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Detailed Description of Accelerated Molecular Dynamics (AMD) 

Accelerated Molecular Dynamics (AMD) (1, 2) is an extended biased potential molecular dynamics 

approach that allows for the efficient study of bio-molecular systems up to time-scales several orders of 

magnitude greater than those accessible using standard classical molecular dynamics (CMD) methods, 

while still maintaining a fully atomistic representation of the system. Compared to many other 

approaches, AMD affords efficient enhanced conformation space sampling without any a priori 

understanding of the underlying free energy surface, not does it require the specific prior definition of a 

reaction coordinate or a set of collective variables.  

In the standard AMD approach, a reference, or 'boost energy', Eb, is defined, which lies above the 

minimum of the potential energy surface (PES). At each step in the simulation, if the potential energy 

V(r), lies below this boost energy, a continuous, non-negative bias potential, ∆V(r), is added to the actual 

potential. If the potential energy is greater than the boost energy, it remains unaltered. The extent to 

which the potential energy surface is modified depends on the energy difference between the boost 

energy and the actual potential. This essentially raises the low energy valleys on the potential energy 

landscape, decreasing the magnitude of the energy barriers and thereby accelerating the exchange 

between low energy conformational states, while still maintaining the essential details of the potential 

energy landscape. Explicitly, the modified potential, V*(r), on which the system evolves during an AMD 

simulation is given by [1]:  

𝑉𝑉∗(𝑟𝑟) = 𝑉𝑉(𝑟𝑟)      ;𝑉𝑉(𝑟𝑟) ≥ 𝐸𝐸𝑏𝑏 

 

𝑉𝑉∗(𝑟𝑟) = 𝑉𝑉(𝑟𝑟) + ∆𝑉𝑉(𝑟𝑟)      ;𝑉𝑉(𝑟𝑟) <  𝐸𝐸𝑏𝑏 

and the bias potential, ∆V(r), is defined as: 

∆𝑉𝑉(𝑟𝑟) =  
(𝐸𝐸𝑏𝑏 − 𝑉𝑉(𝑟𝑟))2

𝐸𝐸𝑏𝑏 − 𝑉𝑉(𝑟𝑟) +  𝛼𝛼
 

The extent of acceleration (i.e how aggressively one samples the conformational space) is determined 



by the choice of the boost energy, Eb, and the acceleration parameter, α. Conformational space 

sampling can be enhanced by either increasing the boost energy, or decreasing α. Fig. S1 shows a 

schematic representation of the AMD method for a 1dimensional potential energy surface, where the 

boost energy is kept constant and the modified potential is depicted for a variety of acceleration 

parameters, α. During the course of the AMD simulation, if the potential energy surface is modified, the 

forces on the atoms are re-calculated for the modified potential.  

 In the present work, we implemented a “dual boost” AMD approach (3), in which two acceleration 

potentials are simultaneously applied to the system: The first acceleration potential is applied to the 

torsion terms only, and a second, weaker acceleration is applied across the the entire potential. For both 

WT thrombin and the W215 mutant, the specific torsional acceleration parameters were defined as 

[Eb(dih) - <V0(dih)>] = [4 kcal/mol * No residues], and the acceleration parameter, α(dih), was set to 

one-fifth of this value. The total background acceleration parameters were fixed at [Eb(tot) - <V0(tot)>] 

= α(tot) = [0.16 kcal/mol * No. atoms in simulation cell]. The average minimum energy potentials, 

<V0(dih)> and <V0(tot)>, for each system were obtained from 20ns CMD simulations performed as part 

of the initial equilibration procedure. 

Fig. 1: Schematic representation 

of the AMD method. The 

hypothetical true potential energy 

function, V(r), is shown by the 

black line. For a fixed boost 

energy, Eb=12.0 kcal/mol (dashed 

violet line), a series of modified 

potential energy functions, V*(r) 

are depicted for a variety of 

acceleration parameters [α = 12.0 

kcal/mol (blue), 8 kcal/mol (green), 

5 kcal/mol (orange), and 1kcal/mol 

(red)]. A similar raising and 

flattening of the potential energy 

surface can be achieved by 

holding the acceleration parameter, α fixed, and increasing the boost energy.  



