Supplementary Material for

THE VIOLACEIN BIOSYNTHETIC ENZYME VIOE SHARES A FOLD WITH LIPOPROTEIN TRANSPORTER PROTEINS

Katherine S. Ryan, Carl J. Balibar, Kaitlyn E. Turo, Christopher T. Walsh, Catherine L. Drennan

FIGURE S1. Sedimentation velocity experiments. Sedimentation velocity experiments were performed on VioE at observed loading concentrations of 8.6 μ M and 2.8 μ M. The single species model fit to this data using Sedanal gives a molecular mass of 45,879 g/mol (calculated molecular mass of C-terminally tagged VioE dimer is 45,685 g/mol). Determination of F-statistics gives a range of 41,200 to 51,000 g/mol for the molecular mass of the observed species, with a confidence level of 95%. These data are highly consistent with a VioE dimer in solution and are inconsistent with a VioE monomer or trimer in solution. Plots of the sedimentation distribution function normalized to loading concentrations are shown as a function of the sedimentation coefficient in Svedbergs, with the 8.6 μ M sample shown in plue and the 2.8 μ M sample shown in pink.

FIGURE S2. **Gel filtration of VioE**. Protein purified from a nickel (II) loaded Chelating SepharoseTM Fast Flow column was loaded onto a HiLoad SuperdexTM 75 prep grade column. This column was previously calibrated using gel filtration standards, with bovine thyroglobulin (670 kDa) eluting at 46.8 mL, bovine γ -globulin (158 kDa) eluting at 51.0 mL, chicken ovalbumin (44 kDa) eluting at 64.6 mL, horse myoglobin (17 kDa) eluting at 79.4 mL, and Vitamin B₁₂ (1.4 kDa) eluting at 107.0 mL. *A*. A standard curve was generated for the column using these standards, using the logarithm (base-10) of the molecular weight (in kDa) as a function of elution volume (in mL), excluding the value for bovine thyroglobulin, which is not on the linear portion of the curve. The linear regression equation and R² value are shown. *B*. VioE elutes as one major peak at 72.5 mL. This corresponds, based on the standard curve, to a calculated molecular weight of 26.3 kDa. The molecular weight of VioE (including the C-terminal tag) is 22.8 kDa, and the calculated dimeric molecular weight is 45.7 kDa. The peak corresponding to the calculated molecular weight of 26.3 kDa is more likely to represent monomeric VioE.

JLD JLB CV PT	MPTHVSPPLLPMQWSSAYVSYWTPMQADDQVTSGYCWFDYARNICRIDGLFNPWSEK 57 MSIQVAPPLLPMKWSSAYISYWTPMQEDDQVTSGYCWFDYARNICRIDGLFNPWPEK 57 MENRE-PPLLPARWSSAYVSYWSPMLPDDQLTSGYCWFDYERDICRIDGLFNPWSER 56 MQLSKITKKPPLLPAQWSSSYISYWMPMQPDDDITSGYCWFDYTKNVCRIDGIFNPWPEI 60 ***** :***:*** ** **::****** :::******	7 5)
JLD JLB CV PT	EHGHLLWMSEIGDARREQSRKQKVAYARQAEAAGEQLQGTALADEVTPFHELFLPQAVLL 11 EHGHLLWMSEIGDARREQSRKQKVAYARQAGATGEQLQGTALADEVTPFHELFLPQAVLL 11 DTGYRLWMSEVGNAASGRTWKQKVAYGRERTALGEQLCERPLDDETGPFAELFLPRDVLR 11 KMGNRLWMSEIMYPNTDESFKSKVAYAREDMKSISEFSAQVLDDEIDPCHELILTQKVLI 12 . * *****: . :: * ** * * * **:*:	.7 17 16 20
JLD JLB CV PT	DGGARHDGRHTVLGREADAWVVERA-GKPPSVFYLEAGGNRLLRMVTGNDPQHLSVRDFP 17 DGSARHDGRHTVLGQEADAWVMERA-GKPPSVFYLEAGGNRLLRMVTGNDPQHLSVRDFP 17 RLGARHIGRRVVLGREADGWRYQRP-GKGPSTLYLDAASGTPLRMVTGDEASRASLRDFP 17 ECNAQYMGIETVLGHQAEKWLFQRPDNKGPATYYFINGTNHLVRMITGDPKICASVRDFP 18 .*:: ****:: * :*:	76 76 75 30
JLD JLB CV PT	NLFVSDIPDSVFTSCNT 193 NLFVGDIPDSVFTSCNT 193 NVSEAEIPDAVFAAKR 191 NFNTYKIDNEIFKPEPLKK 199 ** : :* .	

