
Building and testing the random forest model 
 
Choosing model building parameters 

 
 
To select model training parameters, we used OOB error rate to evaluate a range of values. 
Error rate appeared to stabilise at 10,000 trees, so this value was used for ntree. We tried 
values of 1, n/10, n/5, n/3, n/2 and n for mtry. Error stabilised relatively early. We decided 
to use mtry=n/10 as it would reduce the chances of sampling correlated predictors.  
 
  



Permutation testing for over-fitting 
 
With many parameters and few samples, overfitting to random fluctuations in the data may 
be a concern. To address the risk of this given our dataset, we produced 1,000 phenotype 
permuted datasets and re-ran our model building pipeline (5 rounds of feature selection, 
ntree=10,000, mtry=n/10). We measured the accuracy of each model built using this 
approach, and compared the performance of our real model with the models built on 
randomised phenotypes. We found that the accuracy of our model after five iterations of 
feature selection (OOB accuracy = 1) was exceptional compared to models trained on 
permuted phenotypes, with only 5 permutations (P=0.005) attaining perfect OOB accuracy.  
 

  



Comparison of signal in real vs. randomized data 
 
To test for signal in the bitscore pattern found in real data (in other words, are there 
genuinely more bitscore patterns that are consistently different between our pathovars 
than by chance?), we permuted the values of each gene separately, then ran a single model-
building step and looked at the distribution of variable importances, as measured by mean 
decrease in accuracy.  
 
Across ten different permutations of the variable values, the real variable importances (VI), 
as measured by mean decrease in accuracy, were consistently higher overall than those for 
the permuted variables (Mann-Whitney U test P<2.2E-16). In addition, twice as many 
permuted values as real values were given negative VI values (~1000 vs ~500), a strong 
indicator that the variable has no relationship with phenotype. A representative distribution 
of real (red) and permuted (white) feature importances are shown below.  
 

 
  



Testing for correlation bias 
 
In order to test whether our final gene set was affected by correlation bias (i.e. whether 
informative genes were excluded because they were correlated), we applied a number of 
clustering approaches following the example of Tolosi and Lengauer 
“Classification with correlated features: unreliability of feature ranking and solutions”, 
Bioinformatics 2011, then re-ran the same model building pipeline to check the overlap in 
our gene sets.  
 
Overview of approach 
 
As a general approach, after choosing a method of normalising the data, we computed a 
distance matrix and performed hierarchical clustering. We re-built the model using 
hierarchical clustering of bitscore values (using both a scaled and centered normalisation 
procedure and a rank-based procedure to account for outliers in our bitscore distributions). 
We clustered using either Euclidean distance (for scaled variables) or 1-Spearman 
correlation coefficient (for ranked), and took the centroid of each cluster as input variables 
for our model. We used either Gini index or mean decrease in accuracy as measures of 
variable importance to select variables at each iteration of the model-building process.  
 
Following hierarchical clustering, we broke the gene sets into 500, 1000, 2000, 2500, 3000, 
3500, 4000, 5000 and 6348 (one for each gene) clusters. We then ran model building using 
the same parameters as the original model (ntree=10000, mtry=n/10) for 6 iterations (the 
original model only took 5 iterations to reach 100% accuracy, but some of these approaches 
took longer). The first round of feature selection removes any clusters with VI=0, then 
subsequent rounds discard the lowest ranked 50% of clusters. Each condition was run twice, 
to account for variability in outcome from random sampling.  
 
 
Model types 
 
We have run each normalisation, distance method, and method of measuring VI through 
the iterative model building process for 6 iterations (one more than the original model). The 
following plots show: 

1. out-of-bag accuracy 
2. overlap with the original gene set 
3. overall numbers of genes in the original model, the new model and both 

to compare the approaches.  
Plots are named according to the pattern: 
normalisationMethod_distanceMeasure_variableImportanceMeasure 
 
  



Accuracy of the models 

 

 
  



Inclusion of the original 196 genes in the different types of model 
 

 

 
 
  



Looking at overall gene sets included in the model 
Note: iteration 1 is not shown, since all genes are included in all models. This truncation of 
the y-axis was done in order to better view the smaller values. In general, all methods 
roughly recapitulate our initial gene set as they approach perfect accuracy, and become a 
subset of our gene set on further iteration. 
 

 

 
 
  



Comments 
 
Out-of-bag accuracy seems to peak around 3-5000 clusters, depending on the metric used 
to cluster and choose genes. In this range, with models that have reached 100% accuracy, 
there are few or no additional genes selected by these methods that weren’t included in our 
original gene set, indicating that our feature selection has not resulted in exclusion of 
informative genes due to correlation bias. We also observed that over later iterations, genes 
not included in our core set are discarded preferentially to our core gene set. As the number 
of clusters approaches the number of genes, the correlation between gene and cluster 
variable importance improves, to the point where there are no notable outliers over 3000 
clusters for rank-based clustering and over 3500 for clustering of scaled, centred values.  
 

 
Ranked Spearman Gini, 3500 clusters  Scaled Euclidean Gini, 4000 clusters 
 

 
Ranked Spearman MDA, 3500 clusters  Scaled Euclidean MDA, 4000 clusters 
  



Random forest importance compared to association testing 
 

 
 
We expect there to be a strong relationship between simple association testing metrics and 
random forest variable importance (VI), but wanted to explore this more closely to 
determine whether there was any additional value in using a more complex approach. 
Correlation between VI and log(Mann Whitney U P-value) was high (Pearson correlation 
coefficient = -0.57). Note that Mann Whitney U P-values have not been corrected for 
multiple testing, as this would lead to all P-values approaching ~1, making comparison to VI 
irrelevant. There were some discrepancies between the two measure, such as that 
highlighted by the red and blue genes, where Mann Whitney U P-value was similar for a 
collection of genes, but the distribution of bitscores differed in how useful it was in 
separating invasive and non-invasive strains when taken in combination with other genes.  
 
In the example case, the red gene appears to consistently accumulate more deleterious 
mutations than those in gastrointestinal serovars, whereas in the blue gene, there appear to 
be two sequence variants of the protein, one slightly more common in gastrointestinal 
serovars than the other.  
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