Genome-wide association study in 176,678 Europeans reveals genetic loci for tanning response to sun exposure

Visconti et al

Supplementary Figures

Supplementary Figure 1. Scatterplot of the first five principal components assessed on the UKBB genomic data. These principal components were added to the association model to control for potential stratification issues. Principal components were computed by the analysis group at the Wellcome Trust Centre for Human Genetics, University of Oxford. Details are provided at the UK Biobank website (<u>http://biobank.ctsu.ox.ac.uk</u>).

Supplementary Figure 2. Quantile-Quantile plot of observed versus expected P values for the 8,351,141 SNPs in the UKBB study. The P values were obtained by logistic regression analysis assuming additive model with sex and the first five principal components from the genotype data as covariates. P values are limited to $5x10^{-324}$ due to the minimum precision allowed by R and the *qqman* package.

Supplementary Figure 3. Quantile-Quantile plot of observed versus expected P values after removing loci previously associated with ease of skin tanning. The P values were obtained by logistic regression analysis assuming additive model with sex and the first five principal components from the genotype data as covariates. The SNPs at the loci harbouring the genes *HERC2/OCA2, IRF4, MC1R, RALY/ASIP, SLC45A2,* and *TYR* were removed, resulting in 8,342,077 SNPs.

Supplementary Figure 4. Regional plot (chr1:66831370-66937516). Reference SNP is reported in blue. The horizontal red line shows the threshold of $P=5x10^{-8}$. LD information was evaluated on the genotype data from the UKBB cohort.

Supplementary Figure 5. Regional plot (chr1:205100663-205245233). Reference SNP is reported in blue. The horizontal red line shows the threshold of $P=5x10^{-8}$. LD information was evaluated on the genotype data from the UKBB cohort.

Supplementary Figure 6. Regional plot (chr3:156491160-156493213). Reference SNP is reported in blue. The horizontal red line shows the threshold of $P=5x10^{-8}$. LD information was evaluated on the genotype data from the UKBB cohort.

Supplementary Figure 7. Regional plot (chr5:33832958-33967955). Reference SNP is reported in blue. The horizontal red line shows the threshold of $P=5x10^{-8}$. LD information was evaluated on the genotype data from the UKBB cohort.

Supplementary Figure 8. Regional plot (chr5:149194485-149231519). Reference SNP is reported in blue. The horizontal red line shows the threshold of $P=5x10^{-8}$. LD information was evaluated on the genotype data from the UKBB cohort.

Supplementary Figure 9. Regional plot (chr6:192181-726042). Reference SNP is reported in blue. The horizontal red line shows the threshold of $P=5x10^{-8}$. LD information was evaluated on the genotype data from the UKBB cohort. P values are limited to $5x10^{-324}$ due to the minimum precision allowed by the *Locuszoom* software.

Supplementary Figure 10. Regional plot (chr7:16924528-17238316). Reference SNP is reported in blue; a further independent signal identified through conditional analysis is reported in violet. The horizontal red line shows the threshold of P=5x10⁻⁸. LD information was evaluated on the genotype data from the UKBB cohort.

Supplementary Figure 11. Regional plot (chr8:116446547-116644121). Reference SNP is reported in blue. The horizontal red line shows the threshold of $P=5x10^{-8}$. LD information was evaluated on the genotype data from the UKBB cohort.

Supplementary Figure 12. Regional plot (chr9:12587153-12773263). Reference SNP is reported in blue. The horizontal red line shows the threshold of $P = 5x10^{-8}$. LD information was evaluated on the genotype data from the UKBB cohort.

Supplementary Figure 13. Regional plot (chr9:16759161-16960741). Reference SNP is reported in blue, a further independent signal identified through conditional analysis is reported in violet. The horizontal red line shows the threshold of $P=5x10^{-8}$. LD information was evaluated on the genotype data from the UKBB cohort.

Supplementary Figure 14. Regional plot (chr10:119533757-119604938). Reference SNP is reported in blue. The horizontal red line shows the threshold of $P=5x10^{-8}$. LD information was evaluated on the genotype data from the UKBB cohort.

Supplementary Figure 15. Regional plot (chr11:68811777-69061635). Reference SNP is reported in blue. The horizontal red line shows the threshold of $P=5x10^{-8}$. LD information was evaluated on the genotype data from the UKBB cohort.

Supplementary Figure 16. Regional plot (chr11:88032224-90233385). Reference SNP is reported in blue. The horizontal red line shows the threshold of $P=5x10^{-8}$. LD information was evaluated on the genotype data from the UKBB cohort.

Supplementary Figure 17. Regional plot (chr13:95153167-95171058). Reference SNP is reported in blue. The horizontal red line shows the threshold of P=5x10⁻⁸. LD information was evaluated on the genotype data from the UKBB cohort.

Supplementary Figure 18. Regional plot (chr13:113532990-113558599). Reference SNP is reported in blue. The horizontal red line shows the threshold of $P=5x10^{-8}$. LD information was evaluated on the genotype data from the UKBB cohort.

Supplementary Figure 19. Regional plot (chr14:92761113-92795912). Reference SNP is reported in blue. The horizontal red line shows the threshold of $P=5x10^{-8}$. LD information was evaluated on the genotype data from the UKBB cohort.

Supplementary Figure 20. Regional plot (chr15:28134352-29314924). Reference SNP is reported in blue, a further independent signal identified through conditional analysis is reported in violet. The horizontal red line shows the threshold of $P=5x10^{-8}$. LD information was evaluated on the genotype data from the UKBB cohort.

Supplementary Figure 21. Regional plot (chr16:88376014-90173553). Reference SNP is reported in blue, further independent signals identified through conditional analysis are reported in violet. The horizontal red line shows the threshold of P=5x10⁻⁸. LD information was evaluated on the genotype data from the UKBB cohort. P values are limited to 5x10⁻³²⁴ due to the minimum precision allowed by the *Locuszoom* software.

Supplementary Figure 22. Regional plot (chr20:30115523-36562529). Reference SNP is reported in blue. The horizontal red line shows the threshold of $P=5x10^{-8}$. LD information was evaluated on the genotype data from the UKBB cohort. P values are limited to $5x10^{-324}$ due to the minimum precision allowed by the *Locuszoom* software.

