Supporting Information

Stereoselective Synthesis of 3,3'-Bisindolines by Organocatalytic Michael Additions of Fluorooxindole Enolates to Isatylidene Malononitriles in Aqueous Solution

Kaluvu Balaraman, Ransheng Ding and Christian Wolf* Georgetown University, Chemistry Department, Washington, DC, USA. *E-mail: cw27@georgetown.edu*

Table of Contents

	Description	Page No
1.	General information	2
2.	General synthetic procedure and product characterization	2
3.	¹ H, ¹³ C and ¹⁹ F NMR spectra	17
4.	Crystallographic data	49
5.	References	56

1. General information

Commercially available isatins, oxindoles, reagents and solvents were used as purchased without further purification. Isatylidene malononitriles¹ and 3-fluorooxindoles² were synthesized by following literature procedures. NMR spectra were obtained at 400 MHz (¹H NMR), 376 MHz (¹⁹F NMR) and 100 MHz (¹³C NMR) in deuterated solvents. Chemical shifts are reported in ppm relative to TMS. Reaction products were purified by column chromatography on silica gel (particle size 40-63 µm) as described below.

2. General synthetic procedure and product characterization

To a solution of 3-fluorooxindole (0.22 mmol) and isatylidene malononitrile (0.2 mmol) in water (0.5 mL) or in a 1:1 ethanol-water mixture (0.5 mL) was added triethylamine (10-20 mol%). The reaction was stirred at room temperature and monitored by TLC. When most of the isatylidene malononitrile was consumed, the mixture was sonicated (40 minutes) to achieve complete conversion which was ascertained by TLC and ¹⁹F NMR spectroscopy. The reaction mixture was poured onto brine (10 mL) and extracted with ethyl acetate (3×5 mL). The combined organic layers were dried over anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure. The crude product was purified by flash chromatography on silica gel using hexanes-ethyl acetate as mobile phase as described below.

2-(3-Fluoro-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (3). Compound 3 was obtained as a colorless solid in 99% yield (71 mg, 0.198 mmol) from 2-(2-oxoindolin-3-ylidene)malononitrile (39 mg, 0.2 mmol) and 3-fluoro-1-methylindolin-2-one (33 mg, 0.2 mmol) in the presence of 10 mol% Et₃N in 0.5 mL of water after 3 hours at 25 °C by following the general procedure described above. $R_f = 0.4$ (hexanes/EtOAc, 1:1); ¹H NMR (400 MHz, DMSO- d_6) $\delta = 11.17$ (s, 1H), 7.86 (dd, J = 7.7, 1.7 Hz, 1H), 7.61 (dd, J = 7.7, 7.7 Hz, 1H), 7.43 (dd, J = 7.7, 7.7 Hz, 7.7 Hz

7.8, 7.7 Hz, 1H), 7.38 (dd, J = 7.7, 1.7 Hz, 1H), 7.13 (dd, J = 7.7, 1.8 Hz, 1H), 7.01 (dd, J = 7.8, 1.7 Hz, 1H), 6.82 (dd, J = 7.8, 7.7 Hz, 1H), 6.09 (s, 1H), 5.82 (dd, J = 7.7, 1.8 Hz, 1H), 3.20 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 170.7$ (d, $J_{C-F} = 9.3$ Hz), 168.9 (d, $J_{C-F} = 21.2$ Hz), 144.7 (d, $J_{C-F} = 5.1$ Hz), 143.7, 133.6 (d, $J_{C-F} = 3.1$ Hz), 132.5, 126.4 (d, $J_{C-F} = 2.7$ Hz), 124.6, 123.9, 123.5 (d, $J_{C-F} = 2.7$ Hz), 122.6, 121.1 (d, $J_{C-F} = 18.2$ Hz), 112.7, 112.1, 111.5, 110.6, 91.3 (d, $J_{C-F} = 198.7$ Hz), 56.8 (d, $J_{C-F} = 23.7$ Hz), 26.9, 25.4; ¹⁹F NMR (376 MHz, DMSO- d_6) $\delta = -164.2$; Anal. Calcd. For C₂₀H₁₃FN₄O₂: C, 66.66; H, 3.64; N, 15.55. Found: C, 66.61; H, 3.81; N, 15.78.

2-(3-Fluoro-2,2'-dioxo-1-phenyl-[3,3'-biindolin]-3'-yl)malononitrile (4). Compound **4** was obtained as a colorless solid in 94% yield (79 mg, 0.188 mmol) from 2-(2-oxoindolin-3-ylidene)malononitrile (39 mg, 0.2 mmol) and 3-fluoro-1-phenylindolin-2-one (45 mg, 0.2 mmol) in the presence of 10 mol% Et₃N in 0.5 mL of water after 4 hours at 25 °C by following the general procedure described above. $R_f = 0.6$ (hexanes/EtOAc, 1:1); ¹H NMR (400 MHz, Acetone- d_6) $\delta = 9.98$ (s, 1H), 8.08 (dd, J = 7.6, 1.6 Hz, 1H), 7.71 – 7.61 (m, 3H), 7.58 – 7.51 (m, 3H), 7.47 (dd, J = 7.8, 7.7 Hz, 1H), 7.38 (dd, J = 7.7, 7.7 Hz, 1H), 7.13 (dd, J = 7.7, 1.8 Hz, 1H), 6.86 (dd, J = 7.7, 7.6 Hz, 1H), 6.77 (dd, J = 7.8, 1.7 Hz, 1H), 6.07 – 6.03 (m, 2H); ¹³C NMR (100 MHz, Acetone- d_6) $\delta = 171.4$ (d, $J_{C-F} = 9.4$ Hz), 169.5 (d, $J_{C-F} = 21.3$ Hz), 145.9 (d, $J_{C-F} = 5.0$ Hz), 144.3, 134.2, 133.9 (d, $J_{C-F} = 3.1$ Hz), 133.0, 130.7, 129.9, 127.9, 127.5, 127.4, 126.1, 124.6, 124.4 (d, $J_{C-F} = 2.7$ Hz), 123.1, 121.8 (d, $J_{C-F} = 18.6$ Hz), 112.7, 112.1, 111.2, 92.1 (d, $J_{C-F} = 201.2$ Hz), 58.2 (d, $J_{C-F} = 23.9$ Hz), 25.3; ¹⁹F NMR (376 MHz, Acetone- d_6) $\delta = -165.6$; Anal. Calcd. For C₂₅H₁₅FN₄O₂: C, 71.08; H, 3.58; N, 13.26. Found: C, 71.37; H, 3.82; N, 13.48.

2-(3-Fluoro-1,1'-dimethyl-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (5). Compound 5 was obtained as a colorless solid in 95% yield (71 mg, 0.19 mmol) from 2-(1-methyl-2-oxoindolin-3-ylidene)malononitrile (42 mg, 0.2 mmol) and 3-fluoro-1-methylindolin-2-one (33 mg, 0.2 mmol) in the presence of 10 mol% Et₃N in 1:1 ethanol-water (0.5 mL) after 4 hours at 25 °C by following the general procedure described above. $R_f = 0.4$ (hexanes/EtOAc, 8:2); ¹H NMR (399 MHz, Chloroform-*d*) δ 8.13 (dd, J = 7.9, 1.9 Hz, 1H), 7.63 (dd, J = 7.9, 7.8 Hz, 1H), 7.41 (dd, J = 7.8, 7.8 Hz, 1H), 7.32 (dd, J = 7.9, 7.8 Hz, 1H), 6.92 (dd, J = 7.8, 2.0 Hz, 1H), 6.81 (dd, J = 7.9, 1.9 Hz, 1H), 6.70 (dd, J = 7.8, 7.7 Hz, 1H), 5.95 (s, 1H), 5.86 (dd, J = 7.8, 1.9 Hz, 1H), 3.27 (s, 3H), 2.90 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.2 (d, $J_{C-F} = 21.3$ Hz), 169.0 (d, $J_{C-F} = 9.5$ Hz), 144.7, 144.4 (d, $J_{C-F} = 5.0$ Hz), 132.8 (d, $J_{C-F} = 3.0$ Hz), 132.0, 126.9 (d, $J_{C-F} = 2.0$ Hz), 90.7 (d, $J_{C-F} = 202.2$ Hz), 56.6 (d, $J_{C-F} = 24.3$ Hz), 26.5, 26.4, 23.8; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -164.8; Anal. Calcd. For C₂₁H₁₅FN₄O₂: C, 67.37; H, 4.04; N, 14.97. Found: C, 67.21; H, 4.09; N, 15.18.

