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4 Segregation test for low depth data 9

1 Derivation of emission probabilities for sequencing data

In this section, we derive the conditional probabilities P (Yfij |Gfij). For a biallelic loci, there

are four possible ways in which a given read my occur which are,

1. Paternally derived allele is sequenced without error.

2. Paternally derived allele is sequenced with error.

3. Maternally derived allele is sequenced without error

4. Maternally derived allele is sequenced with error

These four cases are shown in Figure A1.

For a given read, we denote the probability that the cth case has occurred by qc and we denote

the probability that the reference allele is sequenced by pA. If the true genotype is homozygous

for the reference allele (Xp = Xm = A), then

pA = q1 + q3 =
1

2
(1− ε) +

1

2
(1− ε) = (1− ε).

If the true genotype is AB, then

pA = q1 + q4 =
1

2
(1− ε) +

1

2
ε =

1

2
,

if the reference allele is paternally derived (Xp = A, Xm = B) and

pA = q2 + q3 =
1

2
ε+

1

2
(1− ε) =

1

2

if the reference allele is maternally derived (Xp = B, Xm = A). If the true genotype is

homozygous for the alternate allele (Xp = Xm = B), then

pA = q2 + q4 =
1

2
ε+

1

2
ε = ε.

The probability of observing a reference alleles for individual i in family f at locus j given

the true genotype, Gfij , follows a binomial distribution where there are dfij trials and the
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Case 1 Case 2 Case 3 Case 4

Xp Xm

Genotype=(Xp, Xm)

No error Error No error Error

Figure A1: Four possible ways an allele may arise in a biallelic loci for a full-sib family. Xp

denotes the paternally derived allele and Xm denotes the maternally derived allele.

probability of successfully sampling the reference allele is pA, that is,

P (Yfij = a|Gfij) =

(
dfij
a

)
paA(1− pA)dfij−a,

which results in the probabilities given in Eq (12).

2 Algorithm for inferring OPGPs

The OPGP of locus j, for j = 2, . . . ,M , can be inferred relative to the previous OPGPs using

Algorithm 1, where I(·) denotes the indicator function.

3 GUSMap Optimization Procedures

Two optimization procedures have been implemented in GUSMap, the Expectation-Maximization

(EM) approach and the ‘BFGS’ method as implemented in the R function optim().

3.1 EM approach

In the derivations that follow in this section, we will denote the emission probabilities using

P (Ofij |Sfij ,Zfj), where Ofij denotes the observed data at locus j for individual i in family

f . The emission probability P (Ofij |Sfij ,Zfj) is equal to P (Gfij |Sfij ,Zfj) for HMM (2) and∑
Gfij

P (Yfij |Gfij)P (Gfij |Sfij ,Zfj) for the HMM for sequencing data defined in model (11).
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Algorithm 1: Reconstructing OPGPs from sex-specific recombination fraction estimates
in family f

Input : rj1 and rj0 for j = 1, . . . ,M − 1
Initialize: Set

Zf1 =


(A,B,A,B)T if locus 1 is BI
(A,B,A,A)T if locus 1 is PIA
(A,B,B,B)T if locus 1 is PIB
(A,A,A,B)T if locus 1 is MIA
(B,B,A,B)T if locus 1 is MIB

Iterate : for j = 2, . . . ,M do
Set c = max(k) such that Zfk11 6= Zfk10 for k = 1, . . . , j − 1
Set d = max(k) such that Zfk01 6= Zfk00 for k = 1, . . . , j − 1
if locus j is PI then

if locus j is PIA then
Set Zfj01 = A and Zfj00 = A

else
Set Zfj01 = B and Zfj00 = B

if all loci from 1 to j − 1 are MI then
Set Zfj11 = A and Zfj10 = B

else if rj−11 > 0.5 then
Set Zfj11 = Zfc10 and Zfj10 = Zfc11

else
Set Zfj11 = Zfc11 and Zfj10 = Zfc10

else if locus j is MI then
if locus j is MIA then

Set Zfj11 = A and Zfj10 = A
else

Set Zfj11 = B and Zfj10 = B
if all loci from 1 to j − 1 are PI then

Set Zfj01 = A and Zfj00 = B
else if rj−10 > 0.5 then

Set Zfj01 = Zfd00 and Zfj00 = Zfd01

else
Set Zfj01 = Zfd01 and Zfj00 = Zfd00

else if locus j is BI then
if rj−11 > 0.5 then

Set Zfj11 = Zfc10 and Zfj10 = Zfc11

else
Set Zfj11 = Zfc11 and Zfj10 = Zfc10

else if rj−10 > 0.5 then
Set Zfj01 = Zfd00 and Zfj00 = Zfd01

else
Set Zfj01 = Zfd01 and Zfj00 = Zfd00

Return : Zfj for j = 1, . . . ,M
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3.1.1 Forward and backward probabilities