Supplementary Figure 23. Regional plot (chr22:45594002-45644654). Reference SNP is reported in blue. The horizontal red line shows the threshold of $P=5x10^{-8}$. LD information was evaluated on the genotype data from the UKBB cohort.

Supplementary Figure 25. Manhattan plot of non-melanoma skin cancer results in UKBB, second release. The P values were obtained by logistic regression analysis assuming an additive genetic model with age, sex, genotyping array, and the first five principal components of the genotype data as covariates. The x-axis shows the genomic coordinates (GRCh37.p13) of the tested SNPs and the y-axis shows the $-\log_{10} P$ value of their association. The horizontal red line indicates the threshold for genome-wide significance at 5.0×10^{-8} , the horizontal blue line indicates a relaxed threshold of 1.0×10^{-5}

Supplementary Tables

Supplementary Table 1. Phenotypic details of the individuals in the UKBB study sample.

	Ν	Mean Age	SD	First	Third
				Quantile	Quantile
Low tan response					
All	46,768	56.58	8.12	50.00	63.00
Male	18,256	56.62	8.27	50.00	63.00
Female	28,512	56.56	8.02	50.00	63.00
High tan response					
All	74,528	57.09	7.99	51.00	64.00
Male	39,989	57.55	8.06	51.00	64.00
Female	34,539	56.55	7.88	50.00	63.00

Supplementary Table 2. Summary of the 30 genetic loci identified in the UKBB sample. For each locus, we reported the genomic coordinates (GRCh37.p13), the size of the region between the first and last genome-wide significant SNP ($P<5x10^{-8}$), the number of SNPs passing genome-wide significance within the region (N_G), and the number of independent signals (N_I) for which we sought replication. We also reported if the locus was replicated. * indicates that the locus only reached nominal significance in the replication step.

Coordinates	Size (bp)	Ng	Nı	Gene	Replicated
chr1:63727542-63727542	1	1	1	FOXD3	yes*
chr1:66831370-66937516	106147	26	1	PDE4B	yes
chr1:205100663-205245233	144571	6	1	RIPK5	yes
chr2:38166796-38321827	155032	50	1	CYP1B1	yes*
chr3:85439136-85640418	201283	160	1	CADM2	no
chr3:156491160-156493213	2054	3	1	PA2G4P4	yes
chr5:33832958-33967955	134998	106	1	SLC45A2	yes
chr5:59016897-59028853	11957	12	1	PDE4D	yes*
chr5:149194485-149231519	37035	9	1	PPARGC1B	yes
chr6:192181-726042	533862	519	1	IRF4	yes
chr7:16924528-17238316	313789	24	2	AHR/AGR3	yes
chr8:116446547-116644121	197575	232	1	TRPS1	yes
chr9:12587153-12773263	186111	223	1	TYRP1	yes
chr9:16759161-16960741	201581	467	3	BNC2	yes
chr10:119533757-119604938	71182	62	1	EMX2	yes
chr11:68811777-69061635	249859	122	1	TPCN2	yes
chr11:88032224-90233385	2201162	2103	2	TYR	yes
chr12:88406164-89422075	1015912	111	1	KITLG	yes*
chr13:95153167-95171058	17892	71	1	DCT	yes
chr13:113532990-113558599	25610	24	1	ATP11A	yes
chr14:92761113-92795912	34800	16	1	SLC24A4	yes
chr15:28134352-29314924	1180573	316	3	HERC2/OCA2	yes
chr15:29265171-29314924	49753	3	1	APBA2	no
chr15:48426484-48485926	59443	2	1	SLC24A5	no
chr16:71891862-71945613	53752	6	1	IST1	no
chr16:88376014-90173553	1797540	2983	19	MC1R	yes
chr20:25565515-25565515	1	1	1	NINL	no
chr20:30115523-36562529	6447007	3128	2	RALY/ASIP	yes
chr22:38551166-38552468	1303	2	1	PLA2G6	no
chr22:45594002-45644654	50653	43	1	KIAA0930	yes

Supplementary Table 3. Phenotypic details of the individuals in the TwinsUK sample. The TwinsUK sample used in this study includes only female individuals.

	Ν	Mean Age	SD	First Quantile	Third Quantile
Low tan response	1,651	49.07	12.60	41.10	58.50
High tan response	2,286	49.65	12.34	42.03	58.33

Supplementary Table 4. Phenotypic details of the individuals in the Rotterdam Study sample.

	N	Mean Age	SD	First Quantile	Third Quantile
Low tan response					
All	3,554	65.28	9.67	58.33	72.04
Male	1,390	64.12	8.91	58.03	69.98
Female	2,164	66.02	10.06	58.48	73.38
High tan response					
All	6,897	64.94	9.29	58.24	71.13
Male	3,049	64.36	8.71	58.10	70.16
Female	3,848	65.40	9.68	58.38	71.87

Supplementary Table 5. Phenotypic details of the individuals in the Queensland Institute of Medical Research (Brisbane Adolescent Twin Study, BATS) study sample: adolescent twins, siblings, and parents.

	Ν	Mean Age	SD	First Quantile	Third Quantile
Low tan response					
All	1,752	26.96	16.28	12.00	44.00
Male	816	26.45	16.88	12.00	44.00
Female	936	27.40	15.73	12.00	43.00
High tan response					
All	1,549	27.82	16.33	12.00	44.00
Male	766	27.42	16.89	12.00	45.00
Female	783	28.21	15.77	12.00	43.00

Supplementary Table 6. Phenotypic details of the individuals in the Queensland Institute of Medical Research (MARC7) study sample: adult twins.