2-(1'-Benzyl-3-fluoro-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (6). Compound **6** was obtained as a colorless solid in 93% yield (84 mg, 0.186 mmol) from 2-(1-benzyl-2-oxoindolin-3-ylidene)malononitrile (57 mg, 0.2 mmol) and 3-fluoro-1-methylindolin-2-one (33 mg, 0.2 mmol) in the presence of 10 mol% Et₃N in 1:1 ethanol-water (0.5 mL) after 8 hours at 25

°C by following the general procedure described above. $R_f = 0.6$ (hexanes/EtOAc, 8:2); ¹H NMR (400 MHz, Chloroform-*d*) $\delta = 8.15$ (dd, J = 7.7, 1.8 Hz, 1H), 7.48 (dd, J = 7.9, 7.8 Hz, 1H), 7.44 – 7.32 (m, 2H), 7.18 (dd, J = 7.8, 7.7 Hz, 1H), 7.15 – 7.05 (m, 2H), 6.86 (dd, J = 7.8, 1.7 Hz, 1H), 6.75 (dd, J = 7.7, 1.8 Hz, 1H), 6.66 (dd, J = 7.7, 7.6 Hz, 1H), 6.58 (dd, J = 7.7, 1.8 Hz, 2H), 6.06 (s, 1H), 5.90 (dd, J = 7.6, 1.7 Hz, 1H), 4.90 (d, J = 15.9 Hz, 1H), 4.40 (d, J = 15.9 Hz, 1H), 3.29 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) $\delta = 169.4$ (d, $J_{C-F} = 21.1$ Hz), 169.2 (d, $J_{C-F} = 9.6$ Hz), 144.6 (d, $J_{C-F} = 4.9$ Hz), 143.8, 133.8, 132.7 (d, $J_{C-F} = 3.0$ Hz), 131.9, 128.8, 127.7, 126.9 (d, $J_{C-F} = 2.7$ Hz), 126.6, 125.5, 124.4, 123.3 (d, $J_{C-F} = 2.7$ Hz), 121.4, 121.1 (d, $J_{C-F} = 18.4$ Hz), 111.0, 110.5, 110.4 (d, $J_{C-F} = 1.6$ Hz), 109.3, 90.8 (d, $J_{C-F} = 202.2$ Hz), 56.6 (d, $J_{C-F} = 24.4$ Hz), 44.3, 26.5, 24.0; ¹⁹F NMR (376 MHz, Chloroform-*d*) $\delta = -164.6$; Anal. Calcd. For C₂₇H₁₉FN₄O₂: C, 71.99; H, 4.25; N, 12.44. Found: C, 71.88; H, 4.36; N, 12.66.

2-(3-Fluoro-1,5'-dimethyl-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (7). Compound 7 was obtained as a colorless solid in 97% yield (72 mg, 0.194 mmol) from 2-(5-methyl-2-oxoindolin-3-ylidene)malononitrile (42 mg, 0.2 mmol) and 3-fluoro-1-methylindolin-2-one (33 mg, 0.2 mmol) in the presence of 10 mol% Et₃N in 0.5 mL of water after 3 hours at 25 °C by following the general procedure described above. $R_f = 0.4$ (hexanes/EtOAc, 1:1); ¹H NMR (400 MHz, DMSO- d_6) $\delta = 11.05$ (s, 1H), 7.66 (s, 1H), 7.47 – 7.38 (m, 2H), 7.12 (dd, J = 7.8, 1.8 Hz, 1H), 6.91 (dd, J = 7.8, 1.7 Hz, 1H), 6.83 (dd, J = 7.9, 7.8 Hz, 1H), 6.05 (s, 1H), 5.86 (dd, J = 7.7, 1.7 Hz, 1H), 3.19 (s, 3H), 2.45 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) $\delta = 170.6$ (d, $J_{C-F} = 9.4$ Hz), 169.0 (d, $J_{C-F} = 2.7$ Hz), 124.8, 123.5 (d, $J_{C-F} = 2.7$ Hz), 122.7, 121.1 (d, $J_{C-F} = 18.2$ Hz), 112.7, 112.1, 111.3, 110.5, 91.4 (d, $J_{C-F} = 198.5$ Hz), 56.9 (d, $J_{C-F} = 23.7$ Hz), 26.9, 25.5, 21.4; ¹⁹F NMR (376 MHz, DMSO- d_6) $\delta = -164.2$; Anal. Calcd. For C₂₁H₁₅FN₄O₂: C, 67.37; H, 4.04; N, 14.97. Found: C, 67.61; H, 4.26; N, 14.78.

2-(3-Fluoro-1-methyl-2,2'-dioxo-7'-(trifluoromethyl)-[3,3'-biindolin]-3'-yl)malononitrile (8). Compound **8** was obtained as a colorless solid in 96% yield (82 mg, 0.192 mmol) from 2-(2-oxo-7-(trifluoromethyl)indolin-3-ylidene)malononitrile (53 mg, 0.2 mmol) and 3-fluoro-1-methylindolin-2-one (33 mg, 0.2 mmol) in the presence of 20 mol% Et₃N in 1:1 ethanol-water (0.5 mL) after 5 hours at 25 °C by following the general procedure described above. $R_f = 0.6$ (hexanes/EtOAc, 1:1); ¹H NMR (399 MHz, Acetone- d_6) δ 10.48 (s, 1H), 8.31 (dd, J = 7.7, 1.8 Hz, 1H), 7.98 (d, J = 7.9 Hz, 1H), 7.68 (dd, J = 7.8, 7.7 Hz, 1H), 7.47 (dd, J = 7.9, 7.7 Hz, 1H), 7.11 (d, J = 8.0 Hz, 1H), 6.86 (dd, J = 7.8, 7.7 Hz, 1H), 6.12 (s, 1H), 5.98 (dd, J = 7.7, 1.8 Hz, 1H), 3.27 (s, 3H); ¹³C NMR (100 MHz, Acetone- d_6) δ 171.4 (d, $J_{C-F} = 9.2$ Hz), 169.4 (d, $J_{C-F} = 2.9$ Hz), 129.4 (q, $J_{C-F} = 5.2$ Hz), 141.5 (q, $J_{C-F} = 2.1$ Hz), 134.3 (d, $J_{C-F} = 3.1$ Hz), 131.3 (d, $J_{C-F} = 2.8$ Hz), 121.6 (d, $J_{C-F} = 1.4$ Hz), 125.3, 125.0, 124.9, 124.1 (q, $J_{C-F} = 270.3$ Hz), 124.0 (d, $J_{C-F} = 2.8$ Hz), 121.6 (d, $J_{C-F} = 201.4$ Hz), 57.1 (d, $J_{C-F} = 24.0$ Hz), 26.8, 25.2; ¹⁹F NMR (376 MHz, Acetone- d_6) δ -62.5 (s, 3F), -165.5 (s, 1F); Anal. Calcd. For C₂₁H₁₂F₄N₄O₂: C, 58.88; H, 2.82; N, 13.08. Found: C, 58.53; H, 2.93; N, 12.79.

2-(3,5'-Difluoro-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (9). Compound **9** was obtained as a colorless solid in 97% yield (73 mg, 0.194 mmol) from 2-(5-fluoro-2-oxoindolin-3-ylidene)malononitrile (42 mg, 0.2 mmol) and 3-fluoro-1-methylindolin-2-one (33

