold are not considered significant and are omitted from some calculations to save time and space. EIC's, annotations and					
	View Advanced Options		database iD's are not generated for features with p-values above this threshold.					
	value	into 💠	intensity values to be used for the diffreport. If value="into", integrated peak intensities					
			are used. If value= "maxo", maximum peak intensities are used. Normalize the intensity values by either probabilistic quotient or cyclic loess					
	Normalization	None	normalization.					
			Close					
6	General Feature Detection	Retention Time Correction Alignment	Statistics Annotation Identification Visualization Miscellaneous					
	Option	Value	Note:					
	ppm	15	ppm error					
	m/z absolute error	0.015	m/z absolute error					
			Search for 1.) just isotopic features or 2.) isotopic features and adducts formations,					
	Search for	isotopes + adducts \$	dimers, trimers, neutral losses, etc. WARNING: searching for all adducts can increase the total processing time by approximately 50 %					
7			Close					
1	General Feature Detection	Retention Time Correction Alignment	Statistics Annotation Identification Visualization Miscellaneous					
	Option	Value	Note:					
	ppm	10 [M-H]- [M-H2O-H]- [M+Na-2H]- [M+CI]-	tolerance for database search					
	adducts	[M+K-2H]- [M+FA-H]- [M-2H]2- [M-3H]3- [M+CH3COO]- [M+F]-	adducts to be considered for database search					
	sample biosource	SELECT BIOSOURCE set default SELECTED: ECOLI	Select your species/cell line, etc. that correspond to your samples. Default human.					
	pathway ppm deviation	20 🗘	metabolite pathway lookup					
	input intensity threshold	5000	minimum intensity cut-off for pathway analysis					
	significant list p-value cutor	AUTO	Significant list p-value cut-off					
8	General Feature Detection	Retention Time Correction Alignment	Statistics Annotation Identification Visualization Miscellaneous					
	Option	Value	Note:					
	EIC width	200	Default width for extracted ion chromatograms in seconds					
			Close					

9	General	Feature Detection	on Retention Tim	e Correction	Alignment	Statistics	Annotation	Identification	Visualization	Miscellaneous	
	Option Value					Note:					
	Correct mass calibration gaps Bypass file sanity check				Correction of mass calibration gaps - subtract LockMass scans from data. Only applicable for Waters instruments ! All uploaded files are normally checked for different types of errors and inconsistencies.						cies.
						This option disables the file sanity check. Unfortunately necessary for certain types of GC/MS data when used with centWave. Only disable this check if you know what you are doing!					of ou
						Close					
10	JOB ID:		1172567								
	JOB NAME: Ecoli_glucose-vs-adenosine										
	FILES UPLOADED:										
	FileID 🔺 Filename 🌵 Upload Date 🛛 🔶 List				🕴 List Typ	e 🔶 A	ccession ID	Metabol	ic Matches	Remove	¢
	477577	Ecoli_gene	2017-08-10	05:35:00	Genes	♦ Ge	ne symbol	View		×	
	477578	Ecoli_prot	2017-08-10	05:35:53	Proteins	¢ G	ene symbol \$	View		×	
									Run	matching subjobs	

- 1. Du, Z., Nandakumar, R., Nickerson, K.W. & Li, X. Proteomic adaptations to starvation prepare Escherichia coli for disinfection tolerance. *Water Res.* **69**, 110-119 (2015).
- 2. Vijayendran, C., Burgemeister, S., Friehs, K., Niehaus, K. & Flaschel, E. 2DBase: 2D-PAGE database of Escherichia coli. *Biochemical and Biophysical Research Communications* **363**, 822-827 (2007).
- 3. Vijayendran, C. et al. The plasticity of global proteome and genome expression analyzed in closely related W3110 and MG1655 strains of a well-studied model organism, Escherichia coli-K12. *J. Biotechnol.* **128**, 747-761 (2007).