	Ν	Mean Age	SD	First	Third
				Quantile	Quantile
Low tan response					
All	1,093	52.27	8.11	46.30	57.70
Male	526	53.00	8.26	47.00	58.40
Female	567	51.59	7.91	45.40	57.30
High tan response					
All	755	52.40	7.93	46.30	57.90
Male	413	52.55	7.86	46.60	58.00
Female	342	52.21	8.03	46.10	57.60

	Ν	Mean Age	SD	First Quantile	Third Quantile
Low tan response					
All	7,497	45.26	10.4	37.00	52.00
Male	2,670	54.86	8.74	48.00	62.00
Female	4,827	39.95	6.83	35.00	44.00
High tan response					
All	28,348	44.64	9.73	37.00	51.00
Male	7,613	54.72	8.68	47.00	62.00
Female	20,735	40.94	7.12	35.00	47.00

Supplementary Table 7. Phenotypic details of the individuals in the NHS, NHS2, and HPFS studies.

Supplementary Table 8. Distribution of sex and ease of skin tanning in the five sub-studies of the NHS, NHS2, and HPFS cohorts.

	Low tan	High tan			
Platform	response	response	Male	Female	Total
Affymetrix	5,384	1,333	2,977	3,740	6,717
Illumina HumanHap	4,492	1,101	1,100	4,493	5,593
OmniExpress	5,716	1,348	2,579	4,485	7,064
Oncoarray	7,317	1,914	2,101	7,130	9,231
HumanCoreExome	5,439	1,801	1,526	5,714	7,240
Total	28,348	7,497	10,283	25,562	35,845

Supplementary Table 9. Summary of associations replicated at a nominal significance. For each SNP, we report the genomic coordinates (GRCh37.p13), the effect allele, the minor allele frequency (MAF), the odds ratio (OR) along with its 95% confidence interval (CI) and standard error (SE), the association P value in the discovery set (P_{UKBB}), and the meta-analysis P values in the five independent replication cohorts ($P_{replication}$). Positive odds ratios indicate a decreased tanning ability. ⁺ indicates that the SNP is a secondary signal detected through conditional analysis.

SNP	CHR	BP	Effect Allele	MAF	OR (95% CI)	SE	Ρυκββ	Preplication	Gene
rs670318	1	63727542	Т	0.05	1.13 (1.09-1.17)	0.02	4.58 x 10 ⁻¹⁰	3.34 x 10 ⁻²	FOXD3
rs336024	2	38279469	С	0.19	1.07 (1.05-1.10)	0.01	1.19 x 10 ⁻¹⁰	4.67 x 10⁻³	CYP1B1
rs893191	5	59023325	Т	0.38	1.05 (1.03-1.07)	0.01	1.50 x 10⁻ ⁸	6.59 x 10 ⁻³	PDE4D
rs1721028⁺	7	16993426	С	0.42	1.06 (1.04-1.08)	0.01	4.02 x 10 ⁻¹²	8.80 x 10 ⁻³	AGR3
rs11104947	12	88942980	А	0.02	1.26 (1.18-1.35)	0.03	7.47 x 10 ⁻¹²	1.40 x 10 ⁻²	KITLG

Supplementary Table 10. Summary of independent associations detected through the conditional analysis. For each replicated independent signal identified in the conditional analysis, we report the genomic coordinates (GRCh37.p13), the effect allele, the minor allele frequency (MAF), the odds ratio (OR) along with its 95% confidence interval (CI) and standard error (SE), the association P value in the discovery set (P_{UKBB}), and the meta-analysis P values in the five independent replication cohorts ($P_{replication}$). Positive odds ratios indicate a decreased tanning ability.

SNP	CHR	BP	Effect Allele	MAF	OR (95% CI)	SE	Риквв	Preplication	Gene
rs10962612	9	16804167	Т	0.24	0.90 (0.88-0.92)	0.01	4.49 x 10 ⁻²⁵	4.49 x 10 ⁻¹²	BCN2
rs1800407	15	28230318	Т	0.09	1.19 (1.16-1.23)	0.02	1.82 x 10 ⁻³¹	1.58 x 10⁻ ⁶	OCA2
rs164745	16	89709664	Т	0.31	0.75 (0.73-0.76)	0.01	6.80 x 10 ⁻²⁰⁶	3.50 x 10 ⁻⁴²	CHMP1A
rs11648089	16	89713938	С	0.11	0.70 (0.68-0.72)	0.02	9.54 x 10 ⁻¹³⁰	5.06 x 10 ⁻³⁸	CHMP1A
rs3743861	16	89818340	С	0.41	1.35 (1.33-1.37)	0.01	3.37 x 10 ⁻²⁶⁰	4.14 x 10 ⁻⁵⁷	FANCA
rs1006548	16	89844043	С	0.22	0.72 (0.71-0.74)	0.01	4.18 x 10 ⁻²⁰⁵	5.35 x 10 ⁻⁵⁰	FANCA
rs2238529	16	89853117	С	0.32	1.14 (1.12-1.16)	0.01	6.42 x 10 ⁻⁴⁵	4.35 x 10⁻ ⁷	FANCA
rs36233537	16	89884127	G	0.03	0.66 (0.62-0.70)	0.03	2.28 x 10 ⁻⁴⁷	3.54 x 10⁻¹⁴	FANCA
rs12932219	16	89916391	G	0.49	0.71 (0.70-0.72)	0.01	3.87 x 10 ⁻³³⁵	2.09 x 10 ⁻⁸⁶	SPIRE2
rs3803686	16	90020346	С	0.19	0.87 (0.86-0.89)	0.01	1.82 x 10 ⁻³⁵	3.68 x 10 ⁻⁷	DEF8
rs11649211	16	90039450	G	0.30	1.11 (1.09-1.13)	0.01	1.25 x 10 ⁻³⁰	3.60 x 10 ⁻¹⁴	AFG3L1P
rs35176381	16	90062479	G	0.37	1.55 (1.52-1.57)	0.01	4.81 x 10 ⁻⁵¹²	1.05 x 10 ⁻¹³⁹	AFG3L1P
rs77733403	16	90080723	С	0.16	1.66 (1.62-1.70)	0.01	7.67 x 10 ⁻⁴¹⁶	2.61 x 10 ⁻⁸²	DBNDD1
rs9922277	16	90158838	С	0.36	1.25 (1.23-1.27)	0.01	3.72 x 10 ⁻¹³⁹	3.86 x 10 ⁻⁴⁹	PRDM7