mg, 0.2 mmol) in the presence of 20 mol% Et₃N in 0.5 mL of water after 4 hours at 25 °C by following the general procedure described above. $R_f = 0.4$ (hexanes/EtOAc, 1:1); ¹H NMR (399 MHz, Acetone- d_6) δ 10.02 (s, 1H), 7.78 (dd, J = 7.9, 1.9 Hz, 1H), 7.50 – 7.42 (m, 2H), 7.16 (dd, J = 7.9, 7.8 Hz, 1H), 7.09 (d, J = 7.9 Hz, 1H), 6.87 (dd, J = 7.9, 7.8 Hz, 1H), 6.13 (dd, J = 7.8, 1.6 Hz, 1H), 6.10 (s, 1H), 3.26 (s, 3H); ¹³C NMR (100 MHz, Acetone- d_6) δ 171.0 (d, $J_{C-F} = 9.3$ Hz), 169.6 (d, $J_{C-F} = 21.0$ Hz), 160.0 (d, $J_{C-F} = 241.5$ Hz), 145.7 (d, $J_{C-F} = 5.2$ Hz), 140.5 (d, $J_{C-F} = 2.3$ Hz), 134.1 (d, $J_{C-F} = 3.2$ Hz), 125.6, 124.5 (d, $J_{C-F} = 8.5$ Hz), 124.0 (d, $J_{C-F} = 2.8$ Hz), 121.8 (d, $J_{C-F} = 18.3$ Hz), 119.6 (d, $J_{C-F} = 23.6$ Hz), 115.0 (dd, $J_{C-F} = 25.9$, 2.8 Hz), 113.3 (d, $J_{C-F} = 8.2$ Hz), 112.6, 111.9 (d, $J_{C-F} = 1.5$ Hz), 110.7 (d, $J_{C-F} = 1.3$ Hz), 91.8 (d, $J_{C-F} = 199.8$ Hz), 58.1 (dd, $J_{C-F} = 23.7$, 2.0 Hz), 26.8, 25.2; ¹⁹F NMR (376 MHz, Acetone- d_6) δ -119.5 (m, 1F), -165.3 (s, 1F); Anal. Calcd. For C₂₀H₁₂F₂N₄O₂: C, 63.49; H, 3.20; N, 14.81. Found: C, 63.71; H, 3.35; N, 15.07.

2-(6'-Chloro-3-fluoro-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (10). Compound **10** was obtained as a colorless solid in 91% yield (72 mg, 0.182 mmol) from 2-(6-chloro-2-oxoindolin-3-ylidene)malononitrile (46 mg, 0.2 mmol) and 3-fluoro-1-methylindolin-2-one (33 mg, 0.2 mmol) in the presence of 10 mol% Et₃N in 0.5 mL of water after 8 hours at 25 °C by following the general procedure described above. $R_f = 0.4$ (hexanes/EtOAc, 1:1); ¹H NMR (399 MHz, Acetone- d_6) δ 10.16 (s, 1H), 8.01 (dd, J = 7.9, 1.8 Hz, 1H), 7.50 – 7.44 (m, 2H), 7.17 (d, J = 1.8 Hz, 1H), 7.10 (d, J = 7.9 Hz, 1H), 6.89 (dd, J = 7.8, 7.7 Hz, 1H), 6.16 (dd, J = 7.8, 1.8 Hz, 1H), 6.08 (s, 1H), 3.26 (s, 3H); ¹³C NMR (100 MHz, Acetone- d_6) δ 171.2 (d, $J_{C-F} = 9.4$ Hz), 169.7 (d, $J_{C-F} = 21.2$ Hz), 145.7 (d, $J_{C-F} = 5.2$ Hz), 145.5, 138.3, 134.1 (d, $J_{C-F} = 3.1$ Hz), 128.7 (d, $J_{C-F} = 2.8$ Hz), 125.6, 124.6, 124.1 (d, $J_{C-F} = 2.8$ Hz), 122.0 (d, $J_{C-F} = 3.0$ Hz), 121.8, 112.6 (d, $J_{C-F} = 22.6$ Hz), 112.4, 112.0, 110.7 (d, $J_{C-F} = 1.3$ Hz), 91.8 (d, $J_{C-F} = 200.0$ Hz), 57.6 (d, $J_{C-F} = 22.6$ Hz), 112.4, 112.0, 110.7 (d, $J_{C-F} = 1.3$ Hz), 91.8 (d, $J_{C-F} = 200.0$ Hz), 57.6 (d, $J_{C-F} = 2.8$ Hz), 91.8 (d, $J_{C-F} = 200.0$ Hz), 57.6 (d, $J_{C-F} = 2.8$ Hz), 91.8 (d, $J_{C-F} = 200.0$ Hz), 57.6 (d, $J_{C-F} = 2.8$ Hz), 91.8 (d, $J_{C-F} = 200.0$ Hz), 57.6 (d, $J_{C-F} = 2.8$ Hz), 91.8 (d, $J_{C-F} = 200.0$ Hz), 57.6 (d, $J_{C-F} = 2.8$ Hz), 91.8 (d, $J_{C-F} = 200.0$ Hz), 57.6 (d, $J_{C-F} = 2.8$ Hz), 91.8 (d, $J_{C-F} = 200.0$ Hz), 57.6 (d, $J_{C-F} = 2.8$ Hz), 91.8 (d, $J_{C-F} = 200.0$ Hz), 57.6 (d, $J_{C-F} = 2.8$ Hz), 91.8 (d, $J_{C-F} = 200.0$ Hz), 57.6 (d, $J_{C-F} = 2.8$ Hz), 91.8 (d, $J_{C-F} = 200.0$ Hz), 57.6 (d, $J_{C-F} = 2.8$ Hz), 91.8 (d, $J_{C-F} = 200.0$ Hz), 57.6 (d, $J_{C-F} = 2.8$ Hz), 91.8 (d, $J_{C-F} = 200.0$ Hz), 57.6 (d, $J_{C-F} = 2.8$ Hz), 91.8 (d, $J_{C-F} = 200.0$ Hz), 57.6 (d, $J_{C-F} = 2.8$ Hz), 91.8 (d, $J_{C-F} = 200.0$ Hz), 57.6 (d, J_{C- 24.0 Hz), 26.8, 25.3; ¹⁹F NMR (376 MHz, Acetone- d_6) δ -165.1; Anal. Calcd. For C₂₀H₁₂ClFN₄O₂: C, 60.85; H, 3.06; N, 14.19. Found: C, 61.02; H, 3.21; N, 14.25.

2-(3-Fluoro-1-methyl-5'-nitro-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (11). Compound **11** was obtained as a colorless solid in 91% yield (74 mg, 0.182 mmol) from 2-(5-nitro-2-oxoindolin-3-ylidene)malononitrile (48 mg, 0.2 mmol) and 3-fluoro-1-methylindolin-2-one (33 mg, 0.2 mmol) in the presence of 20 mol% Et₃N in 1:1 ethanol-water (0.5 mL) after 8 hours at 25 °C by following the general procedure described above. $R_f = 0.3$ (hexanes/EtOAc, 1:3); ¹H NMR (399 MHz, Acetone- d_6) δ 10.62 (s, 1H), 8.88 (s, 1H), 8.61 (dd, J = 7.9, 1.9 Hz, 1H), 7.48 (dd, J = 7.8, 7.7 Hz, 1H), 7.39 (d, J = 8.8 Hz, 1H), 7.12 (d, J = 7.9 Hz, 1H), 6.85 (dd, J = 7.8, 7.7 Hz, 1H), 6.27 (dd, J = 7.8, 1.8 Hz, 1H), 6.19 (s, 1H), 3.28 (s, 3H); ¹³C NMR (100 MHz, Acetone- d_6) δ 171.4 (d, $J_{C-F} = 9.1$ Hz), 169.4 (d, $J_{C-F} = 21.0$ Hz), 149.8, 145.7 (d, $J_{C-F} = 3.0$ Hz), 121.5 (d, $J_{C-F} = 1.8.5$ Hz), 112.4, 112.4, 111.7 (d, $J_{C-F} = 1.4$ Hz), 123.9, 123.0 (d, $J_{C-F} = 3.0$ Hz), 121.5 (d, $J_{C-F} = 1.8.5$ Hz), 112.4, 112.4, 111.7 (d, $J_{C-F} = 1.4$ Hz), 110.9 (d, $J_{C-F} = 1.3$ Hz), 91.7 (d, $J_{C-F} = 201.3$ Hz), 57.8 (d, $J_{C-F} = 24.0$ Hz), 26.8, 25.2; ¹⁹F NMR (376 MHz, Acetone- d_6) δ -165.3; Anal. Calcd. For C₂₀H₁₂FN₅O₄: C, 59.26; H, 2.98; N, 17.28. Found: C, 59.08; H, 3.12; N, 17.07.