FIGURE S3. **Homologues of VioE.** A ClustalW alignment of the closest homologues of VioE from *Chromobacterium violaceum* ATCC 12472 (indicated as 'CV') is shown. The homologue from *Janthinobacterium lividum* DSM 1522 is indicated as 'JLD,' the homologue from *Janothinobacterium lividum* BP is indicated as 'JLB,' and the homologue from *Pseudoalteromonas tunicata* D2 is indicated as 'PT.' Identical residues are indicated with *, and similar residues are indicated with one or two dots, according to the conventions of ClustalW.

VioE	86	RTALGEQLCERPLDDETGPFAELFLPRDVLRRLGARHIGRRV	127
RifG	2	RTTIPVRLAERSYDVLVGPGVRAALP-EVVRRLGARRAV	39
VioE	128	VLGREADG<mark>W</mark>RYOR<mark>PG</mark>KGPS<mark>TLYLDA</mark>AS<mark>GTP</mark>LRMVTGD<mark>E</mark>	165
RifG	40	VVSARPADWV PGTGVETLLLOARDGEPTKRLSTVE	74

FIGURE S4. **Comparison of VioE to RifG.** RifG, a 351 amino acid protein from *Amycolatopsis mediterranei*, shows similarity to VioE, a 191 amino acid protein. RifG aligns at its N-terminus to the central region of the VioE sequence. Shown are only the residues aligned from a BLAST search. Based on the VioE structure, the highest identity is in the loop that connects $\beta 6$ to $\beta 7$, bridging one side of the protein to the other. RifG is a putative 5-amino 3-dehydroquinate synthase (1), thought to carry out a cyclization of 3,4-dideoxy-4-amino-D-*arabino*-heptulosonic acid 7-phophate (2). Heterologous expression studies have shown that RifG is involved, together with RifJ and RifH, in the synthesis of 3-amino-5-hydroxybenzoic acid (1). It is unclear what RifG's similarity to VioE reveals about either protein. Yellow highlighting indicates identical residues, whereas gray highlighting indicates similar residues.

VioE	1	MENREP	6
LolA	1	DAASD	5
LolB	1	ASVTTPKGPGKSPD <mark>SPQWRQHQQDVRNLNQ</mark>	30
VioE	7	PLLPARWSSAYVS-Y-WSPMLPDDQ-	29
LolA	6	LKSRLDKVSSFHASFTQ-KVTDGSGAAVQ-	33
LolB	31	SD-QQKV	46
VioE	30	LTSGYCWFDY-E-R-DICRIDGLFNPWSERDTGYRL	62
LolA	34	EGOGDLWVKR-PNLFNWHMTOPD	55
LolB	47	-YARFFWOO-TGO-DRYRLLLTN	66
	- /		
VioE	63	WMSEVGNAASGRTWKQKVAYGRERTALGEQL	93
LolA	56	ESILVSD-GKTLWFYNPF	72
LolB	67	PLGST-ELELNAQPGNVQLV-DNK	88
VioE	94	CERP-LDDETGP-FAEL	108
LolA	73	VEQATATWLKDAT-GNTPF	90
LolB	89	G -QRYTAD-D AEEMIGKLT GMPIP	110
VioE	109	FLP-RDVLRRLGARHI-G	124
LolA	91	M-LIARNQSSDWQQYNIKQN	109
LolB	111	LNSLR-Q-WILGLPGDATDYK-L-	130
VioF	125		149
	110	REVELOPERATION OF STATES	120
LOIR	131	KNWKV-V	151
HOID	191		101
VioE	149	YLDAASG-T-PLRMVTGDEASRASLR	172
LolA	130	NVGRDG-T-IHQFSAVEQDQRSSY	152
LolB	152	YGGYDTKTQPA-MPA-NMELTDGGQRIK	177
VioE	173	DFPNVSEAEIPDAVFAAKR	191
LolA	153	QLKSQQNGAVDAAKFTFTPQGVTVDDQRK	182
LolB	178	LKMDNW-IVK	186

FIGURE S5. **Structure-based sequence alignment of VioE, LolA, and LolB.** The structure of VioE was individually aligned using LSQMAN (3) to the structures of LolA and LolB (4), which, based on analysis using DALI (<u>http://www.ebi.ac.uk/dali/</u>), had significantly higher structural homology to VioE than did any other published protein structures. A final structural alignment was generated where distances between C α carbons were within 3.5 Å. Structurally aligned sequences of VioE, LolA (PDB code 1UA8), and LolB (PDB code 1IWM) are shown with secondary structure assignments (blue text indicates β -sheets and red text indicates α -helices and 3₁₀ helical turns). Gray highlighting indicates residues disordered in the crystal structures.