Supplementary Table 11. Summary of the SNP-by-sex interaction models. For each SNP-by-sex interaction term significant in the UKBB study sample, we report the genomic coordinates (GRCh37.p13), the effect allele, the odds ratio (OR) along with its 95% confidence interval (CI) and standard error (SE), the association P value in the discovery set (P_{UKBB}), and the meta-analysis P values in the four independent replication cohorts ($P_{replication}$). Male was used as baseline in all the analysis. ⁺ indicates that the SNP is a secondary signal detected through conditional analysis

SNP	CHR	BP	Effect Allele	OR (95% CI)	SE	Риквв	Preplication	
rs117132860	7	17134708	А	0.85 (0.76; 0.94)	0.05	1.73x10 ⁻³	0.397	
rs1800407 ⁺	15	28230318	Т	0.90 (0.85; 0.95)	0.03	3.33x10 ⁻⁴	0.052	
rs369230	16	89645437	G	1.09 (1.05; 1.13)	0.02	3.59x10⁻ ⁶	0.154	
rs11648089⁺	16	89713938	С	0.90 (0.85; 0.95)	0.03	4.07x10 ⁻⁴	0.338	
rs1006548	16	89844043	С	0.93 (0.89; 0.97)	0.02	9.70x10 ⁻⁴	0.897	

Supplementary Table 12. CMM and non-melanoma skin cancer occurrence for the individuals in the UKBB study sample.

	Ν	Mean Age	SD	First Quantile	Third Quantile
CMM cases					
All	907	58.01	7.91	52.00	64.00
Male	372	58.80	7.76	53.00	65.00
Female	535	57.46	7.97	51.50	64.00
Non-melanoma skin					
cancer cases					
All	5,912	61.28	6.53	58.00	66.00
Male	3,035	61.97	6.26	59.00	67.00
Female	2,877	60.55	6.73	57.00	66.00
Controls					
All	181,740	56.34	8.14	50.00	63.00
Male	84,993	56.45	8.25	50.00	63.00
Female	96,747	56.24	8.03	50.00	63.00

Supplementary Table 13. Summary of associations with non-melanoma skin cancer. For each locus passing the genome-wide significant threshold (P<5x10⁻⁸), we report its genomic coordinates (GRCh37.p13), the size of the region between the first and last genome-wide significant SNP, the number of SNPs passing genome-wide significance within the region (N_G), as well as the leading SNP, its effect allele, odds ratio (OR) and 95% confidence interval (CI), and standard error (SE). Positive OR represent an increased incidence of non-melanoma skin cancer. All loci but *CPVL*, *DEFB135*, *FAM49A*, *IRF4*, *LINC-PINT*, *THNSL2*, and *RALY/ASIP* were previously reported in Chahal *et al.*, 2016 (PMID:27539887). *IRF4*, and *RALY/ASIP* were previously reported in Chahal *et al.*, 2016 (PMID:27424798). *FAM49A* and *LINC-PINT* were previously reported in Stacey *et al.*, 2015 (PMID: 25855136).

Coordinate	Size (bp)	N_{G}	SNP	Effect Allele	OR (95% CI)	SE	Р	Gene
chr1:17682100-17787980	105880	124	rs7528427	Т	0.82 (0.79,0.85)	0.02	1.27x10 ⁻²⁴	RCC2
chr1:228941920-229021613	79693	60	rs12070203	Т	0.82 (0.78,0.85)	0.02	7.97x10 ⁻²²	RHOU
chr2:7704860-7704860	1	1	rs79522206	А	0.75 (0.68,0.83)	0.05	2.63x10 ⁻⁸	-
chr2:16499634-16499634	1	1	rs16982256	Т	1.49 (1.29,1.73)	0.07	4.59x10 ⁻⁸	FAM49A
chr2:88559607-88594573	34966	30	rs6709352	С	1.23 (1.15,1.31)	0.03	8.26x10 ⁻¹⁰	THNSL2
chr2:202122995-202241907	118912	51	rs3769823	G	1.16 (1.12,1.21)	0.02	1.83x10 ⁻¹³	ALS2CR12
chr3:71503479-71544614	41135	16	rs11707890	G	0.89 (0.85,0.92)	0.02	1.423x10 ⁻¹⁰	FOXP1
chr5:1294086-1356771	62685	47	rs31487	С	1.18 (1.14,1.23)	0.02	1.56x10 ⁻¹⁸	CLPTM1L
chr6:385735-434364	48629	5	rs147430042	G	0.58 (0.5,0.68)	0.07	7.92x10 ⁻¹³	IRF4
chr7:29132279-29132279	1	1	rs117744081	G	1.45 (1.28,1.64	0.06	2.62x10 ⁻⁹	CPVL
chr7:130581358-130585623	4265	9	rs157935	G	1.14 (1.09,1.19)	0.02	8.80x10 ⁻¹⁰	LINC-PINT
chr8:11836318-1183631	1	1	rs11774568	А	0.89 (0.86,0.93)	0.02	4.10x10 ⁻⁸	DEFB135
chr8:77437038-77499451	62413	33	rs17431641	Т	1.45 (1.32,1.58)	0.04	2.13x10 ⁻¹⁶	ZFHX4
chr8:100999637-101091569	91932	33	rs10099237	С	1.22 (1.16,1.29)	0.03	5.28x10 ⁻¹³	RGS22
chr9:22017836-22056499	38663	26	rs10738605	G	1.13 (1.08,1.17)	0.02	5.61x10 ⁻¹⁰	CDKN2B
chr10:8930198-9024785	94587	47	rs76141549	А	1.26 (1.19,1.34)	0.03	1.98x10 ⁻¹³	LOC105755953
chr11:88912190-89058101	145911	11	rs3900053	С	0.88 (0.85,0.92)	0.02	2.68x10 ⁻¹⁰	TYR
chr12:52814230-52913668	99438	44	rs11170164	Т	0.80 (0.75,0.85)	0.03	2.03x10 ⁻¹²	KRT5
chr16:89083136-90122562	1039426	94	rs12925026	Т	0.75 (0.71,0.79)	0.03	5.47x10 ⁻²⁴	MC1R
chr20:2224985-2304832	79847	29	rs6082600	С	0.80 (0.76,0.84)	0.02	1.06x10 ⁻¹⁸	TGM3
chr20:31551101-34269391	2718290	57	rs6059655	G	1.27 (1.20,1.35)	0.03	7.91x10 ⁻¹⁷	RALY/ASIP

Supplementary Table 14. Natural hair colour phenotype details for the individuals in the UKBB study sample.