2-(3-Fluoro-5'-methoxy-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (12). Compound **12** was obtained as a colorless solid in 99% yield (77 mg, 0.198 mmol) from 2-(5-methoxy-2-oxoindolin-3-ylidene)malononitrile (45 mg, 0.2 mmol) and 3-fluoro-1-methylindolin-

2-one (33 mg, 0.2 mmol) in the presence of 10 mol% Et₃N in 0.5 mL of water after 4 hours at 25 °C by following the general procedure described above. $R_f = 0.4$ (hexanes/EtOAc, 1:3); ¹H NMR (399 MHz, Acetone- d_6) δ 9.80 (s, 1H), 7.62 (d, J = 2.3 Hz, 1H), 7.45 (dd, J = 8.2, 7.9 Hz, 1H), 7.21 (dd, J = 8.2, 2.4 Hz, 1H), 7.11 – 7.02 (m, 2H), 6.83 (dd, J = 7.8, 7.7 Hz, 1H), 6.09 (dd, J = 7.7, 1.8 Hz, 1H), 6.07 (s, 1H), 3.92 (s, 3H), 3.25 (s, 3H); ¹³C NMR (100 MHz, Acetone- d_6) δ 170.9 (d, $J_{C-F} = 9.4$ Hz), 169.9 (d, $J_{C-F} = 21.2$ Hz), 157.4, 145.7 (d, $J_{C-F} = 5.1$ Hz), 137.3, 133.9 (d, $J_{C-F} = 3.1$ Hz), 125.8, 124.3, 123.9 (d, $J_{C-F} = 2.8$ Hz), 122.1 (d, $J_{C-F} = 18.3$ Hz), 117.5, 114.0 (d, $J_{C-F} = 2.8$ Hz), 112.7 (d, $J_{C-F} = 28.5$ Hz), 112.6, 112.1 (d, $J_{C-F} = 1.5$ Hz), 110.5 (d, $J_{C-F} = 1.4$ Hz), 92.0 (d, $J_{C-F} = 199.3$ Hz), 58.0 (d, $J_{C-F} = 23.5$ Hz), 56.3, 26.7, 25.2; ¹⁹F NMR (376 MHz, Acetone- d_6) δ -165.8; Anal. Calcd. For C₂₁H₁₅FN₄O₃: C, 64.61; H, 3.87; N, 14.35. Found: C, 64.67; H, 3.99; N, 14.42.

2-(1-Benzyl-3-fluoro-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (13). Compound **13** was obtained as a colorless solid in 92% yield (80 mg, 0.184 mmol) from 2-(2-oxoindolin-3-ylidene)malononitrile (39 mg, 0.2 mmol) and 1-benzyl-3-fluoroindolin-2-one (48 mg, 0.2 mmol) in the presence of 10 mol% Et₃N in 1:1 ethanol-water (0.5 mL) after 6 hours at 25 °C by following the general procedure described above. $R_f = 0.6$ (hexanes/EtOAc, 1:1); ¹H NMR (399 MHz, Acetone- d_6) δ 10.06 (s, 1H), 8.06 (dd, J = 7.8, 1.7 Hz, 1H), 7.66 (dd, J = 7.9, 7.8 Hz, 1H), 7.51 (dd, J = 7.9, 1.7 Hz, 2H), 7.45 (dd, J = 7.8, 7.7 Hz, 1H), 7.39 – 7.29 (m, 4H), 7.14 (d, J = 7.9 Hz, 1H), 6.87 (d, J = 7.9 Hz, 1H), 6.79 (dd, J = 7.8, 7.7 Hz, 1H), 6.17 (s, 1H), 5.99 (dd, J = 7.8, 1.8 Hz, 1H), 5.14 (d, J = 15.9 Hz, 1H), 4.91 (d, J = 15.9 Hz, 1H); ¹³C NMR (100 MHz, Acetone- d_6) δ 171.3 (d, $J_{C-F} = 9.5$ Hz), 170.3 (d, $J_{C-F} = 21.4$ Hz), 144.9 (d, $J_{C-F} = 5.1$ Hz), 144.2, 136.0, 133.8 (d, $J_{C-F} = 3.3$ Hz), 133.0, 129.6, 128.6, 128.4, 127.5 (d, $J_{C-F} = 2.8$ Hz), 125.8, 124.6, 124.1 (d, $J_{C-F} = 1.5$ Hz), 92.0 (d, $J_{C-F} = 198.5$ Hz), 57.7 (d, $J_{C-F} = 24.0$ Hz), 44.7, 25.5; ¹⁹F NMR

(376 MHz, Acetone-*d*₆) δ -161.9; Anal. Calcd. For C₂₆H₁₇FN₄O₂: C, 71.55; H, 3.93; N, 12.84. Found: C, 71.72; H, 3.81; N, 12.55.

2-(1-Benzyl-3-fluoro-5'-methyl-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (14). Compound **14** was obtained as a colorless solid in 99% yield (89 mg, 0.198 mmol) from 2-(5-methyl-2-oxoindolin-3-ylidene)malononitrile (42 mg, 0.2 mmol) and 1-benzyl-3-fluoroindolin-2one (48 mg, 0.2 mmol) in the presence of 20 mol% Et₃N in 1:1 ethanol-water (0.5 mL) after 4 hours at 25 °C by following the general procedure described above. $R_f = 0.6$ (hexanes/EtOAc, 1:1); ¹H NMR (399 MHz, Acetone- d_6) δ 9.94 (s, 1H), 7.88 (s, 1H), 7.53 – 7.45 (m, 3H), 7.39 – 7.33 (m, 2H), 7.33 – 7.27 (m, 2H), 7.02 (d, J = 8.0 Hz, 1H), 6.86 (d, J = 8.0 Hz, 1H), 6.79 (dd, J =7.6, 7.6 Hz, 1H), 6.14 (s, 1H), 6.03 (d, J = 7.7 Hz, 1H), 5.14 (d, J = 15.9 Hz, 1H), 4.90 (d, J =15.9 Hz, 1H), 2.51 (s, 3H); ¹³C NMR (100 MHz, Acetone- d_6) δ 171.3 (d, J = 9.4 Hz), 170.4 (d, J =21.4 Hz), 145.0 (d, J = 5.1 Hz), 141.8, 136.0, 134.3, 133.7 (d, J = 3.3 Hz), 133.3, 129.6, 128.6, 128.4, 127.9 (d, J = 2.7 Hz), 126.0, 124.0 (d, J = 2.9 Hz), 123.4, 122.3 (d, J = 18.3 Hz), 112.8, 112.1, 111.8, 111.5 (d, J = 1.6 Hz), 92.0 (d, J = 198.3 Hz), 57.8 (d, J = 23.8 Hz), 44.7, 25.5, 21.3; ¹⁹F NMR (376 MHz, Acetone- d_6) δ -161.9; Anal. Calcd. For C₂₇H₁₉FN₄O₂: C, 71.99; H, 4.25; N, 12.44. Found: C, 72.26; H, 4.48; N, 12.76.

2-(1-Benzyl-3-fluoro-5'-methoxy-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile(15).Compound 15 was obtained as a colorless solid in 99% yield (92 mg, 0.198 mmol) from 2-(5-

methoxy-2-oxoindolin-3-ylidene)malononitrile (45 mg, 0.2 mmol) and 1-benzyl-3-fluoroindolin-2-one (48 mg, 0.2 mmol) in the presence of 20 mol% Et₃N in 1:1 ethanol-water (0.5 mL) after 8 hours at 25 °C by following the general procedure described above. $R_f = 0.3$ (hexanes/EtOAc, 1:1); ¹H NMR (399 MHz, Acetone- d_6) δ 9.88 (s, 1H), 7.65 (d, J = 2.3 Hz, 1H), 7.53 – 7.47 (m, 2H), 7.39 – 7.33 (m, 2H), 7.33 – 7.26 (m, 2H), 7.23 (dd, J = 8.6, 2.4 Hz, 1H), 7.07 (d, J = 8.6 Hz, 1H), 6.86 (d, J = 7.9 Hz, 1H), 6.81 (dd, J = 7.8, 7.7 Hz, 1H), 6.17 (s, 1H), 6.10 (dd, J = 7.8, 1.8 Hz, 1H), 5.14 (d, J = 16.0 Hz, 1H), 4.90 (d, J = 16.0 Hz, 1H), 3.92 (s, 3H); ¹³C NMR (100 MHz, Acetone- d_6) δ 171.1 (d, $J_{C-F} = 9.4$ Hz), 170.3 (d, $J_{C-F} = 21.2$ Hz), 157.5, 145.0 (d, $J_{C-F} = 5.2$ Hz), 137.3, 136.0, 133.8 (d, $J_{C-F} = 3.3$ Hz), 129.6, 128.6, 128.3, 126.1, 124.3, 124.1 (d, $J_{C-F} = 2.9$ Hz), 122.3 (d, $J_{C-F} = 18.2$ Hz), 117.5, 114.1 (d, $J_{C-F} = 2.9$ Hz), 112.8 (d, $J_{C-F} = 19.3$ Hz), 112.7, 112.1 (d, $J_{C-F} = 1.4$ Hz), 111.5 (d, $J_{C-F} = 1.6$ Hz), 91.9 (d, $J_{C-F} = 198.3$ Hz), 58.0 (d, $J_{C-F} = 23.6$ Hz), 56.3, 44.8, 25.5; ¹⁹F NMR (376 MHz, Acetone- d_6) δ -162.2; Anal. Calcd. For C₂₇H₁₉FN₄O₃: C, 69.52; H, 4.11; N, 12.01. Found: C, 69.71; H, 4.02; N, 12.22.