FIGURE S6. **Electron density for VioE**. Seven residues $(Tyr^{60}, bottom, to Glu^{66}, top)$ are shown in a 1.5 σ sigmaA-weighted $2F_0$ - F_c map. The high quality of the electron density over most of the structure, including this segment, is in contrast to the lower quality of density surrounding the PEG molecules.

FIGURE S7. **CD Spectra of mutant proteins.** Circular dichroism spectra of all mutants appear similar to that of wildtype VioE, suggesting that all mutants are properly folded. a) Native versus Cys35Ala, Asn51Ala, and Ser170Ala. b) Native versus Glu66Ala, Lys77Ala, and Met64Ala. c) Native versus Tyr17Ala, Arg172Ala, and Ser19Ala.

TABLE S1: **Primers used for generation of site-directed mutants.** Bold text within oligonucleotide sequences indicates restriction digest sites, italicized text indicates modified overhangs, and underlined text indicates the modified codon.

Protein	Fragment	Sequence
All mutants	a – 5' forward	caagttacatatggttaaccgcccgtacgc
	b-3' reverse	caagttactcgag ctcgctatctgtaatcacgtc
VioE Y17A	a – 3' reverse	catcggactccagtacgacacc <u>cgc</u> ggcgctgctcca
	b – 5' forward	ccggcgcgctggagcagcgcc <u>gcg</u> gtgtcgtactgg
VioE S19A	a – 3' reverse	cggcagcatcggactccagtacgcacataggcgct
	b – 5' forward	cgctggagcagcgcctatgtggcgtactggagtccg
VioE C35A	a – 3' reverse	gtcgcgctcgtagtcgaacca <u>cgc</u> gtagccggacgt
	b – 5' forward	gaccagctgacgtccggctacgcgtggttcgactac
VioE N51A	a – 3' reverse	ggtgtcgcgctccgaccagggcgcgaacaggccgtc
	b – 5' forward	tgtcggatagacggcctgttcgcgccctggtcggag
VioE M64A	a – 3' reverse	ggcggcgttgccgacctcggacgccacagccggta
	b – 5' forward	gacaccggctaccggctgtgggcgtccgaggtcggc
VioE E66A	a – 3' reverse	gccgctggcggcgttgccgaccgggacatccacag
	b – 5' forward	ggctaccggctgtggatgtccgcggcaacgcc
VioE K77A	a – 3' reverse	gcggccataggccaccttctg <u>cgc</u> ccaggtgcggcc
	b – 5' forward	gccgccagcggccgcacctgggcgcagaaggtggcc
VioE S170A	a – 3' reverse	gacgttggggaaatcgcgcagcgcgcgcgcgcgcgc
	b – 5' forward	ggggacgaggcgtcgcgcgcg <u>gcg</u> ctgcgcgatttc
VioE R172A	a – 3' reverse	ctcgctgacgttggggaaatc <u>cgc</u> cagcgacgcgcg
	b-5' forward	gaggcgtcgcgcgcgtcgctggcggatttccccaac

REFERENCES

- 1. Yu, T. W., Muller, R., Muller, M., Zhang, X., Draeger, G., Kim, C. G., Leistner, E., and Floss, H. G. (2001) *J. Biol. Chem.* **276**(16), 12546-12555
- 2. Watanabe, K., Rude, M. A., Walsh, C. T., and Khosla, C. (2003) *Proc. Natl. Acad. Sci. U. S. A.* **100**(17), 9774-9778
- 3. Kleywegt, G. J. (1996) Acta Crystallogr. D Biol. Crystallogr. 52(Pt 4), 842-857
- 4. Takeda, K., Miyatake, H., Yokota, N., Matsuyama, S., Tokuda, H., and Miki, K. (2003) *EMBO J.* **22**(13), 3199-3209