	Ν	Mean Age	SD	First Quantile	Third Quantile
Red					
All	4,701	56.55	8.12	50.00	63.00
Male	1,821	56.53	8.40	50.00	63.00
Female	2,880	56.56	7.92	50.00	63.00
Blonde					
All	13,433	56.8	8.07	50.00	63.00
Male	5,654	57.29	8.19	51.00	64.00
Female	7,779	56.44	7.96	50.00	63.00
Light Brown					
All	48,910	57.08	7.98	51.00	64.00
Male	22,501	57.64	8.05	52.00	64.00
Female	26,409	56.60	7.89	50.00	63.00
Dark					
All	51,733	56.66	8.08	50.00	63.00
Male	26,625	56.84	8.16	50.00	64.00
Female	25,108	56.46	8.00	50.00	63.00

Supplementary Table 15. Hair colour distribution according to ease of skin tanning for the individuals in the UKBB study sample.

		Light	
Red	Blonde	Brown	Dark
4701	6786	19694	14464
1821	2488	7513	5791
2880	4298	12181	8673
0	6647	29216	37269
0	3166	14988	20834
0	3481	14228	16435
	Red 4701 1821 2880 0 0 0	RedBlonde470167861821248828804298066470316603481	RedBlondeLight Brown47016786196941821248875132880429812181066472921603166149880348114228

Supplementary Table 16. Summary of associations with non-red hair colour. For each replicated locus, we report the effect allele, the effect (BETA) along with its 95% confidence interval (CI) standard error (SE), and the association P value in the UKBB study sample for both non-red hair colour (HC) and tanning ability (TA). Hair colour was coded using a numerical value with blonde=1, light brown=2, and dark=3. The dark category included both individuals with dark brown and black hair. Positive BETA_{HC} represent an increase in hair darkness; positive BETA_{TA} represent a decreased tanning ability.

SNP	Effe ct	Nнс	ВЕТА _{нс} (95% CI)	SEsc	Psc	ВЕТА _{ТА} (95% CI)	SE τΑ	ΡτΑ	Gene
rs1308048	C	111956	0.001 (-0.005; 0.006)	0.00	0.795	-0.068 (-0.021; -0.115)	-0.024	8.74x10 ⁻¹⁵	PDE4B
rs12078075	G	113480	-0.050 (-0.060; -0.040)	0.00	3.20x10 ⁻²³	0.087 (0.016; 0.158)	0.036	1.03x10 ⁻⁸	RIPK5
rs9818780	С	111207	-0.004 (-0.009; 0.002)	0.0Ō	0.181	0.048 (0.007; 0.089)	0.021	4.44x10 ⁻⁸	PA2G4P4
rs16891982	С	114076	0.299 (0.282; 0.316)	0.0Ō	8.17x10 ⁻²⁵⁹	-0.920 (-0.579; -1.261)	-0.174	1.19x10 ⁻¹⁷³	SLC45A2
rs251464	С	112039	0.002 (-0.005; 0.008)	0.0Ō	0.619	-0.057 (-0.010; -0.104)	-0.024	1.39x10⁻ ⁸	PPARGC1B
rs12203592	Т	114076	0.254 (0.247; 0.260)	0.0Ō	4.08x10 ⁻¹¹⁸⁰	0.545 (0.396; 0.694)	0.076	1.91x10 ⁻⁵⁶⁷	IRF4
rs117132860	А	114076	-0.015 (-0.032; 0.002)	0.00	0.092	0.263 (0.098; 0.428)	0.084	4.10x10 ⁻²³	AHR/AGR3
rs2737212	С	110542	-0.003 (-0.008; 0.003)	0.0Ō	0.338	0.091 (0.036; 0.146)	0.028	6.98x10 ⁻²⁵	TRPS1
rs1326797	Т	113143	0.035 (0.029; 0.040)	0.0Ō	1.35x10 ⁻³²	-0.077 (-0.026; -0.128)	-0.026	5.75x10 ⁻¹⁸	TYRP1
rs10810650	С	112034	0.026 (0.021; 0.032)	0.00	1.02x10 ⁻¹⁹	-0.145 (-0.074; -0.216)	-0.036	3.15x10 ⁻⁵⁹	BNC2
rs35563099	Т	109800	-0.005 (-0.013; 0.003)	0.00	0.207	-0.120 (-0.046; -0.194)	-0.038	5.41x10 ⁻²³	EMX2
rs72917317	G	109574	-0.132 (-0.141; -0.123)	0.00	3.92x10 ⁻¹⁶⁶	0.165 (0.069; 0.261)	0.049	7.64x10 ⁻³⁰	TPCN2
rs1126809	А	114076	-0.040 (-0.046; -0.034)	0.00	1.98x10 ⁻³⁹	0.255 (0.159; 0.351)	0.049	4.81x10 ⁻¹⁶⁵	TYR
rs9561570	Т	113736	-0.036 (-0.042; -0.030)	0.00	5.34x10 ⁻³³	0.056 (0.011; 0.101)	0.023	1.19x10 ⁻⁹	DCT
rs1046793	С	113818	0.005 (0.000; 0.011)	0.00	0.053	-0.076 (-0.025; -0.127)	-0.026	1.44x10 ⁻¹⁸	ATP11A
rs746586	Т	113220	-0.136 (-0.142; -0.130)	0.00	1.9x10 ⁻⁵⁰⁶	0.062 (0.017; 0.107)	0.023	9.09x10 ⁻¹³	SLC24A4
rs12913832	А	114076	0.369 (0.363; 0.375)	0.0Ô	3.17x10 ⁻²⁷³⁶	-0.307 (-0.195; -0.419)	-0.057	5.83x10 ⁻¹⁸²	HERC2/OCA2
rs369230	G	113329	-0.093 (-0.100; -0.087)	0.00	1.36x10 ⁻¹⁸⁴	0.466 (0.335; 0.597)	0.067	1.63x10 ⁻⁵⁰⁰	MC1R
rs6059655	А	113302	-0.114 (-0.124; -0.105)	0.00	4.88x10 ⁻¹³¹	0.527 (0.358; 0.696)	0.086	6.08x10 ⁻³⁰⁷	RALY/ASIP
rs11703668	G	112405	0.013 (0.007; 0.019)	0.00	4.88x10 ⁻⁶	-0.073 (-0.024; -0.122)	-0.025	4.76x10 ⁻¹⁷	KIAA0930