Obtaining Accurate Free Energy Statistics 

The application of the bias potential destabilizes low energy regions of the conformational space on the 

potential energy landscape and therefore the population statistics on the modified potential are 

inherently incorrect. However, as it is known at each step in the simulation exactly how much the system 

is destabilized, one can, in principle, retrieve the correct population statistics by re-weighting each point 

in the configuration space on the modified potential by the strength of the Boltzmann factor of the bias 

energy, exp[β∆V(r(ti))], at that particular point. Despite the fact that this Boltzmann canonical re-

weighting factor is theoretically, thermodynamically exact, the statistical noise error prohibits the 

practical acquisition of accurate free energy statistics using this simple re-weighting procedure: The 

statistical noise error results from the presence of small local molecular distortions directly induced by 

the application of the bias potential. Although the energy variation for each individual term is very small, 

when summed over all degrees of freedom (torsional and total in “dual boost” AMD), the resulting 

fluctuation in the total energies can become comparable to, or larger than the underlying variation in the 

true free energy surface, and the exponential free energy re-weighting protocol results in the fact that 

only a very small fraction (<5%) of the molecular conformers sampled across the entire AMD trajectory 

contribute to the population statistics.   

 A simple, but robust approach to obtaining accurate free energy statistics is the bias potential 

block averaging method (2). In this procedure, the bias potential obtained at each step in the AMD 

trajectory is averaged over a given number of steps, or 'a block', and the free energy statistics for each 

member (conformer) in that block are obtained by exponentially re-weighting the block-averaged bias 

potentials. The correct free energy-weighted relative population, pj, of each block, j, is given as: 

𝑝𝑝𝑗𝑗 = 𝑝𝑝𝑗𝑗∗
< 𝑒𝑒𝛽𝛽∆𝑉𝑉 >

∑ < 𝑒𝑒𝛽𝛽∆𝑉𝑉 >𝑀𝑀
𝑗𝑗=1

      ; 𝑗𝑗 = 1,𝑀𝑀 

The size of the block (ie. the number of MD-steps, or conformers over which the averaging procedure 

is performed) is determined by calculating the auto-correlation function of the bias potential, 

<∆V(0)∙∆V(t)>. This correlation function can be fit to a multi-exponential decay: The fast initial time 

exponent is associated with the temporal oscillation of the statistical noise function, whilst the slower 



time exponents refer to the underlying average temporal variations in the bias potential as the system 

evolves from one conformational state to the next on the modified potential. The most suitable 

integration period over which the block average is performed lies between the first and second 

exponents. Following the work of Miao et al (4), the exponential averages, <exp[β∆V]> in the above 

block-averaging protocol are approximated using a cumulant expansion to the second order: 

< 𝑒𝑒𝛽𝛽∆𝑉𝑉 > = 𝑒𝑒𝑒𝑒𝑝𝑝 ��
𝛽𝛽𝑘𝑘

𝑘𝑘!

2

𝑘𝑘=1

𝐶𝐶𝑘𝑘� 

 Where 

𝐶𝐶1 =  〈∆𝑉𝑉〉 

𝐶𝐶2 = 〈∆𝑉𝑉2〉 −  〈∆𝑉𝑉〉2 

 

Estimating Conformational Space Sampling Time-Scales in AMD Simulations 

In the standard AMD approach, the system evolves on a modified potential at an accelerated rate with 

a non-linear time-scale of ∆t*, given as (1):  

∆𝑡𝑡𝑖𝑖∗ =  ∆𝑡𝑡 ∗  𝑒𝑒𝛽𝛽∆𝑉𝑉[𝑟𝑟(𝑡𝑡𝑖𝑖)] 

where ∆t is the actual time-step of the simulation on the unmodified potential. In principle therefore, it is 

also possible to estimate the time-scale of events during an AMD trajectory as: 

𝑡𝑡∗ =  �∆𝑡𝑡𝑖𝑖∗ = 𝑡𝑡〈𝑒𝑒𝛽𝛽∆𝑉𝑉[𝑟𝑟(𝑡𝑡𝑖𝑖)]〉
𝑁𝑁

1

 

where N is the total number of molecular dynamics steps performed over the whole simulation, and 

<exp[β∆V(r(ti))]> is the so-called “boost factor”. However, according to Transition State Theory, the 

exchange rate between two states depends on both the magnitude of the energy barrier on the free 

energy surface and the transmission coefficient. Following the well-known Kramers' theory, the 

transmission coefficient is a function of the curvature of the free energy surface on approaching the 

transition state and the internal friction coefficient. The primary source of error in estimating observed 

transition rates (and therefore also estimating the effective time-scale of an AMD simulation) arises from 



the fact that the application of the bias potential perturbs both these parameters and therefore the 

transmission coefficient is ill-defined. The question therefore remains: At the acceleration level used in 

this work, how can one estimate the effective time-scale of the AMD simulations?  