2-(5-Chloro-3-fluoro-1-(4-methoxyphenyl)-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile

(16). Compound 16 was obtained as a colorless solid in 91% yield (88 mg, 0.182 mmol) from 2-(2-oxoindolin-3-ylidene)malononitrile (39 mg, 0.2 mmol) and 5-chloro-3-fluoro-1-(4methoxyphenyl)indolin-2-one (58 mg, 0.2 mmol) in the presence of 20 mol% Et₃N in 1:1 ethanol-water (0.5 mL) after 6 hours at 25 °C by following the general procedure described above. $R_f = 0.3$ (hexanes/EtOAc, 1:1); ¹H NMR (399 MHz, DMSO- d_6) δ 11.35 (s, 1H), 7.89 (d, J = 7.8 Hz, 1H), 7.67 (dd, J = 7.9, 7.8 Hz, 1H), 7.48 – 7.35 (m, 4H), 7.21 – 7.14 (m, 2H), 7.08 (d, J = 7.9 Hz, 1H), 6.71 (d, J = 8.6 Hz, 1H), 6.09 (s, 1H), 5.76 (s, 1H), 3.84 (s, 3H); ¹³C NMR (100 MHz, DMSO- d_6) δ 170.6 (d, $J_{C-F} = 9.0$ Hz), 168.2 (d, $J_{C-F} = 21.2$ Hz), 160.1, 144.1 (d, $J_{C-F} = 4.7$ Hz), 143.8, 133.5 (d, $J_{C-F} = 2.8$ Hz), 132.8, 128.6, 127.6 (d, $J_{C-F} = 3.0$ Hz), 126.4 (d, $J_{C-F} = 2.6$ Hz), 125.2 (d, $J_{C-F} = 8.5$ Hz), 124.2, 122.2 (d, $J_{C-F} = 18.5$ Hz), 122.0, 115.7, 115.4, 112.4, 112.3, 111.7 (d, $J_{C-F} = 26.2$ Hz), 111.6, 91.1 (d, $J_{C-F} = 203.0$ Hz), 57.1 (d, $J_{C-F} = 23.4$ Hz), 56.0, 25.3; ¹⁹F NMR (376 MHz, DMSO- d_6) δ -166.4; Anal. Calcd. For C₂₆H₁₆ClFN₄O₃: C, 64.14; H, 3.31; N, 11.51. Found: C, 64.45; H, 3.48; N, 11.57.

2-(1-(4-(Benzyloxy)phenyl)-3-fluoro-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (17). Compound 17 was obtained as a colorless solid in 96% yield (101 mg, 0.192 mmol) from 2-(2oxoindolin-3-ylidene)malononitrile (39 mg, 0.2 mmol) and 1-(4-(benzyloxy)phenyl)-3fluoroindolin-2-one (67 mg, 0.2 mmol) in the presence of 20 mol% Et₃N in 1:1 ethanol-water (0.5 mL) after 6 hours at 25 °C by following the general procedure described above. $R_f = 0.4$ (hexanes/EtOAc, 1:1); ¹H NMR (399 MHz, Acetone- d_6) δ 10.07 (s, 1H), 8.08 (dd, J = 7.7, 1.7Hz, 1H), 7.66 (dd, J = 7.8, 7.7 Hz, 1H), 7.56 – 7.52 (m, 2H), 7.49 – 7.41 (m, 5H), 7.40 – 7.33 (m, 2H), 7.28 – 7.24 (m, 2H), 7.12 (dd, J = 7.8, 1.6 Hz, 1H), 6.84 (dd, J = 7.8, 7.7 Hz, 1H), 6.72 (dd, J = 7.7, 1.7 Hz, 1H), 6.07 (s, 1H), 6.05 (dd, J = 7.8, 1.7 Hz, 1H), 5.23 (s, 2H); ¹³C NMR (100) MHz, Acetone- d_6) δ 171.4 (d, $J_{C-F} = 9.4$ Hz), 169.7 (d, $J_{C-F} = 21.2$ Hz), 160.1, 146.3 (d, $J_{C-F} = 5.0$ Hz), 144.3, 138.0, 133.9 (d, J_{C-F} = 3.0 Hz), 133.0, 129.5, 129.4, 129.3, 128.8, 128.5, 127.5 (d, J_{C-F}) $_{\rm F}$ = 2.7 Hz), 126.9, 126.0, 124.6, 124.2 (d, $J_{\rm C-F}$ = 2.7 Hz), 123.2, 121.8 (d, $J_{\rm C-F}$ = 18.5 Hz), 116.8, 112.7, 112.1 (d, $J_{C-F} = 2.4 \text{ Hz}$), 111.1, 92.1 (d, $J_{C-F} = 201.0 \text{ Hz}$), 70.9, 58.2 (d, $J_{C-F} = 23.9 \text{ Hz}$), 25.3; ¹⁹F NMR (376 MHz, Acetone- d_6) δ -165.8; Anal. Calcd. For C₃₂H₂₁FN₄O₃: C, 72.72; H, 4.00; N, 10.60. Found: C, 72.59; H, 4.17; N, 10.27.

2-(1-Benzhydryl-3-fluoro-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (18). Compound **18** was obtained as a colorless solid in 93% yield (95 mg, 0.186 mmol) from 2-(2-oxoindolin-3-ylidene)malononitrile (39 mg, 0.2 mmol) and 1-benzhydryl-3-fluoroindolin-2-one (63 mg, 0.2 mmol) in the presence of 20 mol% Et₃N in 1:1 ethanol-water (0.5 mL) after 5 hours at 25 °C by following the general procedure described above. $R_f = 0.2$ (hexanes/EtOAc, 8:2); ¹H NMR (399 MHz, Acetone- d_6) δ 10.13 (s, 1H), 8.04 (d, J = 7.7, 1.8 Hz, 1H), 7.66 (dd, J = 7.8, 7.7 Hz, 1H), 7.49 – 7.29 (m, 11H), 7.24 – 7.12 (m, 2H), 6.98 (s, 1H), 6.76 (dd, J = 7.8, 7.7 Hz, 1H), 6.55 (dd, J = 7.7, 1.7 Hz, 1H), 6.11 (s, 1H), 6.00 (dd, J = 7.8, 1.7 Hz, 1H), : ¹³C NMR (100 MHz, Acetone- d_6) δ 171.5 (d, $J_{C-F} = 9.4$ Hz), 170.5 (d, $J_{C-F} = 21.2$ Hz), 144.7 (d, $J_{C-F} = 5.2$ Hz), 144.3, 138.2, 137.6, 133.4 (d, $J_{C-F} = 3.3$ Hz), 133.0, 129.7, 129.5, 129.4, 129.3, 129.0 (d, $J_{C-F} = 14.1$ Hz), 127.5 (d, $J_{C-F} = 2.8$ Hz), 126.0, 124.7, 123.9 (d, $J_{C-F} = 2.8$ Hz), 123.3, 122.7, 122.5, 113.7 (d, $J_{C-F} = 24.1$ Hz), 25.6; ¹⁹F NMR (376 MHz, Acetone- d_6) δ -161.2; Anal. Calcd. For C₃₂H₂₁FN₄O₂: C, 74.99; H, 4.13; N, 10.93. Found: C, 75.23; H, 4.35; N, 10.82.