Supplementary Table 17. Summary of associations with red versus non-red hair colour. For each replicated locus, we report the effect allele, the odds ratio (OR) along with its 95% confidence interval (CI) standard error (SE), and the association P value in the UKBB study sample for both red versus not-red hair colour (HC) and tanning ability (TA). Positive OR_{HC} represent an increased incidence of red hair; positive OR_{TA} represent a decreased tanning ability.

SNP	Effect Allele	Ν	OR _{нс} (95% CI)	SE HC	Рнс	OR _{TA} (95% CI)	SE τΑ	ΡτΑ	Gene
rs1308048	С	116563	0.96 (0.92; 1.00)	0.02	0.070	0.93 (0.92; 0.95)	0.01	8.74x10 ⁻¹⁵	PDE4B
rs12078075	G	118155	0.99 (0.92; 1.07)	0.04	0.786	1.09 (1.06; 1.12)	0.02	1.03x10 ⁻⁸	RIPK5
rs9818780	С	115800	1.01 (0.97; 1.05)	0.02	0.629	1.05 (1.03; 1.07)	0.01	4.44x10 ⁻⁸	PA2G4P4
rs16891982	С	118777	0.70 (0.60; 0.82)	0.08	1.37x10⁻⁵	0.40 (0.37; 0.43)	0.03	1.19x10 ⁻¹⁷³	SLC45A2
rs251464	С	116648	0.98 (0.94; 1.03)	0.03	0.492	0.94 (0.93; 0.96)	0.01	1.39x10⁻ ⁸	PPARGC1B
rs12203592	Т	118777	1.27 (1.21; 1.33)	0.02	1.61x10 ⁻²²	1.72 (1.69; 1.76)	0.01	1.91x10 ⁻⁵⁶⁷	IRF4
rs117132860	А	118777	1.03 (0.91; 1.17)	0.07	0.621	1.30 (1.24; 1.37)	0.03	4.10x10 ⁻²³	AHR/AGR3
rs2737212	С	115095	1.03 (0.98; 1.07)	0.02	0.232	1.09 (1.08; 1.11)	0.01	6.98x10 ⁻²⁵	TRPS1
rs1326797	Т	117799	0.98 (0.94; 1.02)	0.02	0.283	0.93 (0.91; 0.94)	0.01	5.75x10 ⁻¹⁸	TYRP1
rs10810650	С	116646	0.96 (0.92; 1.00)	0.02	0.056	0.86 (0.85; 0.88)	0.01	3.15x10 ⁻⁵⁹	BNC2
rs35563099	Т	114312	1.01 (0.95; 1.07)	0.03	0.822	0.89 (0.87; 0.91)	0.01	5.41x10 ⁻²³	EMX2
rs72917317	G	114088	1.09 (1.02; 1.17)	0.04	0.014	1.18 (1.15; 1.21)	0.01	7.64x10 ⁻³⁰	TPCN2
rs1126809	А	118777	0.99 (0.95; 1.04)	0.02	0.798	1.29 (1.27; 1.31)	0.01	4.81x10 ⁻¹⁶⁵	TYR
rs9561570	Т	118426	1.03 (0.99; 1.08)	0.02	0.141	1.06 (1.04; 1.08)	0.01	1.19x10 ⁻⁹	DCT
rs1046793	С	118501	0.99 (0.95; 1.03)	0.02	0.550	0.93 (0.91; 0.94)	0.01	1.44x10 ⁻¹⁸	ATP11A
rs746586	Т	117885	0.98 (0.94; 1.02)	0.02	0.297	1.06 (1.05; 1.08)	0.01	9.09x10 ⁻¹³	SLC24A4
rs12913832	А	118777	0.74 (0.70; 0.78)	0.03	4.23x10 ⁻²⁷	0.74 (0.72; 0.75)	0.01	5.83x10 ⁻¹⁸²	HERC2/OCA2
rs369230	G	113329	4.66 (4.45; 4.88)	0.02	1.05x10 ⁻⁹⁰⁵	1.59 (1.56; 1.62)	0.01	1.63x10 ⁻⁵⁰⁰	MC1R
rs6059655	А	117957	1.80 (1.70; 1.90)	0.03	2.33x10 ⁻⁹³	1.69 (1.65; 1.74)	0.01	6.08x10 ⁻³⁰⁷	RALY/ASIP
rs11703668	G	117046	0.99 (0.95; 1.03)	0.02	0.617	0.93 (0.91; 0.95)	0.01	4.76x10 ⁻¹⁷	KIAA0930

Supplementary Table 18. Summary statistics of associations with natural hair colour for known MC1R variants. For each variant, we report the effect allele, the effect size (OR/BETA) along with its 95% confidence interval (CI) and standard error (SE), the association P value in the UKBB study sample for red versus non-red hair colour (RH) and for non red-hair colour (non-RH). Positive OR_{RH} represent an increased incidence of red hair; positive BETA_{non-RH} represent an increase in hair darkness.