 During the early stages of the development of AMD, comparative analysis of successful AMD 

studies applied to a variety of systems (many of which were performed by P. Markwick, one of the 

authors of this paper) revealed that for torsional acceleration, the optimal value of  [Eb(dih) - <V0(dih)>] 

is equal to 3-5 kcal/mol times the number of solute residues in the system, and the associated 

acceleration parameter, α(dih), should be set to one fifth of this value (2). These acceleration parameters 

afford efficient conformational space sampling, without generating instabilities in the trajectory and 

avoiding a random walk, which occurs when the modified potential surface becomes iso-energetic, 

causing the system to spend a large proportion of time sampling energetically unfavourable regions of 

the PES. Similarly, for the background, total acceleration, applied in “dual boost” AMD simulations the 

optimal acceleration parameters are [Eb(tot) - <V0(tot)>] = α(tot) = [0.16 kcal/mol * No. atoms in 

simulation cell] (3).These are the AMD parameters that have been employed in this work, and that are 

presently used across the entire AMD community. Recently, two independent groups have compared 

AMD simulations across a variety of proteins to available long, brute-force CMD simulations (5, 6). In all 

cases, it was found that the “optimal” acceleration parameters defined above afforded an effective speed 

up in conformational space sampling of 3-4 orders of magnitude. Specifically, both independent studies 

found that AMD simulations performed over the number of MD steps equivalent to a CMD simulation of 

100s of nanoseconds, provided configurational space sampling, and torsional entropy values (a 

thermodynamic measure of the extent of torsional fluctuation) ostensibly identical to that observed in 1-

ms brute-force CMD simulations for the same protein systems. This observation of an effective speed 

up of 3-4 orders of magnitude is in very good agreement with an earlier AMD/NMR study of WT thrombin 

(7). In that study, we showed that AMD simulations of WT thrombin performed over the equivalent of 

10s of nanoseconds of CMD, using the “optimal” acceleration parameters described above, afforded an 

excellent description of experimental NMR-based Residual Dipolar Coupling (RDC) data which reports 

on an ensemble and time average in the microsecond regime [10s-100s of microseconds], up to the 



chemical shift coalescence limit [1-ms]. These results concurred with previous studies on ubiquitin in 

which it was shown that AMD simulations using the same “optimal” acceleration parameters performed 

over the equivalent of 10s of nanoseconds of CMD accurately predicted scalar J-couplings and chemical 

shifts, both of which, like RDCs, report on an ensemble and time-average up to the chemical shift 

coalescence limit (2).     

 In the present work, for each system (WT thrombin and the W215A mutant thrombin) two AMD 

simulations were performed for 750,000,000 steps with a (real time) time-step of 2-fs. This is 

computationally equivalent to performing a 1.5μs CMD simulation. Assuming an effective speed up in 

the rate of conformational space-sampling by 3 to 4 orders of magnitude due to the application of the 

bias potential, we anticipate that the configurational space sampling afforded in each of the AMD 

simulations is associated with dynamics occurring on time-scales of milliseconds to tens of milliseconds, 

thereby identifying slow motions, including rare local unfolding/refolding events which can be 

experimentally probed by HDXMS in the fast limit. 
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Figure S1

Supplemental Figure 1: HDX-MS coverage map of all peptides analyzed for WT 
thrombin, W215A, W215I, F227A, and F227V. All white peptides were identified for all 
enzymes tested. Black peptides were identified in WT and W215A datasets only. 
Orange peptides were Identified in WT, F227A, and F227V datasets only. Blue peptides 
were identified in WT, F227A, and W215A datasets only. Green peptides were 
identified in WT, W215I, and W215A datasets only. Red peptides were identified in the 
F227V dataset only.



Figure S2 pg. 1



Figure S2 pg. 2



Figure S2 pg. 3

Supplemental Figure 2: HDX-MS uptake plots showing deuterium uptake overtime for 
WT thrombin (grey) and W215A (cyan) at 100 mM NaCl, and for WT thrombin (black) 
and W215A (blue)  at 300 mM NaCl. Mutations, if present, are underlined in the 
peptide sequence within the uptake plot. All Experiments were done in triplicate, and 
error are bars shown. 



Figure S3 pg. 1



Figure S3 pg. 2



Supplemental Figure 3: HDX-MS uptake plots showing deuterium uptake overtime for 
WT thrombin (grey), F227A (orange), F227V (red), and W215I (purple) at 100 mM
NaCl. Mutations, if present, are underlined in the peptide sequence within the uptake 
plot. All Experiments were done in triplicate, and error are bars shown. 

Figure S3 pg. 1
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