2-(3-Fluoro-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (19). Compound **19** was obtained as a colorless solid in 98% yield (68 mg, 0.196 mmol) from 2-(2-oxoindolin-3-ylidene)malononitrile (39 mg, 0.2 mmol) and 3-fluoroindolin-2-one (30 mg, 0.2 mmol) in the presence of 10 mol% Et₃N in 0.5 mL of water after 5 hours at 25 °C by following the general

procedure described above. $R_f = 0.2$ (hexanes/EtOAc, 2:8); ¹H NMR (399 MHz, Acetone- d_6) δ 10.10 (s, 1H), 10.01 (s, 1H), 8.03 (dd, J = 7.8, 1.8 Hz, 1H), 7.64 (dd, J = 7.8, 7.7 Hz, 1H), 7.43 (dd, J = 7.9, 7.7 Hz, 1H), 7.36 (dd, J = 7.9, 7.8 Hz, 1H), 7.11 (dd, J = 7.8, 1.7 Hz, 1H), 6.98 (dd, J = 7.9, 1.7 Hz, 1H), 6.75 (dd, J = 7.9, 7.8 Hz, 1H), 6.09 (s, 1H), 5.94 (dd, J = 7.7, 1.8 Hz, 1H); ¹³C NMR (100 MHz, Acetone- d_6) δ 171.3 (d, $J_{C-F} = 14.0$ Hz), 171.1 (d, $J_{C-F} = 2.8$ Hz), 144.3, 144.0 (d, $J_{C-F} = 5.4$ Hz), 133.8 (d, $J_{C-F} = 3.3$ Hz), 132.8, 127.4 (d, $J_{C-F} = 2.7$ Hz), 126.1, 124.4, 123.4 (d, $J_{C-F} = 3.0$ Hz), 122.7, 122.6, 112.8, 112.2, 112.0 (d, $J_{C-F} = 1.6$ Hz), 111.9, 92.1 (d, $J_{C-F} =$ 198.8 Hz), 57.7 (d, $J_{C-F} = 23.8$ Hz), 25.1; ¹⁹F NMR (376 MHz, Acetone- d_6) δ -163.1; Anal. Calcd. For C₁₉H₁₁FN₄O₂: C, 65.90; H, 3.20; N, 16.18. Found: C, 65.89; H, 3.25; N, 16.24.

Synthesis of 3-(3-fluoro-2-oxo-1-phenylindolin-3-yl)propanenitrile (20). Et₃N (6 μL, 0.04 mmol) was added to a mixture of 3-fluoro-1-phenylindolin-2-one (45 mg, 0.2 mmol) and acrylonitrile (16 μL, 0.24 mmol) in 1:1 ethanol-water (0.5 mL). The resulting mixture was stirred at room temperature for 36 hours. The reaction mixture was extracted with EtOAc, washed with water and dried over Na₂SO₄ and the solvent was removed *in vacuo*. The crude product was purified by flash chromatography on silica gel using hexanes-ethyl acetate (9:1) as mobile phase. Compound **20** was obtained as a colorless solid in 92% yield (52 mg, 0.184 mmol). $R_f = 0.4$ (hexanes/EtOAc, 9:1); ¹H NMR (399 MHz, Chloroform-*d*) δ 7.58 – 7.51 (m, 2H), 7.51 – 7.44 (m, 2H), 7.44 – 7.39 (m, 2H), 7.36 (m, 1H), 7.19 (dd, J = 7.8, 7.7 Hz, 1H), 6.86 (dd, J = 7.7, 1.8 Hz, 1H), 2.84 (m, 1H), 2.78 – 2.64 (m, 2H), 2.44 (m, 1H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 170.8 (d, $J_{C-F} = 21.7$ Hz), 143.9 (d, $J_{C-F} = 5.1$ Hz), 133.1, 131.8 (d, $J_{C-F} = 3.0$ Hz), 129.8, 128.6, 126.2, 124.7 (d, $J_{C-F} = 1.1$ Hz), 124.3 (d, $J_{C-F} = 1.8$ Hz), 124.0 (d, $J_{C-F} = 2.7$ Hz), 118.4, 110.4 (d, $J_{C-F} = 1.3$ Hz), 90.7 (d, $J_{C-F} = 190.2$ Hz), 31.4 (d, $J_{C-F} = 29.2$ Hz), 11.0 (d, $J_{C-F} = 6.9$ Hz); ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -158.9 (dd, J = 22.7, 22.6 Hz); Anal. Calcd. For C₁₇H₁₃FN₂O: C, 72.85; H, 4.67; N, 9.99. Found: C, 72.89; H, 4.85; N, 10.23.

Synthesis of 3-fluoro-1-methyl-3-(3-oxobutyl)indolin-2-one (21). To a solution of *N*-methyl 3-fluorooxindole (33 mg, 0.2 mmol) and methyl vinyl ketone (15.4 mg, 0.22 mmol) in 1:1 ethanolwater (0.5 mL) was added 1,8-diazabicyclo[5.4.0]undec-7-ene (6.1 mg, 0.04 mmol). The mixture was stirred at room temperature for 2 hours. The reaction mixture was extracted with EtOAc, washed with water and dried over Na₂SO₄ and the solvent was removed *in vacuo*. The crude product was purified by flash chromatography on silica gel using hexanes-ethyl acetate (4:1) as mobile phase. Compound **21** was obtained as a colorless solid in 96% yield (45 mg, 0.192 mmol). $R_f = 0.2$ (hexanes/EtOAc, 2:1); ¹H NMR (399 MHz, Chloroform-*d*) δ 7.41 – 7.36 (m, 2H), 7.11 (dd, J = 7.8, 7.7 Hz, 1H), 6.84 (dd, J = 7.8, 1.8 Hz, 1H), 3.19 (s, 3H), 2.79 – 2.58 (m, 2H), 2.45 (m, 1H), 2.31 (m, 1H), 2.13 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 206.6, 172.5 (d, $J_{C-F} = 22.0$ Hz), 143.7 (d, $J_{C-F} = 5.2$ Hz), 131.3 (d, $J_{C-F} = 2.8$ Hz), 126.0 (d, $J_{C-F} = 18.7$ Hz), 124.4, 123.3 (d, $J_{C-F} = 2.6$ Hz), 108.7, 92.1 (d, $J_{C-F} = 187.8$ Hz), 36.2 (d, $J_{C-F} = 4.3$ Hz), 29.9, 29.2 (d, $J_{C-F} = 28.2$ Hz), 26.2; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -160.2 (dd, J = 24.1, 24.1 Hz); Anal. Calcd. For C₁₃H₁₄FNO₂: C, 66.37; H, 6.00; N, 5.95. Found: C, 66.36; H, 6.38; N, 5.92.

Synthesis of diethyl 2-(3-fluoro-2-oxo-1-phenylindolin-3-yl)-2-hydroxymalonate (22). Et₃N (6 μ L, 0.04 mmol) was added to a mixture of 3-fluoro-1-phenylindolin-2-one (45 mg, 0.2 mmol) and diethyl 2-oxomalonate (42 mg, 0.24 mmol) in 1:1 ethanol-water (0.5 mL). The resulting mixture was stirred at room temperature for 24 hours. The reaction mixture was extracted with EtOAc, washed with water and dried over Na₂SO₄ and the solvent was removed *in vacuo*. The crude product was purified by flash chromatography on silica gel using hexanes-ethyl acetate

(4:1) as mobile phase. Compound **22** was obtained as a colorless solid in 97% yield (78 mg, 0.194 mmol). $R_f = 0.3$ (hexanes/EtOAc, 4:1); ¹H NMR (399 MHz, Chloroform-*d*) δ 7.82 (dd, J = 7.7, 1.8 Hz, 1H), 7.57 – 7.49 (m, 2H), 7.47 – 7.39 (m, 3H), 7.33 (dd, J = 7.8, 7.7 Hz, 1H), 7.10 (dd, J = 7.8, 7.7 Hz, 1H), 6.80 (dd, J = 7.7, 1.8 Hz, 1H), 4.47 (s, 1H), 4.45 – 4.32 (m, 2H), 4.32 – 4.18 (m, 2H), 1.33 (t, J = 7.1 Hz, 3H), 1.18 (t, J = 7.1 Hz, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 168.9 (d, $J_{C-F} = 21.0$ Hz), 166.7 (d, $J_{C-F} = 3.8$ Hz), 166.6 (d, $J_{C-F} = 3.2$ Hz), 145.5 (d, $J_{C-F} = 5.1$ Hz), 133.5, 131.8 (d, $J_{C-F} = 3.2$ Hz), 122.8 (d, $J_{C-F} = 17.9$ Hz), 109.8 (d, $J_{C-F} = 1.4$ Hz), 91.7 (d, $J_{C-F} = 199.8$ Hz), 80.4 (d, $J_{C-F} = 25.3$ Hz), 63.3, 63.2, 13.9, 13.8; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -164.4; Anal. Calcd. For C₂₁H₂₀FNO₆: C, 62.84; H, 5.02; N, 3.49. Found: C, 62.73; H, 5.25; N, 3.72.