Variant	SNP	Effect Allele	ОR _{RH} (95% CI)	SERH	P _{RH}	BETA _{non-RH} (95% CI)	SE non-RH	P non-RH
D84E	rs1805006	А	2.66 (2.36; 3.00)	0.06	1.16x10 ⁻⁵⁶	-0.153 (-0.178; -0.127)	0.013	6.55x10 ⁻³²
D294H	rs1805009	С	5.84 (5.43; 6.28)	0.04	1.74x10 ⁻⁴⁸⁷	-0.128 (-0.147; -0.109)	0.010	1.80x10 ⁻⁴⁰
I155T	rs1110400	С	1.00 (0.82;1.21)	0.10	0.963	-0.096 (-0.123; -0.070)	0.013	4.62x10 ⁻¹³
R142H	rs11547464	А	4.03 (3.51; 4.64)	0.07	3.56x10 ⁻⁸⁵	-0.104 (-0.138; -0.070)	0.018	2.25x10 ⁻⁹
R151C	rs1805007	Т	10.67 (10.10; 11.27)	0.03	4.89x10 ⁻¹⁵²⁹	-0.195 (-0.205; -0.185)	0.005	4.05*10 ⁻³¹⁰
R160W	rs1805008	Т	3.73 (3.54; 3.93)	0.03	8.66x10 ⁻³⁴⁸	-0.156 (-0.167; -0.146)	0.005	7.54x10 ⁻¹⁹⁷
R163Q	rs885479	А	0.14 (0.12; 0.17)	0.12	1.77x10 ⁻⁵⁹	-0.007 (-0.019; 0.006)	0.007	0.310
V60L	rs1805005	Т	0.29 (0.26; 0.32)	0.05	9.16x10 ⁻¹²⁵	-0.044 (-0.053; -0.036)	0.004	5.20x10 ⁻²⁶
V92M	rs2228479	А	0.097 (0.08; 0.12)	0.10	2.79x10 ⁻¹²⁵	0.0285 (0.0194; 0.038)	0.005	9.77x10 ⁻¹⁰

Supplementary Table 19. Summary statistics of associations with ease of skin tanning for known MC1R variants. For each variant, we report the effect allele, the minor allele frequency (MAF), the odds ratio (OR) along with its 95% confidence interval (CI) and standard error (SE), the association P value in the UKBB study sample. Positive ORs represent a decreased tanning ability.

Variant	SNP	Effect Allele	MAF	OR (95% CI)	SE	Р
D84E	rs1805006	А	0.013	2.05 (1.90; 2.20)	0.04	7.06x10 ⁻⁸²
D294H	rs1805009	С	0.026	2.24 (2.13; 2.36)	0.03	5.86x10 ⁻²⁰⁴
I155T	rs1110400	С	0.011	1.44 (1.33; 1.55)	0.04	2.71x10 ⁻²⁰
R142H	rs11547464	А	0.007	1.70 (1.54; 1.86)	0.05	7.15x10 ⁻²⁸
R151C	rs1805007	Т	0.100	2.55 (2.48; 2.62)	0.01	8.71x10 ⁻⁹⁰⁷
R160W	rs1805008	Т	0.087	1.91 (1.86- 1.97)	0.02	2.72x10 ⁻⁴⁰³
R163Q	rs885479	А	0.048	0.95 (0.91; 0.99)	0.02	8.08x10 ⁻³
V60L	rs1805005	Т	0.126	1.08 (1.05; 1.11)	0.01	2.450x10 ⁻⁹
V92M	rs2228479	А	0.098	1.05 (1.02; 1.07)	0.01	2.08x10 ⁻³

Supplementary Table 20. cis-eQTL enrichment in skin tissues from the GTEx project. Using the replicated SNPs (both primary and secondary associations) extended with any SNP in high linkage disequilibrium ($r^2 \ge 0.8$, N=599) with them, we evaluated empirical enrichment P values (eP) by comparing the overlap between the set of *cis*-eQTLs in the GTEx project database with this extended set of SNPs and with the overlap obtained using 1,000 random sets of SNPs.

Tissue	eP	
Skin (fibroblasts)	1.0x10 ⁻³	
Sun exposed skin (Low leg)	1.0x10 ⁻³	
Non-sun exposed skin (Suprapubic)	0.142	

Supplementary Table 21. Enrichment for histone markers in epithelial foreskin melanocyte primary cells from the RoadMap. Using the replicated SNPs (both primary and secondary associations) extended with any SNP in high linkage disequilibrium ($r^2 \ge 0.8$; N=599) with them, we evaluated empirical enrichment P values (eP) by comparing the overlap between DNA accessibility peaks and histone marks data from the Roadmap project with this extended set of SNPs and with the overlap obtained using 1000 random sets of SNPs. Since the histone modifications data for the studied cell line was available from two donors we averaged the overlaps among samples.

Histone Mark	eP
DNase	1.0x10 ⁻³
H3K27ac	1.0x10 ⁻³
H3K27me3	0.076
H3K36me3	2.0x10 ⁻³
H3K4me1	1.0x10 ⁻³
H3K4me3	3.0x10 ⁻³
H3K9me3	0.066

Supplementary Notes

The Melanoma Meta-analysis Consortium

Law MH¹, Bishop DT², Lee JE³, Brossard M^{4,5}, Moses EK⁶, Song F⁷, Barrett JH², Kumar R⁸, Easton DF⁹, Pharoah PD¹⁰, Swerdlow AJ^{11,12}, Kypreou KP¹³, Taylor JC², Harland M², Randerson-Moor J², Akslen LA^{14,15}, Andresen PA¹⁶, Avril MF¹⁷, Azizi E^{18,19}, Scarrà GB^{20,21}, Brown KM²², Dębniak T²³, Elder DE²⁴, Fang S³, Friedman E¹⁹, Galan P²⁵, Ghiorzo P^{20,21}, Gillanders EM²⁶, Goldstein AM²², Gruis NA²⁷, Hansson J²⁸, Helsing P²⁹, Hočevar M³⁰, Höiom V²⁸, Ingvar C³¹, Chen WV³²; GenoMEL Consortium; Essen-Heidelberg Investigators; SDH Study Group; Q-MEGA and QTWIN Investigators; AMFS Investigators; ATHENS Melanoma Study Group, Landi MT²², Lang J³³, Lathrop GM³⁴, Lubiński J²³, Mackie RM^{33,35}, Mann GJ³⁶, Molven A^{15,37}, Montgomery GW³⁸, Novaković S³⁹, Olsson H^{40,41}, Puig S^{42,43}, Puig-Butille JA^{42,43}, LI X^{44,45}, Radford-Smith GL^{46,47,48}, van der Stoep N⁴⁹, van Doorn R²⁷, Whiteman DC⁵⁰, Craig JE⁵¹, Schadendorf D^{52,53}, Simms LA⁴⁵, Burdon KP⁵⁴, Nyholt DR^{38,55}, Pooley KA⁹, Orr N⁵⁶, Stratigos AJ¹³, Cust AE⁵⁷, Ward SV⁶, Hayward NK⁵⁸, Schulze HJ⁵⁹, Dunning AM¹⁰, Bishop JA², Amos Cl⁶⁰, MacGregor S¹

¹Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

²Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, University of Leeds, Leeds, UK.