The forward probabilities required for the EM algorithm are defined in Eqs (6) and (7), while

the backward probabilities are defined recursively as,

βfiM (SfiM ) = 1, (A1)

and,

βfij(Sfij) =
∑

Sfij+1

P (Sfij+1|Sfij)P (Ofij+1|Sfij+1,Zfj+1)βfij+1(Sfij+1), (A2)

for j = 1, . . . ,M−1. In HMM, computation of the forward and backward probabilities typically

suffers from underflow issues when M gets sufficiently large. One way to overcome this issue

is to scale the forward and backward probabilities as follows. Specifically, we define the scaled

forward probabilities as

α̂fi1(Sfi1) = cfi1αfi1(Sfi1), (A3)

and

α̂fij(Sfij) = cfij
∑

Sfij−1

α̂fij−1(Sfij−1)P (Sfij |Sfij−1)P (Ofij |Sfij ,Zfj), (A4)

for j = 2, . . . ,M , where the scaling coefficients are

cfi1 =
1∑

Sfi1
αfi1(Sfi1)

, (A5)

and

cfij =
1∑

Sfij

∑
Sfij−1

α̂fij−1(Sfij−1)P (Sfij |Sfij−1)P (Ofij |Sfij ,Zfj)
, (A6)

for j = 2, . . . ,M . Similarly, the scaled backward probabilities are

β̂fiM (SfiM ) = cfiM , (A7)

and

β̂fij(Sfij) = cfij
∑

Sfij+1

P (Sfij+1|Sfij)P (Ofij+1|Sfij+1,Zfj+1)β̂fij+1(Sfij+1), (A8)
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for j = 1, . . . ,M − 1. Under this scaling scheme, we have that

α̂fij(Sfij) =

[
j∏

t=1

cfit

]
αfij(Sfij), (A9)

and

β̂fij(Sfij) =

 M∏
t=j

cfit

βfij(Sfij). (A10)

The likelihood can then be computed using the scaling coefficients via

Lfi =
M∏
j=1

cfij . (A11)

3.1.2 Complete data likelihood

For the EM algorithm, the complete log likelihood can be derived as follows. Let Hfij represent

the true hidden inheritance vector at locus j for individual i in family f . Define,

ufij(Sfij) =

1 Sfij = Hfij

0 otherwise.
(A12)

and

vfij(Sfij ,Sfij+1) =

1 Sfij = Hfij and Sfij+1 = Hfij+1

0 otherwise.
(A13)

Then the complete likelihood for the HMM is,

P (O,H|θ) =
F∏

f=1

Nf∏
i=1

πfij

M−1∏
j=1

P (Sfij+1|Sfij)
vfij(Sfij ,Sfij+1)

M∏
j=1

P (Ofij |Sfij)
ufij(Sfij) (A14)

where O = (O111, . . . , O11M , O211, . . . , OFNfM )T , H = (H111, . . . ,H11M ,H211, . . . ,HFNfM )T

and θ = (r11, r10, . . . , rM−11, rM−10, ε)
T .
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3.1.3 E-Step

The expectation step requires computing the the conditional probabilities of observing the hid-

den variables Sfij given the observed data and the given parameter values. Specifically,

ûfij(Sfij) = P (Sfij |O,θ) =
αfij(Sfij)βfij(Sfij)

Lfi

=
α̂fij(Sfij)β̂fij(Sfij)

cfij
, (A15)

for j = 1, . . . ,M and

v̂fij(Sfij ,Sfij+1) = P (Sfij ,Sfij+1|O,θ)

=
αfij(Sfij)P (Sfij+1|Sfij)P (Ofij+1|Sfij+1,Zfj+1)βfij+1(Sfij+1)

Lfi

= α̂fij(Sfij)P (Sfij+1|Sfij)P (Ofij+1|Sfij+1,Zfj+1)β̂fij+1(Sfij+1). (A16)

for j = 1, . . . ,M − 1.

3.1.4 M-Step

Replacing the hidden variables ufij(Sfij) and vfij(Sfij ,Sfij+1) with ûfij(Sfij) and v̂fij(Sfij ,Sfij+1)

and maximizing the complete data likelihood (A14) with respect to the parameters yields the

following expressions for maximizing the parameters given the complete data:

• The recombination fractions:

r̂jk =
1

2N

F∑
f=1

Nf∑
i=1

v̂fij(Sfij ,Sfij+1)nk(Sfij ,Sfij+1), (A17)

where

nk(Sfij ,Sfij+1) =

1 Sfijk 6= Sfij+1k

0 Sfijk = Sfij+1k.
(A18)

• Sequencing error:

ε̂ =
P

P +Q
(A19)
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where

P =

F∑
f=1

Nf∑
i=1

M∑
j=1

ufij(Sfij) [aI(Gfij = BB) + (d− a)I(Gfij = AA)] , (A20)

and

Q =
F∑

f=1

Nf∑
i=1

M∑
j=1

ufij(Sfij) [aI(Gfij = AA) + (d− a)I(Gfij = BB)] , (A21)

where I(·) is the indicator function.

3.2 BFGS approach

The ‘BFGS’ method, as implemented in the optim() function, is an unconstrained numeric

optimizer. Thus, since the recombination fraction and sequencing error parameters are only

valid on a constrained region, the optimization needs to be performed on transformed parameter

values which do not have any constraints. The transformations which achieve this are,

ρ(r) = ln

(
2r

1− 2r

)
for the recombination fractions in all the likelihoods except for likelihood (14) where the logit

transformation is used. The logit transformation is also used for the sequencing error parameter,

ε. The maximum likelihood estimates for the parameters are computed by back transforming the

transformed parameter estimates. To overcome underflow issues, the scaled forward probabilities

as given in Equations (A3) and (A4) are used in the computation of the likelihood, while the

likelihood functions are written in C to reduce computational time.
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4 Segregation test for low depth data

Let G∗fij denote the genotype observed in the sequencing data for individual i in family f at

locus j. Assuming that G∗fij arises from a random binomial sample of the alleles found in Gfij ,

then

P (G∗fij = AA|Gfij = AA) = 1

P (G∗fij = AA|Gfij = AB) = Kfij

P (G∗fij = AB|Gfij = AB) = 1− 2Kfij

P (G∗fij = BB|Gfij = AB) = Kfij

P (G∗fij = BB|Gfij = BB) = 1,

(A22)

where Kfij = 1/2dfij [1]. The probability of observing a major homozygous genotype at locus

j for individual i in family f in the sequencing data can be expressed as

P (G∗fij = AA) =
∑
Gfij

P (G∗fij |Gfij)P (Gfij)

= P (G∗fij = AA|Gfij = AA)P (Gfij = AA)

+ P (G∗fij = AA|Gfij = AB)P (Gfij = AB)

= P (Gfij = AA) +KfijP (Gfij = AB),

In like manner, the probability of observing a minor homozygous genotype at locus j for indi-

vidual i in family f can be expressed as

P (G∗fij = BB) = P (G∗fij = BB|Gfij = BB)P (Gfij = BB)

+ P (G∗fij = BB|Gfij = AB)P (Gfij = AB)

= P (Gfij = BB) +KfijP (Gfij = AB),

while the probability of observing a heterozygous genotype at locus j for individual i in family

f can be expressed as

P (G∗fij = AB) = P (G∗fij = AB|Gfij = AB)P (Gfij = AB)

= (1− 2Kfij)P (Gfij = AB).
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From the above equations, we have that

P (G∗fij = AA) =


1

2
+Kfij if the locus is PIA or MIA

1

4
+Kfij if the locus is BI

Kfij if the locus is PIB or MIB

P (G∗fij = AB) =
1

2
− 2Kfij

P (G∗fij = BB) =


Kfij if the locus is PIA or MIA
1

4
+Kfij if the locus is BI

1

2
+Kfij if the locus is PIB or MIB

Let Mf denote the number of individuals in family f which have a non-missing genotype.

The expected counts of the genotype g at locus j in family f for sequencing data is given by

efj(g) =
∑Mf

i=1 P (G∗fij = g). Furthermore, denote the observed counts for genotype g at locus

j in family f for sequencing data by ofj(g). The chi-square statistic for the segregation test at

locus j for family f with low depth data is

X2 =
∑

g∈(AA,AB,BB)

(ofj(g)− efj(g))2

efj(g)

which follows a chi-square distribution with 2 degrees of freedom. Thus, locus j is in segregation

distortion (and therefore discarded) if the chi-square statistic is larger than the quantile of the

chi-square distribution with 2 degrees of freedom corresponding to a specified significance level.
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