Synthesis of 3-((dimethylamino)methyl)-3-fluoro-1-phenylindolin-2-one (23). Et₃N (33 µL, 0.24 mmol) was added to a mixture of 3-fluoro-1-phenylindolin-2-one (45 mg, 0.2 mmol) and dimethylmethylideneammonium iodide (44 mg, 0.24 mmol) in 1:1 ethanol-water (0.5 mL). The resulting mixture was stirred at room temperature for 6 hours. The reaction mixture was extracted with EtOAc, washed with water and dried over Na₂SO₄ and the solvent was removed *in vacuo*. The crude product was purified by flash chromatography on silica gel using hexanes-ethyl acetate (4:1) as mobile phase. Compound **23** was obtained as a colorless solid in 99% yield (56 mg, 0.198 mmol). *R*_f = 0.3 (hexanes/EtOAc, 1:1); ¹H NMR (399 MHz, Chloroform-*d*) δ 7.60 (dd, *J* = 7.7, 1.8 Hz, 1H), 7.56 – 7.48 (m, 2H), 7.44 – 7.39 (m, 3H), 7.31 (dd, *J* = 7.8, 7.6 Hz, 1H), 7.14 (dd, *J* = 7.7, 7.7 Hz, 1H), 6.83 (dd, *J* = 7.7, 1.8 Hz, 1H), 3.14 – 3.07 (m, 2H), 2.25 (s, 6H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 172.0 (d, *J*_{C-F} = 20.6 Hz), 144.7 (d, *J*_{C-F} = 5.4 Hz), 133.8, 130.9 (d, *J*_{C-F} = 2.8 Hz), 109.8 (d, *J*_{C-F} = 1.2 Hz), 92.3 (d, *J*_{C-F} = 188.0 Hz), 62.1 (d, *J*_{C-F} = 31.0 Hz), 47.3, 47.2; ¹⁹F NMR (376 MHz, Chloroform-*d*) δ -158.9 (t, *J* = 12.8 Hz); Anal. Calcd. For C₁₇H₁₇FN₂O: C, 71.81; H, 6.03; N, 9.85. Found: C, 71.97; H, 6.17; N, 9.92.

3. NMR spectra

¹H NMR spectrum of 2-(3-fluoro-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (3).

¹³C NMR spectrum of 2-(3-fluoro-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (3).

¹⁹F NMR spectrum of 2-(3-fluoro-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile
(3).

¹H NMR spectrum of 2-(3-fluoro-2,2'-dioxo-1-phenyl-[3,3'-biindolin]-3'-yl)malononitrile (4).

¹³C NMR spectrum of 2-(3-fluoro-2,2'-dioxo-1-phenyl-[3,3'-biindolin]-3'-yl)malononitrile (4).

¹⁹F NMR spectrum of 2-(3-fluoro-2,2'-dioxo-1-phenyl-[3,3'-biindolin]-3'-yl)malononitrile
(4).

19

¹H NMR spectrum of 2-(3-fluoro-1,1'-dimethyl-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (5).

¹⁹F NMR spectrum of 2-(3-fluoro-1,1'-dimethyl-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (5).

¹H NMR spectrum of 2-(1'-benzyl-3-fluoro-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (6).

¹³C NMR spectrum of 2-(1'-benzyl-3-fluoro-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (6).

¹⁹F NMR spectrum of 2-(1'-benzyl-3-fluoro-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (6).

¹H NMR spectrum of 2-(3-fluoro-1,5'-dimethyl-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (7).

¹³C NMR spectrum of 2-(3-fluoro-1,5'-dimethyl-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (7).

¹⁹F NMR spectrum of 2-(3-fluoro-1,5'-dimethyl-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (7).

¹H NMR spectrum of 2-(3-fluoro-1-methyl-2,2'-dioxo-7'-(trifluoromethyl)-[3,3'-biindolin]-3'-yl)malononitrile (8).

¹³C NMR spectrum of 2-(3-fluoro-1-methyl-2,2'-dioxo-7'-(trifluoromethyl)-[3,3'-biindolin]-3'-yl)malononitrile (8).

¹⁹F NMR spectrum of 2-(3-fluoro-1-methyl-2,2'-dioxo-7'-(trifluoromethyl)-[3,3'-biindolin]-3'-yl)malononitrile (8).

-80 -90 f1 (ppm) 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 ¹H NMR spectrum of 2-(3,5'-difluoro-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (9).

¹³C NMR spectrum of 2-(3,5'-difluoro-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (9).

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm) ¹⁹F NMR spectrum of 2-(3,5'-difluoro-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (9).

¹H NMR spectrum of 2-(6'-chloro-3-fluoro-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (10).

11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

¹³C NMR spectrum of 2-(6'-chloro-3-fluoro-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (10).

¹⁹F NMR spectrum of 2-(6'-chloro-3-fluoro-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (10).

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 f1 (ppm)

 ${}^{1}\mathbf{H}$ 2-(3-fluoro-1-methyl-5'-nitro-2,2'-dioxo-[3,3'-biindolin]-3'-NMR spectrum of yl)malononitrile (11).

¹³C 2-(3-fluoro-1-methyl-5'-nitro-2,2'-dioxo-[3,3'-biindolin]-3'-NMR spectrum of yl)malononitrile (11).

¹⁹F NMR spectrum of 2-(3-fluoro-1-methyl-5'-nitro-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (11).

¹H NMR spectrum of 2-(3-fluoro-5'-methoxy-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (12).

¹³C NMR spectrum of 2-(3-fluoro-5'-methoxy-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (12).

¹⁹F NMR spectrum of 2-(3-fluoro-5'-methoxy-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (12).

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

¹H NMR spectrum of 2-(1-benzyl-3-fluoro-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (13).

¹³C NMR spectrum of 2-(1-benzyl-3-fluoro-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (13).

30 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

¹⁹F NMR spectrum of 2-(1-benzyl-3-fluoro-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (13).

¹H NMR spectrum of 2-(1-benzyl-3-fluoro-5'-methyl-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (14).

¹³C NMR spectrum of 2-(1-benzyl-3-fluoro-5'-methyl-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (14).

yl)malononitrile (14).

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

¹H NMR spectrum of 2-(1-benzyl-3-fluoro-5'-methoxy-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (15).

¹³C NMR spectrum of 2-(1-benzyl-3-fluoro-5'-methoxy-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (15).

30 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

¹⁹F NMR spectrum of 2-(1-benzyl-3-fluoro-5'-methoxy-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (15).

¹H NMR spectrum of 2-(5-chloro-3-fluoro-1-(4-methoxyphenyl)-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (16).

2.5 12.0 11.5 11.0 10.5 10.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 -0.5 fl (ppm)

¹³C NMR spectrum of 2-(5-chloro-3-fluoro-1-(4-methoxyphenyl)-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (16).

¹⁹F NMR spectrum of 2-(5-chloro-3-fluoro-1-(4-methoxyphenyl)-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (16).

¹H NMR spectrum of 2-(1-(4-(benzyloxy)phenyl)-3-fluoro-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (17).

¹³C NMR spectrum of 2-(1-(4-(benzyloxy)phenyl)-3-fluoro-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (17).

30 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 fl (ppm)

¹⁹F NMR spectrum of 2-(1-(4-(benzyloxy)phenyl)-3-fluoro-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (17).

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm) ¹H NMR spectrum of 2-(1-benzhydryl-3-fluoro-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (18).

¹³C NMR spectrum of 2-(1-benzhydryl-3-fluoro-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (18).

¹⁹F NMR spectrum of 2-(1-benzhydryl-3-fluoro-2,2'-dioxo-[3,3'-biindolin]-3'yl)malononitrile (18).

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

¹H NMR spectrum of 2-(3-fluoro-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (19).

¹³C NMR spectrum of 2-(3-fluoro-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (19).

140 130 120 110 f1 (ppm) 30 220 210 200 190 ò

¹⁹F NMR spectrum of 2-(3-fluoro-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (19).

¹H NMR spectrum of 3-(3-fluoro-2-oxo-1-phenylindolin-3-yl)propanenitrile (20).

¹³C NMR spectrum of 3-(3-fluoro-2-oxo-1-phenylindolin-3-yl)propanenitrile (20).