³Department of Surgical Oncology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

⁴INSERM, UMR 946, Genetic Variation and Human Diseases Unit, Paris, France.

⁵Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.

⁶Centre for Genetic Origins of Health and Disease, Faculty of Medicine, Dentistry and Health Sciences, University of Western Australia, Perth, Western Australia, Australia.

⁷Department of Epidemiology and Biostatistics, Key Laboratory of Cancer Prevention and Therapy, Tianjin, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China.

⁸Division of Molecular Genetic Epidemiology, German Cancer Research Center, Heidelberg, Germany.

⁹Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.

¹⁰Centre for Cancer Genetic Epidemiology, Department of Oncology, University of Cambridge, Cambridge, UK.

¹¹Division of Genetics and Epidemiology, The Institute of Cancer Research, London, UK.

¹²Division of Breast Cancer Research, The Institute of Cancer Research, London, UK.

¹³Department of Dermatology, University of Athens School of Medicine, Andreas Sygros Hospital, Athens, Greece.

¹⁴Centre for Cancer Biomarkers (CCBIO), Department of Clinical Medicine, University of Bergen, Bergen, Norway.

¹⁵Department of Pathology, Haukeland University Hospital, Bergen, Norway.

¹⁶Department of Pathology, Molecular Pathology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.

¹⁷Assistance Publique-Hôpitaux de Paris, Hôpital Cochin, Service de Dermatologie, Université Paris Descartes, Paris, France.

¹⁸Department of Dermatology, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv, Israel.

¹⁹Oncogenetics Unit, Sheba Medical Center, Tel Hashomer, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.

²⁰Department of Internal Medicine and Medical Specialties, University of Genoa, Genoa, Italy.

²¹Laboratory of Genetics of Rare Cancers, Istituto di Ricovero e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria (IRCCS AOU) San Martino l'Istituto Scientifico Tumori Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy.

²²Division of Cancer Epidemiology and Genetics, National Cancer Institute, US National Institutes of Health, Bethesda, Maryland, USA.

²³International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland.
²⁴Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA.

²⁵Université Paris 13, Equipe de Recherche en Epidémiologie Nutritionnelle (EREN), Centre de Recherche en Epidémiologie et Statistiques, INSERM U1153, Institut National de la Recherche Agronomique (INRA) U1125, Conservatoire National des Arts et Métiers, Communauté d'Université Sorbonne Paris Cité, Bobigny, France.

²⁶Inherited Disease Research Branch, National Human Genome Research Institute, US National Institutes of Health, Baltimore, Maryland, USA.

²⁷Department of Dermatology, Leiden University Medical Center, Leiden, the Netherlands.

²⁸Department of Oncology-Pathology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.

²⁹Department of Dermatology, Oslo University Hospital, Rikshospitalet, Oslo, Norway.

³⁰Department of Surgical Oncology, Institute of Oncology Ljubljana, Ljubljana, Slovenia.

³¹Department of Surgery, Clinical Sciences, Lund University, Lund, Sweden.

³²Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, USA.

³³Department of Medical Genetics, University of Glasgow, Glasgow, UK.

³⁴McGill University and Génome Québec Innovation Centre, Montreal, Quebec, Canada.
³⁵Department of Public Health, University of Glasgow, Glasgow, UK.

³⁶Centre for Cancer Research, University of Sydney at Westmead, Millennium Institute for Medical Research and Melanoma Institute Australia, Sydney, New South Wales, Australia.

³⁷Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.

³⁸Molecular Epidemiology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

³⁹Department of Molecular Diagnostics, Institute of Oncology Ljubljana, Ljubljana, Slovenia.

⁴⁰Department of Oncology/Pathology, Clinical Sciences, Lund University, Lund, Sweden.

⁴¹Department of Cancer Epidemiology, Clinical Sciences, Lund University, Lund, Sweden.

⁴²Melanoma Unit, Departments of Dermatology, Biochemistry and Molecular Genetics, Hospital Clinic, Institut d'Investigacions Biomèdica August Pi Suñe, Universitat de Barcelona, Barcelona, Spain.

⁴³Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Raras, Instituto de Salud Carlos III, Barcelona, Spain.

⁴⁴Department of Epidemiology, Richard M. Fairbanks School of Public Health, Indiana University, Indianapolis, Indiana, USA.

⁴⁵Melvin and Bren Simon Cancer Center, Indiana University, Indianapolis, Indiana, USA.

⁴⁶Inflammatory Bowel Diseases, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

⁴⁷Department of Gastroenterology and Hepatology, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia.

⁴⁸University of Queensland School of Medicine, Herston Campus, Brisbane, Queensland, Australia.

⁴⁹Department of Clinical Genetics, Center of Human and Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands.

⁵⁰Cancer Control Group, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

⁵¹Department of Ophthalmology, Flinders University, Adelaide, South Australia, Australia.

⁵²Department of Dermatology, University Hospital Essen, Essen, Germany.

⁵³German Consortium for Translational Cancer Research (DKTK), Heidelberg, Germany.

⁵⁴Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia. ⁵⁵Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia.

⁵⁶Breakthrough Breast Cancer Research Centre, The Institute of Cancer Research, London, UK.

⁵⁷Cancer Epidemiology and Services Research, Sydney School of Public Health, University of Sydney, Sydney, New South Wales, Australia.

⁵⁸Oncogenomics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia.

⁵⁹Department of Dermatology, Fachklinik Hornheide, Institute for Tumors of the Skin at the University of Münster, Münster, Germany.
⁶⁰Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA.