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Hyperparameters

We provide values of important hyperparameters found during tuning in Supplementary Tables 1-4.

partition activation dropout learning rate

0 PReLU 0.3005 4.2975 × 10−3

1 PReLU 0.4473 2.9914 × 10−3

2 PReLU 0.2244 4.0492 × 10−5

3 ReLU 0.4181 5.6991 × 10−4

4 ReLU 0.3522 1.3626 × 10−3

5 PReLU 0.2731 3.4576 × 10−5

6 PReLU 0.3195 4.6805 × 10−4

7 ReLU 0.2535 5.4500 × 10−3

8 ReLU 0.3513 1.6556 × 10−3

9 PReLU 0.4850 5.6144 × 10−4

Table A: Final hyperparameters for RIDDLE. Neural network hyperparameters were determined by
randomized grid searches over each k-fold partition. The final hyperparameters for models trained on the
full dataset are shown here.
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partition C (regularization strength)
0 0.1075
1 0.1065
2 0.0799
3 0.1036
4 0.0689
5 0.1174
6 0.0872
7 0.0817
8 0.0829
9 0.0803

Table B: Final hyperparameters for logistic regression. Hyperparameters for logistic regression were
determined by randomized grid searches over each k-fold partition. The final hyperparameter values for
models trained on the full dataset are shown here.

partition max # of features max depth trees
0 sqrt(15122) 90 215
1 sqrt(15122) 69 235
2 sqrt(15122) 102 191
3 sqrt(15122) 121 61
4 sqrt(15122) 59 148
5 sqrt(15122) 93 126
6 sqrt(15122) 80 124
7 sqrt(15122) 76 65
8 sqrt(15122) 126 71
9 sqrt(15122) 113 99

Table C: Final hyperparameters for random forest. Hyperparameters for random forest classifiers
were determined by randomized grid searches over each k-fold partition. The final hyperparameter values
for models trained on the full dataset are shown here.

partition max depth trees learning rate
0 18 67 0.1267
1 9 149 0.1101
2 7 218 0.0825
3 4 166 0.3848
4 5 129 0.1871
5 8 148 0.0695
6 3 227 0.2095
7 5 245 0.0839
8 9 95 0.1856
9 17 100 0.0954

Table D: Final hyperparameters for gradient boosted decision trees. Hyperparameters for gradient
boosted decision trees were determined by randomized grid searches over each k-fold partition. The final
hyperparameter values for models trained on the full dataset are shown here.
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Additional experiments

We show the results from additional experiments involving a smaller subset of the dataset (see Table E) and
various feature selection techniques (see Tables F-G).

Method Accuracy Loss Precision Recall F1 Macro-average ROC

RIDDLE 0.652 0.900 0.641 0.652 0.634 0.813
logistic regression 0.636 0.949 0.628 0.636 0.600 0.795
random forest 0.625 0.974 0.629 0.625 0.576 0.782
GBDT 0.629 0.961 0.627 0.629 0.586 0.785
SVM, linear kernel 0.631 0.967 0.629 0.631 0.590 0.791
SVM, polynomial kernel 0.626 0.974 0.616 0.626 0.584 0.838
SVM, RBF kernel 0.643 0.932 0.633 0.643 0.613 0.851

Table E: Evaluation of RIDDLE and baseline methods on 10% of the full dataset. All values
are averaged over ten k-fold cross-validation experiments involving a 165k sample subset of the full dataset.
In addition, the precision, recall and ROC scores were averaged across classes, weighted by the number of
samples in each class.

Method Accuracy Loss Precision Recall F1 Macro-average ROC

RIDDLE 0.648 0.902 0.655 0.648 0.618 0.814
logistic regression 0.636 0.949 0.629 0.636 0.598 0.794
random forest 0.634 0.957 0.638 0.634 0.589 0.792
GBDT 0.633 0.953 0.632 0.633 0.590 0.788
SVM, linear kernel N/A N/A N/A N/A N/A N/A
SVM, polynomial kernel N/A N/A N/A N/A N/A N/A
SVM, RBF kernel N/A N/A N/A N/A N/A N/A

Table F: Evaluation of baseline methods trained on the 1000 most frequent features. All values
are averaged over ten k-fold cross-validation experiments where only the 1000 most frequent features were
used for modeling. In addition, the precision, recall and ROC scores were averaged across classes, weighted
by the number of samples in each class.

Method Accuracy Loss Precision Recall F1 Macro-average ROC

RIDDLE 0.654 0.896 0.652 0.654 0.629 0.812
logistic regression 0.636 0.954 0.631 0.636 0.598 0.790
random forest 0.636 0.955 0.639 0.636 0.593 0.790
GBDT 0.634 0.953 0.634 0.634 0.592 0.787
SVM, linear kernel N/A N/A N/A N/A N/A N/A
SVM, polynomial kernel N/A N/A N/A N/A N/A N/A
SVM, RBF kernel N/A N/A N/A N/A N/A N/A

Table G: Evaluation of baseline methods trained on the 1000 features with highest chi-squared
statistics. All values are averaged over ten k-fold cross-validation experiments where only the 1000 features
with highest chi-squared statistics were used for modeling. In addition, the precision, recall and ROC scores
were averaged across classes, weighted by the number of samples in each class.

We show the results from using RIDDLE with and without embeddings (Supplementary Table H).
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Method Accuracy Loss Precision Recall F1 Macro-average ROC

RIDDLE 0.652 0.900 0.641 0.652 0.634 0.813
RIDDLE + embeddings 0.578 1.047 0.584 0.578 0.498 0.810

Table H: Evaluation of RIDDLE without (default) and with pre-trained embeddings on 10%
of the full dataset. We evaluated RIDDLE without (default) and with pre-trained embeddings on a 165K
sample subset of the full dataset. To use the embeddings with RIDDLE, we mapped ICD9 code features
to 605 20-dimension embeddings of bagged ICD9 codes. These embeddings were pre-trained on a large
insurance claims dataset. We started with arranging ICD9 codes in each patient history chronologically. In
total, we used a collection of 122 million unique patient histories represented in the IBM Watson MarketScan
database. These ICD9 codes then were mapped to a smaller set of 605 unique groups (such as asthma or
schizophrenia, with each disease group containing multiple ICD9 codes). We then removed repeats of codes
in patient histories: for example, no consecutive two asthma codes were allowed. The resulting patient-
specific disease sequences were treated as documents, where each patient corresponds to a document, and
each disease to a word. We used gensim Python module to create the embeddings (context size was 10,
minimum count set to 5, and α was changed from 0.001 to 0.0001 in 2× 5 iterations) (1). These embeddings
were flattened and concatenated to other features not included in the pre-trained embeddings (e.g., age,
gender, rare ICD9 codes); the resultant vector was fed as input to the neural network. All table values are
averaged over ten k-fold cross-validation experiments. In addition, the precision, recall and ROC scores were
averaged across classes, weighted by the number of samples in each class.
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