¹⁹F NMR spectrum of 3-(3-fluoro-2-oxo-1-phenylindolin-3-yl)propanenitrile (20).

¹H NMR spectrum of 3-fluoro-1-methyl-3-(3-oxobutyl)indolin-2-one (21).

¹³C NMR spectrum of 3-fluoro-1-methyl-3-(3-oxobutyl)indolin-2-one (21).

¹⁹F NMR spectrum of 3-fluoro-1-methyl-3-(3-oxobutyl)indolin-2-one (21).

¹H NMR spectrum of diethyl 2-(3-fluoro-2-oxo-1-phenylindolin-3-yl)-2-hydroxymalonate (22).

¹³C NMR spectrum of diethyl 2-(3-fluoro-2-oxo-1-phenylindolin-3-yl)-2-hydroxymalonate (22).

¹⁹F NMR spectrum of diethyl 2-(3-fluoro-2-oxo-1-phenylindolin-3-yl)-2-hydroxymalonate (22).

¹H NMR spectrum of 3-((dimethylamino)methyl)-3-fluoro-1-phenylindolin-2-one (23).

¹³C NMR spectrum of 3-((dimethylamino)methyl)-3-fluoro-1-phenylindolin-2-one (23).

¹⁹F NMR spectrum of 3-((dimethylamino)methyl)-3-fluoro-1-phenylindolin-2-one (23).

30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 fl (ppm)

4. Crystallographic data

2-(3-Fluoro-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (3).

A single crystal was obtained by slow evaporation of a solution containing the chiral compound in a mixture of ethyl acetate and hexanes (20% EtOAc in hexanes). Single crystal X-ray analysis was performed at 100 K using a Siemens platform diffractometer with graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). Data were integrated and corrected using the Apex 2 program. The structures were solved by direct methods and refined with full-matrix least-square analysis using SHELX-97-2 software. Non-hydrogen atoms were refined with anisotropic displacement parameter. Crystal data: C₂₀H₁₃FN₄O₂, M = 360.34, colorless block, 0.18 x 0.08 x 0.06 mm³, monoclinic, space group $P2_1/n$, a = 8.84491(10), b = 16.961(2), c = 12.4315(15) Å, V =1736.1(4) Å³, Z = 4.

2-(3-Fluoro-2,2'-dioxo-1-phenyl-[3,3'-biindolin]-3'-yl)malononitrile (4).

A single crystal was obtained by slow evaporation of a solution containing the chiral compound in a mixture of ethyl acetate and hexanes (20% EtOAc in hexanes). Single crystal X-ray analysis was performed at 100 K using a Siemens platform diffractometer with graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). Data were integrated and corrected using the Apex 2 program. The structures were solved by direct methods and refined with full-matrix least-square analysis using SHELX-97-2 software. Non-hydrogen atoms were refined with anisotropic displacement parameter. Crystal data: C₂₅H₁₅FN₄O₂, M = 422.41, colorless block 0.25 x 0.16 x 0.10 mm³, triclinic, space group *P-1*, a = 8.875(6), b = 10.2759(7), c = 12.1117(9) Å, V = 1010.93(12) Å³, Z = 2.

2-(3-Fluoro-1,1'-dimethyl-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (5).

A single crystal was obtained by slow evaporation of a solution containing the chiral compound in a mixture of ethyl acetate and hexanes (10% EtOAc in hexanes). Single crystal X-ray analysis was performed at 100 K using a Siemens platform diffractometer with graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). Data were integrated and corrected using the Apex 2 program. The structures were solved by direct methods and refined with full-matrix least-square analysis using SHELX-97-2 software. Non-hydrogen atoms were refined with anisotropic displacement parameter. Crystal data: C₂₁H₁₅FN₄O₂, M = 374.37, colorless plate, 0.21 x 0.10 x 0.08 mm³, monoclinic, space group $P2_1/n$, a = 9.9397(6), b = 14.1798(9), c = 12.6336(8) Å, V =1778.90(19) Å³, Z = 4.

2-(1'-Benzyl-3-fluoro-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (6).

A single crystal was obtained by slow evaporation of a solution containing the chiral compound in a mixture of ethyl acetate and hexanes (5% EtOAc in hexanes). Single crystal X-ray analysis was performed at 100 K using a Siemens platform diffractometer with graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). Data were integrated and corrected using the Apex 2 program. The structures were solved by direct methods and refined with full-matrix least-square analysis using SHELX-97-2 software. Non-hydrogen atoms were refined with anisotropic displacement parameter. Crystal data: C₂₇H₁₉FN₄O₂, M = 450.46, yellow plate, 0.21 x 0.09 x 0.08 mm³, triclinic, space group *P-1*, a = 10.4842(10), b = 13.5061(13), c = 16.4403(16) Å, V = 2163.7(4)Å³, Z = 4.

2-(6'-Chloro-3-fluoro-1-methyl-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (10).

A single crystal was obtained by slow evaporation of a solution containing the chiral compound in a mixture of ethyl acetate and hexanes (25% EtOAc in hexanes). Single crystal X-ray analysis was performed at 100 K using a Siemens platform diffractometer with graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). Data were integrated and corrected using the Apex 2 program. The structures were solved by direct methods and refined with full-matrix least-square analysis using SHELX-97-2 software. Non-hydrogen atoms were refined with anisotropic displacement parameter. Crystal data: C₂₀H₁₂ClFN₄O₂, M = 394.78, colorless block, 0.32 x 0.16 x 0.10 mm³, monoclinic, space group C2/c, a = 18.2744(11), b = 11.9114(7), c = 19.1146(16) Å, V = 3697.7(4) Å³, Z = 8.

2-(1-Benzhydryl-3-fluoro-2,2'-dioxo-[3,3'-biindolin]-3'-yl)malononitrile (18).

A single crystal was obtained by slow evaporation of a solution containing the chiral compound in a mixture of ethyl acetate and hexanes (20% EtOAc in hexanes). Single crystal X-ray analysis was performed at 100 K using a Siemens platform diffractometer with graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). Data were integrated and corrected using the Apex 2 program. The structures were solved by direct methods and refined with full-matrix least-square analysis using SHELX-97-2 software. Non-hydrogen atoms were refined with anisotropic displacement parameter. Crystal data: C₃₂H₂₁FN₄O₂, M = 512.53, colorless block, 0.24 x 0.18 x 0.10 mm³, monoclinic, space group C2/c, a = 22.2092(19), b = 11.6447(10), c = 19.7358(17) Å, V = 5013.6(7) Å³, Z = 8.

3-((Dimethylamino)methyl)-3-fluoro-1-phenylindolin-2-one (23).

A single crystal was obtained by slow evaporation of a solution containing the chiral compound in a mixture of ethyl acetate and hexanes (20% EtOAc in hexanes). Single crystal X-ray analysis was performed at 100 K using a Siemens platform diffractometer with graphite monochromated Mo-K α radiation ($\lambda = 0.71073$ Å). Data were integrated and corrected using the Apex 2 program. The structures were solved by direct methods and refined with full-matrix least-square analysis using SHELX-97-2 software. Non-hydrogen atoms were refined with anisotropic displacement parameter. Crystal data: C₁₇H₁₇FN₂O, M = 284.33, colorless block, 0.244 x 0.173 x 0.114 mm³, orthorhombic, space group $P2_12_12_1$, a = 7.3042(4), b = 10.8341(5), c = 18.1590(9) Å, V =1437.00(13) Å³, Z = 4.

5. References

- (a) G. Li , X. Feng, H. Du. Org. Biomol. Chem. 2015, 13, 5826-5830; (b) T. He, Q. Zeng,
 D. Yang, Y. He, Z. Guan. RSC Adv. 2015, 5, 37843-37852; (c) A. Dandia , H. Taneja , R.
 Gupta, S. Paul. Synth. Commun. 1999, 29, 2323-2335.
- (a) K. Balaraman, C. Wolf. Angew. Chem., Int. Ed. 2017, 56,1390 –1395; (b) C. Xie, L. Zhang, W. Sha, V. A. Soloshonok, J. Han, Y. Pan. Org. Lett. 2016, 18, 3270-3273; (c) T. Wang, D. L. Hoona, Y. Lu, Chem. Commun. 2015, 51, 10186-10189; (d) X. Dou, Y. Lu, Org. Biomol. Chem. 2013, 11, 5217-5221.